
Bob Jacobsen September 2003Tools and Methods - Lecture 1

Tools & Methods

Bob Jacobsen September 2003Tools and Methods - Lecture 1

What do you need to do the job?

I need to calculate the sum of primes less than 100:

This is quick, throw-away code
• Not well structured, efficient, general or robust

• I understand what I intended, because I wrote it just now

Already, I need an editor, compiler, linker, and probably a debugger

int sumPrimes() {

 int sum = 0;

 for (int i=1; i < 100; i++) { // loop over possible primes

 bool prime = true;

 for (int j=1; j < 10; j++) { // loop over possible factors

 if (i % j == 0) prime = false;

 }

 if (prime) sum += i;

 }

 return sum;

}

Bob Jacobsen September 2003Tools and Methods - Lecture 1

“Don’t worry, I’ll remember
what I changed.”

“The answer looks OK, lets
move on.”

“Does anybody know where
this value came from?”

“Your #%@!& code broke
again!”

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Projects come in different sizes

My sample program is a pretty small project!

Size (arbitrary units)

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

Size (arbitrary units)

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

Size (arbitrary units)

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Projects come in different sizes

A larger project may need a different approach
• Those tend to require more effort up front

What do you do when your project grows?

Size (arbitrary units)

Method 1
Method 2

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Projects come in different sizes

If you’re trying to solve a really large problem:

Size (arbitrary units)

Method 1
Method 2
Method 3

Bob Jacobsen September 2003Tools and Methods - Lecture 1

What has all this to do with us?

Our systems tend to be complex systems
• HEP tends to work at the limit of what we know how to do

“If you only have a hammer, wood screws look a lot like nails” - ??
“If you only have a screwdriver, nails are pretty useless” - Don Briggs

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Larger projects have standard ways of doing things

To make it possible to communicate, you need a shared vocabulary
• Standards for languages, data storage, etc.

For people to work together, you have to control integrity of source code
• E.g. CVS to provide versioning and control of source code

Just building a large system can be difficult
• Need tools for creating releases, tracking problems, etc.

Bob Jacobsen September 2003Tools and Methods - Lecture 1

But individual effort is still important!

You can’t build a great system
from crummy parts

You want your efforts to make a
difference

Good tools & methods can help
you do a better job

“Whatever you do may seem
insignificant, but it is most
important that you do it.” -
Gandhi

Bob Jacobsen September 2003Tools and Methods - Lecture 1

The Tools & Method Track

A spectrum of places to improve:
• What you do in the next minutes

• What you do over the next years

Three basic themes:
• Individual tools & methods

• Working with existing code

• Building new systems

int sumPrimes() {

 int sum = 0;

 for (int i=1; i < 100; i++) { // loop over possible primes

 bool prime = true;

 for (int j=1; j < 10; j++) { // loop over possible factors

 if (i % j == 0) prime = false;

 }

 if (prime) sum += i;

 }

 return sum;

}

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Plan for this week:

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Design

PackageNode
Task

Architectural Design

Scope: Processors,
packages, tasks

Class

Class

Class

Class

Class

attribute

operation

Mechanistic Design

Detailed Design

Scope: Classes

Scope: Groups of
collaborating classes

System architecture

Individual project

Specific task

“Design” is how you think about what you’re doing

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Design Levels: an analogy

Architectural design

Mechanistic design

Detailed design

The Greasy
Spoon

Bill Watterson

Imagine the project is not to build software but to go on an
inter-planetary journey...

decide which planet to fly to

select the flight path

choose where to have lunch

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Architectural design

Goals
• Capture major interfaces between
subsystems and packages early

• Be able to visualize and reason about the
design in a common notation

• Be able to break work into smaller pieces
that can be developed by different teams
(concurrently)

• Acquire an understanding of non-
functional constraints

programming languages and operating systems

technologies: distribution, concurrency,
database, GUIs

component reuse

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Architectural Design Qualities

A well designed architecture has certain qualities:

• layered subsystems

• low inter-subsystem coupling

• robust, resilient and scalable

• high degree of reusable components

• clear interfaces

• driven by the most important and risky use cases

•EASY TO UNDERSTAND

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Mechanistic Design

Specify the details of inter-object collaboration mechanisms

•Determine the structure of classes and their associations

Class diagram

•Determine the behavior of classes

Interaction diagrams

Collaboration

Sequence

•Target: The people working together

Over time & space

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Class Diagram

Describes the types of objects in the
system and the various kinds of static
relationships that exist between them

Rational Software Corporation

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Example Class Diagrams
Cluster

phi : double
theta : double
energy : double

getPhi() : double
getTheta() : double
getEnergy() : double

Calo

/ clusters : integer

getNoOfClusters() : integer

0..# clusters

clusters

1

Track

phi : double
theta : double
pt : double

getPhi() : double
getTheta() : double
getPt() : double

Tracker

/ tracks : integer

getNoOfTracks() : integer

0..# tracks

tracks

1

Event

eventNo : integer

getEventNo() : integer

1

1
1

1

trackercalo

There are many possible designs

Goal: Allow you to reason about the
strengths and weaknesses of a particular
choice

Communicate through time and space

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Building software is difficult

It cannot be learned from a book
• You have got to do it and make mistakes

• Only time will tell if the result is “good”

It is a creative activity
• And hence enjoyable

• Not always clear when you should stop

It requires experience
• After a while you will tend to be more cautious and less ambitious

• Try to keep it simple
You will remember past-project horror stories

Or am I just getting old?

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Addressing these themes:

QuickTimeª and a TIFF (LZW) decompressor are needed to see this picture.

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Tools you can use

Knowing what you’ve done - CVS

Knowing whether it works - JUnit

Bob Jacobsen September 2003Tools and Methods - Lecture 1

CVS Source Code Management

Maintains a repository of text files
• Allows users to check in and check out changed text

• Old code remains available
Each checked-in change defines a new revision
You can retrieve, ask for differences with any of them

• Revisions can be tagged for easy reference

Similar in concept to RCS, CMS, other products

Big advantage: checkout is not exclusive
• More than one developer can have the same file checked out

• Developers can control their own use of the code for read, write

• Changes can come from multiple sources

• CVS handles (most) of the conflict resolution

Key tool for large collaborations!
• But also an important tool for individuals

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Simple usage: checkout and update

Getting a copy of the most recent contents of a package Foo:
cvs checkout Foo

Getting a copy of version (tag) V00-02-23 of a package Foo:
cvs checkout -r V00-02-23 Foo

These produce fully editable Foo directories, etc

To update a directory to the most recent contents:
cvs update -A

To see what an update will change, without actually changing
cvs -n update -A

Update flags:
• U update M modified A added

• C conflict ? unknown D deleted

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Committing changes back to the repository

To put your changes back into the repository:
• Merge in any changes since your checkout

cvs update -A

• commit:

cvs commit

Many options:
• Specify comment for logs from command line

• Commit only one file

• Control processing of subdirectories

Possible failures
• Can’t get a temporary lock on the repository

• Conflict during update

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Adding and removing files

To tell CVS a new file exists:
• First create the file, then

cvs add <name>

cvs commit
• Nothing changes in the repository until the commit

To tell CVS a file is no longer needed
• First delete the file, then

cvs rm <name>

cvs commit
• Nothing changes in the repository until the commit

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Labeling particular contents for later

To add a particular label to certain contents:
• Make sure that everything is in the repository

cvs update

cvs commit

• Tell CVS to add a tag to the current contents
cvs tag <string>

Tags are an easy way to communicate with your colleagues
• “I just fixed that in jake20010924a, give it a try”

• This bug is back in V00-03-04, I thought it was fixed in V00-03-02”

Web based tools exist for seeing what changed, who changed it, etc

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Conflict resolution & parallel development

Its rare for developers to really conflict by changing the same line
• Usually only one person working on a particular piece of functionality

• And people working on the same thing should talk to each other!

• Conflicts happen most often during migrations of the code

When it happens, CVS can’t figure out how to cope
• Marks both sets of changed lines with markers

<<<<<<<<<<<<<<<<<

One content

=================
Other content

>>>>>>>>>>>>>>>>>

• User has to edit this to select one or other, or combine

Really not a significant problem
• Though we will provoke it during exercises

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Behind the curtain

The repository contains *,v files
• Each contains some version info at the front,

• followed by the most recent contents

• followed by enough patch information to recreate old contents

Deleted files are stored in the “Attic” directory

Each CVS-controlled directory has a CVS subdirectory
• Contains various files used by CVS

• Don’t touch!

Bob Jacobsen September 2003Tools and Methods - Lecture 1

How CVS find changes

Triple compare
• The contents you have now

• The contents you checked out

• The current contents of the repository

CVS calculates two sets of changes:
• From second and third, it finds changes to the repository

• From first and second, it finds your changes

So long as these don’t overlap, there’s no problem merging them in

CVS thinks that any change that it detects is deliberate
• If you edit a file to remove changes, it will let you check it in

• If you copy an old version into a directory, it will let you check it in

Since CVS does not tag the file contents, copying files from one directory to
another is a time-bomb

• CVS thinks it sees deliberate changes on commit, and the old version
become the “current contents”

Bob Jacobsen September 2003Tools and Methods - Lecture 1

What’s in it for you?

Science, medicine, even football use a notebook as a basic tool
• What you did when

• Why you did it

• What happened then

Bob Jacobsen September 2003Tools and Methods - Lecture 1

CVS can provide that

Commit, tag, update operations are cheap, logged, carry comments

Use that as your record of progress
• Commit each piece as you do it

• Spend a couple seconds on a useful comment
“Added undo tool, next will use it from Frabitzoid”
“Now conserves momentum”

“Now ready for energy test cases”

Use tags to capture important states
• Tag each time it’s basically working

cvs tag jake-copy-works

• Tag to share with a coworker
cvs tag jake20030828a

Not a heavyweight action!

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Now what have I done?

It worked just minutes ago…
cvs diff Foo.java

• Can also do entire directories, etc.

How did I do that last time?
cvs diff -D 6-Jun-2003 -D 12-Jun-2003
cvs diff -r 1.2 -r 1.3

cvs diff -r jake-copy-works -r jake-added-mass

Bob Jacobsen September 2003Tools and Methods - Lecture 1

OK, that was a bad idea

Everybody makes mistakes
• Key question: how hard to fix them?

Can remove changes:
• cvs update -j jake-copy-works -j jake-added-mass

Even if there are more recent changes!
• CVS uses its three-file diff method to do this

• If there are conflicts, you’ll have some hand edits to do

Don’t forget to commit the resulting changes back!

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Toward an informed way of experimental working

These techniques remove the cost from small, experimental changes
• Allows you to make quick progress on little updates

• Without risk to the big picture

How do you know those steps are progress?

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Testing

But don’t you see Gerson - if the particle is too small and too short-lived to
detect, we can’t just take it on faith that you’ve discovered it.”

Bob Jacobsen September 2003Tools and Methods - Lecture 1

The role of testing tools

Remember our original example:
• Simple routine, written in a few minutes

• “So simple it must be right”

int sumPrimes() {

 int sum = 0;

 for (int i=1; i < 100; i++) { // loop over possible primes

 bool prime = true;

 for (int j=1; j < 10; j++) { // loop over possible factors

 if (i % j == 0) prime = false;

 }

 if (prime) sum += i;

 }

 return sum;

}

 But its not right...

"Study it forever and you'll still wonder. Fly it once and you'll know.”
- Henry Spencer

Bob Jacobsen September 2003Tools and Methods - Lecture 1

How to test?

Simplest: Run it and look at the output
• Gets boring fast!

• How often are you willing to do this?

More realistic: Code test routines to provide inputs, check outputs
• Can become ungainly

Most useful: A test framework
• Great feedback

• Better control over testing

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Testing Frameworks: CppUnit, Junit, et al

To test a function:
public class FindVals {

// Test whether an number is a square

 boolean isSquare(int val) {

double root = Math.floor(Math.pow(val, 0.5));

if (Math.abs(root*root - val) < 1.E-6) return
true;

else return false;

 }

}

You write a test:
 public void testIsSquare() {

FindVals s = new FindVals();

Assert.assertTrue(s.isSquare(4));

 }

Plus tests for other cases…

Invoke a function

Check the result

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Embed that in a framework

Gather together all the tests
 // define test suite

 public static Test suite() {

// all tests from here down in heirarchy

TestSuite suite = new TestSuite(TestFindVals.class);

return suite;

 }

Start the testing
• To just run the tests: junit.textui.TestRunner.main
(TestFindVals.class.getName());

• Via a GUI: junit.swingui.TestRunner.main
(TestFindVals.class.getName());

And that’s it!

Invoke tests for my class

Junit uses class
name to find tests

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Running the tests

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Running the tests

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Why?

One test isn’t worth very much
• Maybe saves you a couple seconds once or twice

But consistently building the tests as you build the code does have value
• Have you ever broken something while fixing a bug? Adding a feature?

Tests remember what the program is supposed to do

• A set of tests is definitive documentation for what the code does

• Alternating between writing tests and code keeps the work incremental
Keeping the tests running prevents ugly surprises

• And its very satisfying!

“Extreme Programming” advocates
writing the tests before the code

• Not clear for large projects

• But individuals report good results

Size (arbitrary units)

XP claim
Traditional

Bob Jacobsen September 2003Tools and Methods - Lecture 1

The art of testing

What makes a good test?
• Not worth testing something that’s too simple to fail

• Some functionality is too complex to test reliably

• Best to test functionality that you understand, but can imagine failing
If you’re not sure, write a test

If you have to debug, write a test
If somebody asks what it does, write a test

How big should a test be?
• A JUnit test is a unit of failure

When a test fails, it stops
The pattern of failures can tell you what you broke

• Make lots of small tests so you know what still works

What about existing code?
• Probably not practical to sit down and write a complete set of tests

• But you can write tests for new code, modifications, when you have a
question about what it does, when you have to debug it, etc

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Summary 1

The principle of ‘I think, therefore I am’, does not apply to high quality software. -
Malcolm Davis

In art, intentions are not enough. What counts is what one does, not what one intends
to do. - Pablo Picasso

Excellence is not a single act, but a habit. You are what you repeatedly do. - Aristotle,
as quoted by Shaquille O’Neal

Bob Jacobsen September 2003Tools and Methods - Lecture 1

Today’s Exercises

1) Simple use of CVS

2) More advanced CVS, showing how conflicts are handled

3) Demonstrate that everybody can edit the same file successfully!

5) Demonstration of a test framework

6) Practice debugging using a test framework

Instruction sheets are available via web browser at

 file:~jake/index.html

If you get past these, feel free to move on to tomorrow’s exercises (see the
instructions page)

