
- ✓ What will tomorrow's supercomputers look like?
- ✓ How to port your application to GPUs (without porting it)?.
- ✓ What should I do to use tomorrow's supercomputers efficiently?
- √ Why thinking parallel will make all the difference?
- ✓ Shall we think in local or global address spaces?
- ✓ Do we need data stream processing to cope efficiently with many-core CPUs?
- ✓ What to think of the new languages ... Fortress, Chapel, X10, UPC, Co-Array Fortran?
- ✓ Do you need to learn VHDL when using FPGAs?
- ✓ How to define an FPGA's peak performance? (and how to cheat doing so?)
- √ How can FPGAs running at 100MHz outperform CPUs running at 3GHz
- ✓ Does C-to-Hardware work?
- ✓ What DEISA/PRACE/HPCS mean?
- ✓ Can your playstation save the world?
- ✓ Why should supercomputers care about the climate change?
- ✓ Do you think Roadrunner is a bird and Maxwell is a Scottish physicist?
- ✓ How to improve your data analysis for better signal/background discrimination?

inverted CSC-2008

"Where students turn into teachers"

the printed booklet 3-5 March 2008 colle

All the answers at 15 C

Towards Reconfigure leading Performance Continuing

- ✓ Multicore, advanced Architectures
- ✓ Multi-core at work
- √ Special-Purpose Accelerators
- ✓ Multicores at work: CELL Processor
- ✓ Programmable Logic
- ✓ Reconfigurable HPC: theory, tools
- ✓ Parallel Programming Paradigms
- √ Hybrid Programming

► Special topics

- ✓ Advanced aspects of data analysis
- ✓ Scalable Image and Video coding

Lecturers
All former CSC2006/2007 students

Iris Christadler

Leibniz

Supercomputing Centre

Jose Dana Perez

CERN

Alfio Lazzaro

University of Milan, INFN Milan

Manfred Muecke

University of

Vienna

Andrzej Nowak

CERN

Advanced topics, rarely taught at CERN before