Online Event Selection at the LHC

Part I: Introduction

Norbert Neumeister

CERN School of Computing 2003 Krems an der Donau, Austria

Plan of the Lectures

- Lecture 1: Introduction to online event selection at the LHC Norbert Neumeister
- Lecture 2: Regional and partial event reconstruction Teddy Todorov
- Lecture 3: Reconstruction of physics objects Norbert Neumeister
- Lecture 4: Algorithms for track reconstruction Teddy Todorov
- Exercises: Write your own event selection algorithm ^(c) Norbert Neumeister, Teddy Todorov

Outline

- Large Hadron Collider
 - The machine and the physics
 - Physics selection strategy
- The Detectors
- Trigger and Data Acquisition Architectures
- Trigger Strategy
- Level-1 Trigger
- High-Level Trigger
 - Requirements
 - Strategy

Physics Goals, Machine Parameters and Detectors

Higgs Production in pp Collisions

\rightarrow Proton-proton collider with $E_p \ge 7 \text{ TeV}$

Norbert Neumeister

Large Hadron Collider

- Will be installed in the existing LEP tunnel P = 8.4 T dipole magnets (limits energy)
 - need B = 8.4 T dipole magnets (limits energy)
- E_{cm} = 14 TeV
 - ~7 times higher than present highest energy machine (Tevatron: 2 TeV)
- Under construction: ready in 2007
- Design luminosity: L = 10³⁴ cm⁻²s⁻¹
 - ~100 times larger than present machines (Tevatron: 10³² cm⁻²s⁻¹)
- Energy and luminosity gives LHC an accessible energy range extended by a factor of 10 compared to the Tevatron.
- Search for:
 - new massive particles up to m \sim 5 TeV
 - rare processes with small cross-sections
- One year at L = 10^{34} cm⁻²s⁻¹ $\rightarrow \int$ Ldt ≈ 100 fb⁻¹

Large Hadron Collider

pp Cross Section and Pile-up

Interactions/s:

- Lum = 10^{34} cm⁻²s⁻¹ = 10^{7} mb⁻¹ Hz
- σ_{inel}(pp) = 70 mb
- Interaction Rate, R = 7×10⁸ Hz

Events / beam crossing:

- ∆t = 25 ns = 2.5×10⁻⁸ s
- Interactions/crossing = 17.5

Not all proton bunches are full:

- Approximately 4 out of 5 are full
- Interactions/"active" crossings = 17.5 × 3564/2835 = 23

≈ 70 mb

pp Collisions at 14 TeV at 10³⁴ cm⁻²s⁻¹

Norbert Neumeister

Pile-up

- "In-time" pile-up: particles from the same crossing but from a different pp interaction
- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings
 - Need "bunch-crossing identification"

Time of Flight

Trigger/DAQ Challenges

- Number of readout channels $\approx O(10^7)$
 - \rightarrow need huge number of connections
- ~20 interactions every 25 ns
 - \rightarrow need information superhighway
- Calorimeter information should correspond to tracker info \rightarrow need to synchronize detector elements to better than 25 ns
- In some cases: Detector signal > 25 ns
 - \rightarrow integrate more than one bunch crossing's worth of information
- In some cases: Time of Flight > 25 ns
 → need to identify bunch crossing
- Can store data at ≈100 Hz

 \rightarrow need to reject most interactions

Trigger must be efficient, flexible and robust!

Selectivity: The Physics

- Cross-sections of physics processes vary over many orders of magnitude:
 - inelastic: 10⁹ Hz
 - W \rightarrow / v: 10² Hz
 - t t production: 10 Hz
 - Higgs (100 GeV/c²) : 0.1 Hz
 - Higgs (600 GeV/c²) : 10⁻² Hz
- Selection needed: 1:10¹⁰⁻¹¹
 - before branching fractions

Experiments at the LHC

ATLAS A Toroidal LHC ApparatuS (Study of Proton-Proton collisions)
 CMS Compact Muon Solenoid (Study of Proton-Proton collisions)
 ALICE A Large Ion Collider Experiment (Study of Ion-Ion collisions)
 LHCb (Study of CP violation in B-meson decays at the LHC)

The LHC Detectors

Selection Challenge

- The challenge is the identification of the most interesting (and potentially entirely new) physics processes amidst the much more copious occurrence of well-understood and studied processes.
- Out of a billion interactions/sec select one hundred for further analysis
 - need to reject most interactions
- Do it in steps / successive approximations:
 - multi-level trigger
- To achieve this level of sensitivity a detailed understanding of the underlying physics is essential
 - high rejection power while preserving sensitivity for rare processes
- It's On-Line (cannot go back and recover events)
 - need to monitor selection

On-line event selection ultimately determines the physics output of the LHC experiments

Event Selection Stages

Norbert Neumeister

Trigger and DAQ Architecture

Triggering

Mandate:

"Look at (almost) all bunch crossings, select most interesting ones, collect all detector information and store it for off-line analysis"

P.S.: For a reasonable amount of money

The trigger is a function of:

Physics channels & Parameters

Since the detector data are not all promptly available and the function is highly complex, T(...) is evaluated by successive approximations called:

TRIGGER LEVELS

Trigger Levels

Collision rate 10⁹ Hz

Channel data sampling at 40 MHz

Level-1 selected events 10⁵ Hz

Particle identification (High $p_T e, \mu$, jets, missing E_T)

- Local pattern recognition
- Energy evaluation on prompt macro-granular information

Level-2 selected events 10³ Hz

Clean particle signature (Z, W, ...)

- Finer granularity precise measurement
- Kinematics: effective mass cuts and event topology
- Track reconstruction and detector matching

Level-3 events to tape 10...100 Hz

Physics process identification

Event reconstruction and analysis

Trigger Strategy

• Level-1 trigger: reduce 40 MHz to 10⁵ Hz

- This step is always there
- Upstream: still need to get to 10² Hz; in 1 or 2 extra steps

Three Physical Entities

Additional processing in Level-2:

reduce network bandwidth requirements

Norbert Neumeister

Two Physical Entities

- Reduce number of building blocks
- Rely on commercial components (processing and communications)
- Upgrades and scales with the machine performance

Comparison: 2 vs. 3 Physical Levels

Technology Evolution

- Advantages of using processor farm for all selection beyond Level-1:
 - Benefit maximally from evolution of computing technology
 - Flexibility: no built-in design or architectural limitations maximum freedom in what data to access and in sophistication of algorithms
 - Evolution, including response to unforeseen backgrounds
 - Minimize in-house elements
 - cost
 - maintainability
- Moore's law:
 - 2×CPU power every
 - 1.5 years
 - ~7 8 × before LHC startup (2007)
- Processing power increases by a factor 10 every 5 years
- Memory density increases by a factor 4 every two years

ATLAS Data Flow

ATLAS Trigger Overview

- Level-1: hardware trigger, 40 MHz \rightarrow 75 kHz, 2.5 µs maximum latency
 - Looks for regions of potentially interesting activity, with high p_T objects
 - Region of Interest (Rol): muon, electromagnetic, tau/hadronic, jet clusters
 - Uses data from calorimeters and muon spectrometer
 - Does not combine information of more than one detector
- Level-2: software trigger, 75 kHz \rightarrow 1 kHz, 10 ms average latency
 - Data are held in readout buffers (ROB) during Level-2 processing
 - Selection software run by Processing Application on one node of Level-2 farm
 - Input (seed) is Level-1 Rol (type, position, p_T threshold passed) so that typically only few % of full event information in the ROBs need to be transferred to Level-2
 - Feature extraction in Rol region by specialized algorithms that are optimized for speed and cover all sub-detectors sequentially
 - For events accepted by Level-2 EventBuilder builds full event
- EventFilter: software trigger, 1 kHz \rightarrow 100 Hz, 1 sec average latency
 - Full event from EventBuilder passed to EventFilter farm
 - Independent Processing Applications run selection algorithms on farm nodes
 - Selection software consists of offline-type algorithms that have access to latest calibration and alignment data

CMS Data Flow

16 Million channels 3 Gigacell buffers

1 Megabyte EVENT DATA

200 Gigabyte BUFFERS ~400 Readout memories

EVENT BUILDER

A large switching network (400+400 ports) with a total throughput of ~400 Gbit/s forms the interconnection between the sources (deep buffers) and the destinations (buffers before farm CPUs). The Event Manager distributes event building commands (assigns events to destinations).

5 TeralPS EVENT FILTER

A set of high performance commercial processors organized into many farms for on-line and off-line applications.

Petabyte ARCHIVE

CMS Trigger Overview

- Level-1: hardware trigger, 40 MHz \rightarrow 100 kHz (75 kHz)
 - Only calorimeter and muon information used
 - Electron/photon triggers
 - Jet and missing E_T triggers
 - Muon triggers
 - L1 decision based on trigger objects with η/ϕ information
 - Custom-built electronics
 - Latency: < 3.2 μs (128 bx)</p>

• **HLT:** software trigger, 100 kHz \rightarrow O(10²)Hz

- Beyond Level-1 there is a High-Level Trigger running on a single processor farm (no dedicated L2 hardware)
- DAQ designed to accept Level-1 rate of 100 kHz
- Access to full event data (full granularity and resolution)
- Rejection factor of 1000
- ~1000 processor units

Average event size: ~1 MByte

LHCb Trigger Overview

• Design Luminosity: L = 2×10³² cm⁻²s⁻¹

- σ_{vis} \approx 60 mb \rightarrow ~10 MHz event rate
- 100 kHz B event rate; but low BR!
 - **Level-0:** hardware trigger, 10 MHz \rightarrow 1 MHz
 - Select high E_T candidates (leptons, hadrons, photons)
 - Calorimeters, muon chambers and pile-up veto
 - Pile-Up detector is used to recognize multiple interactions per crossing
 - Executed in full custom electronics
 - Latency: 4 μ s (2 μ s for processing)

Level-1: software trigger, 1 MHz \rightarrow 40 kHz

- Uses Level-0 objects, VELO (Vertex Locator) and TT (Trigger Tracking)
- Selects tracks with large impact parameter
- 58 ms max latency
- **HLT:** software trigger, 40 kHz \rightarrow 200 Hz
 - Uses full event data apart from the RICH

Level-1 and HLT share a commodity farm of 1400 CPUs; same network for event building Event size: ~30 kByte

Trigger/DAQ Parameters

ATLAS	No. Levels Trigger	First Level Rate (Hz)	Event Size (Byte)	Readout Bandw.(GB/s)	Filter Out MB/s (Event/s)
CMS	3 LV-	10 ⁵ ₂ 10 ³	10 ⁶	10	100 (10 ²)
	2	10 ⁵	1.5×10 ⁶	100	150 (10 ²)
LHCb	3 LV-0 LV-1	10 ⁶ 4×10 ⁴	3×10⁴	4	6 (2×10 ²)
	4 Рр-Р р-р	₀ 500 10³	5×10 ⁷ 2×10 ⁶	5	1250 (10 ²) 200 (10 ²)

Trigger/DAQ Systems

DAQ Overview

Level-1 Trigger

Level-1 Trigger Algorithms

• Physics facts:

- pp collisions produce mainly hadrons with $p_T \sim 1 \text{ GeV}$
- Interesting physics (old and new) has particles (leptons and hadrons) with large transverse momenta:
 - $\mathbf{W} \rightarrow \mathbf{e}v$: M(W)=80 GeV/c²; $p_T(e) \sim 30-40$ GeV
 - **H(120 GeV)** $\rightarrow \gamma\gamma$: p_T(γ) ~ 50-60 GeV
- Basic requirements:
 - Impose high thresholds on particles
 - Implies distinguishing particle types; possible for electrons, muons and "jets"; beyond that, need complex algorithms
 - Typical thresholds:
 - Single muon with $p_T > 20$ GeV (rate ~ 10 kHz)
 - Di-muons with $P_T > 6$ (rate ~ 1 kHz)
 - Single e/γ with p_T >30 GeV (rate ~ 10-20 kHz)
 - Di-electrons with P_T >20 GeV (rate ~ 5 kHz)
 - Single jet with p_T >300 GeV (rate ~ 0.2-0.4 kHz)

Signatures in the Detector

Level-1 Trigger

- Simple algorithms
- Small amounts of data
- Local decision

Compare to tracker info

 Complex algorithms

- Huge amounts of data
- Need to link sub-detectors

Norbert Neumeister

CMS Level-1 Strategy

- Level-1 decision based on trigger objects (with η/ϕ information):
 - muons, e/ γ , μ , jets, tau-jets, missing E_T, total energy
- Trigger objects are determined in 3 steps:

Local

- Energy measurement in single calorimeter cells or groups of cells (towers)
- Determination of hits or track segments in muon detectors
- Algorithms run on coarse local data
- Generate "Trigger Primitives"

Regional

- Identify particle signature
- Measurement of p_T/E_T , location (η/ϕ) in detector and quality of "reconstruction"

Global

- Sort candidates by p_T and quality keeping best 4 of each object type
- Location of each candidate tracked to global level
- Set trigger conditions: Thresholds (p_T/E_T , N_{Jets}), etc.
- Seeds for High-Level Triggers

CMS Level-1 Trigger

- Information from calorimeters and muon detectors
- Custom-built electronics for trigger processors (ASICs, FPGAs)
- Synchronous, pipelined
 - Processing logic: 25 ns pipelined system
 - Must work dead time free
 - Latency: < 3.2 μs (128 bx)
 - readout + processing: < 1μs
 - signal collection + distribution: $\sim 2\mu s$
- Max. output rate: 100 kHz
- Organized in 3 subsystems:
 - Muon Trigger, Calorimeter Trigger, Global Trigger
- Backgrounds are huge
 - Large rejection factor: 40 MHz (×20 events/crossing) \rightarrow 100 kHz
 - Rates: steep functions of thresholds

ATLAS Level-1 Trigger

ATLAS Level-1 Trigger

~7000 calorimeter trigger towers (analogue sum on detectors)

O(1M) RPC/TGC channels

- Decision based on multiplicities of trigger objects
- Programmable thresholds
- Latency limit: 2.5 μs

LHCb Level-1 Trigger Strategy

- Select events containing B hadrons (heavy and long-lived):
 - high transverse momentum (p_T)
 - large impact parameter (relative to primary vertex)
- Detector Input:
 - VELO: VErtex LOcator (impact parameter)
 - Trigger Tracker
 - Level-0 decision unit \int
- Measure impact parameter with the Vertex Locator (21 stations of silicon)
- Reconstruct only tracks with large impact parameter
- P_T measurement:
 - Fringe field before magnet
 - Trigger Tracker: two layers of silicon
 - Calorimeter clusters and muon track segments (after magnet) found at Level-0
 - Match with VELO tracks

LHCb Level-0/1 Trigger

- Level-0 is a hardware trigger:
 - High p_T muons, EM particles or hadrons
 - Pile-up veto (to select single-interaction crossings)
 - Input: 40 MHz
 - Output: 1 MHz
- Level-1 is a software trigger:
 - Maximum flexibility at an early stage
 - Perform track reconstruction
 - Level-1 farm is part of online farm
 - Level-1 events size and global event size not so different
 - 1200 processors foreseen (Level-1 and HLT)
 - flexible allocation between Level-1 and HLT; currently 800 processors for Level-1
 - Level-1 buffer holds 58k events => > 50 ms latency

Technologies in Level-1 Systems

- **ASICs** (Application-Specific Integrated Circuits) used in some cases
 - Highest-performance option, better radiation tolerance and lower power consumption (a plus for on-detector electronics)
- **FPGAs** (Field-Programmable Gate Arrays) used throughout all systems
 - Impressive evolution with time: Large gate counts and operating at 40 MHz (and beyond)
 - Biggest advantage: flexibility
 - Can modify algorithms (and their parameters) in situ
- Communication technologies
 - High-speed serial links (copper or fiber)
 - LVDS up to 10 m and 400 Mb/s; HP G-link, Vitesse for longer distances and Gb/s transmission
 - Backplanes
 - Very large number of connections, multiplexing data; operating at ~160 Mb/s

High-Level Trigger

High-Level Trigger Overview

High-Level Trigger, CPU farms

- Finer granularity precise measurement
- Clean particle signature (π^0 - γ , isolation,...)
- Track reconstruction and detector matching
- Kinematics: Effective mass cut and topology
- Full event reconstruction and analysis

Successive improvements: background event filtering, physics selection

HLT Requirements

Runs on CPU farm

- A **single processor** analyzes one event at a time
- HLT (or Level-3) has access to **full event data** (full granularity and resolution)
 - Only limitations:
 - CPU time
 - Output selection rate (~10² Hz)
 - Precision of calibration constants
- Main requirements:
 - Satisfy physics program: high efficiency
 - Selection must be inclusive (to discover the unpredicted as well)
 - Must not require precise knowledge of calibration/run conditions
 - Efficiency must be measurable from data alone
 - All algorithms/processors must be monitored closely

HLT Software

Robust, high quality reconstruction software

- Offline reconstruction without final calibration, etc.
- Ease of maintenance, but also understanding of the detector
- Able to include major improvements in offline reconstruction

Regional/Partial reconstruction

- Using data in a region around a "seed"
 - Faster processing
 - Ability to reject events using only a small fraction of the event data
- Reconstruction/selection applied to regions only
- Need seeds: use objects from previous level
 - Region of Interest Builder (ATLAS)
 - Level-1 trigger objects (CMS)

Reconstruction on demand

- Reject events as soon as possible, avoid unnecessary calculations
- Access data as needed

Once trigger rate is low enough (~1 kHz) apply full reconstruction

HLT Example

Example:	Signature \rightarrow	e30i	+	e30i	4
• Lovel 1 finds 2 isolated EM	STEP 4	Isolation		Isolation	
clusters with each p _T >20 GeV	Signature \rightarrow	e30	+	e30	
• Possible signature for $Z \rightarrow e^+e^-$	STEP 3	p _T > 30 GeV		p _T > 30 GeV	
Method: • Validate step-by-step	Signature \rightarrow	e	+	e	me M
 Check intermediate signatures Reject at earliest possible moment 	STEP 2	track finding		track finding	+
Managed by HLT Steering	Signature \rightarrow	ecand	+	ecand	
STEP 1		Cluster shape		Cluster shape	
Le	EM20i	+	EM20i		

ATLAS High-Level Trigger

- Use simple inclusive high- p_T signatures
 - Can do exclusive signatures in HLT if necessary

• Level-2

- Use seeding (ROIs) to reduce data access and processing time
- Reconstruct physics objects in stages by a sequence of algorithms requesting data as needed
- Algorithms at Level-2 have access to Level-1 Rols
- Specialized Level-2 algorithms
- Reject early without executing the rest of the algorithms if not necessary
- Code to be run in multi-threaded environment

• Event Filter based on offline reconstruction code

- Full event in memory
- Refine Level-2
- Event classification
- Monitoring

Common framework compatible with offline

- Flexible boundary between Level-2 and Event Filter

ATLAS Level-2 Trigger

- Driven by Level-1 information
 - Crucial parameters: data routing and CPU time (latency)
 - ROIBuilder: custom hardware to combine ROI pointers
 - Supervisor farm: collect info, allocate event to processor, distribute result to ROBs
 - Processor farm: collect data from ROBs execute algorithm decision to supervisor farm

Areas selected by Level-1

- Regions of Interest
 - Different geometrical region descriptions (cone, region following a track, etc.)
 - If Level-2 delivers a factor 100 rejection, then input to Level-3 is 1-2 kHz
 - At an event size of 1-2 MB, this needs 1-4 GB/s
 - Dividing this into ~100 receivers implies 10-40 MB/s sustained certainly doable
 - Elements needed: ROIBuilder, Level-2 processing unit

CMS High-Level Trigger

- The entire HLT runs on a single CPU farm
- Goals:
 - Validate Level-1 decision
 - Refine E_T/p_T thresholds
 - Reject backgrounds
 - Perform physics selection
- Selection must meet physics goals
 - Output rate to permanent storage limited to O(10²) Hz
- Processing time
 - Estimated processing time: up to 1 s for certain events, average 50 ms
 - About 1000 processor units needed
- Bandwidth:
 - Interconnection of processors and front-end
 - Front-end has O(1000) modules \rightarrow necessity for large switching network
 - Average event size 1 MB \rightarrow for maximum Level-1 rate need 100 GByte/s capacity

High-Level Trigger Resources

• Rejection:

– 1:1000 selection

Algorithms:

- Algorithms can almost be as sophisticated as in offline analysis
- Avoid unnecessary calculations; reject as soon as possible
- Hence, internal "logical" trigger levels:
 - Level-2: use calorimeter and muon detectors
 - Level-2.5: also use tracker pixel detectors
 - Level-3: use of full information, including tracker
- In principle continuum of steps possible
- Regional reconstruction: e.g. tracks in a given road or region

Resources/CPU time:

- 100 kHz \rightarrow 10 μ s/event
- If T_j is the time taken by the Level-J decision (J=2,3,...) and the rejection factors are R_j

$$T_{tot} = T_2 + T_3 / R_2 + T_4 / (R_3 R_2) + ..$$

A 50 kHz system at startup will need ~2000 CPU's

- LHC is *the* machine to study electro-weak symmetry breaking
 - Capable of finding a Higgs with M up to 1 TeV
 - Given existing tunnel and magnet technology leads to E_{cm} = 14 TeV and very high luminosities
 - A number of severe challenges as a result:
 - Interaction rate and physics selectivity, triggering, electronics (fast, pipelined), radiation environment, pile-up
- Trigger Levels: set of successive approximations: number of physical levels varies with architecture/experiment
- The Level-1 trigger takes the LHC experiments from 40 MHz to 40-100 kHz
 - Custom hardware, huge fan-in/out problem, fast algorithms on coarse-grained, low-resolution data
- Depending on the experiment, the next filter is carried out in one or two steps
 - Commercial hardware, large networks, Gb/s links
 - If Level-2 present: low throughput needed
- High-Level Trigger: run software/algorithms as close as possible to offline
 - Solution is straightforward: large processor farm of PCs

• Event selection at the LHC is a difficult task but will determine the ultimate physics output!