Information Systems

Heinz Stockinger

CERN & INFN

Information Systems in General Specific Implementations R-GMA – MDS2 – MDS3 Schema

A Reference Grid

Some General Definitions

- Computing Element (CE)
 - Gateway to computing resources
 - Grid interface to Local Resource Management (LRMS) systems (PBS, LSF, Condor,..)

Can have 1 or many Worker Nodes

- Worker Node (WN)
 - Resource to execute application
- Storage Element (SE)
 - Basic Storage Resource
 - Grid interface to storage

Can have several storage types like disk, tape etc.

Site

Set of (Grid) resources

Can have 0 or many CEs Can have 0 or many SEs

Information Systems

- Some Requirements
 - The system must be able to cope with nodes in a distributed environment
 - Dynamic addition and deletion information providers (producers) should be supported
 - It must have a security system able to address the access to information at a fine level of granularity
 - It must be able to work well on an unreliable Wide Area Network (WAN)
 - The system must allow new data types (schema) to be defined
 - Scalability, performance, reliability
- Often, information service and monitoring are separated: here we discuss them as a unit
- For simplicity: we also consider any cataloging system as an "information service"
 - E.g. Replica Catalogue that provides information about replica locations (details in Data Management lecture)

Features of an Information System

- Provides information on both:
 - The Grid itself (i.e. the basic resources and services)
 - Mainly for the middleware services
 - The user may query it to understand the status of the Grid
 - Grid applications
 - For users
- Schema required
 - To describe all resources in the Grid
 - Example: Computing resource and available CPU
- Query "language" required

Features are similar to a Database Management System

- Several architectural approaches
 - No common agreement yet but several standardisation efforts
 - Standards are required to make Grids interoperable
 - Analogy: SQL/ODBC can be used to query database implementations of several different vendors

Information Services in Distributed Systems

DNS (Domain Name Service (DNS)

- Name/location information about hosts (resources)
- UDDI (Universal Description, Discovery & Integration)
 - For web services (registry)
- Other resource and service registries like
 - ... ? You name it
 - Often different semantics are used
- Different catagorisations
 - White pages
 - Yellow pages
- Information can be static or dynamic ...

Grid Approaches - 1

• Many Grid projects provide their own implementations:

- Globus: MDS (Monitoring and Discovery Service)
- EGEE (EDG): R-GMA (Relational Grid Monitoring Architecture)
- GridLab: extensions to MDS
- UNICORE: Incarnation Database (IDB)
- etc.
- Need for standardisation since a service registry is required by all Grid systems that use service oriented architectures
- Grid Monitoring Architecture (GMA)
 - For information storage (registry) and general monitoring of services and status
 - Standardisation in GGF
 - One of the early standard proposals in GGF

Grid Approaches - 2

- Several groups in Global Grid Forum work in the area of Information Systems and Performance
 - CIM based Grid Schema
 - Discovery and Monitoring Event Description
 - Network Measurement
 - Grid Information Retrieval
 - Grid Benchmarking
 - Relational Grid Information Services
- Here we only concentrate on three representative implementations that cover many (all?) of the above fields
 - R-GMA
 - MDS 2 (early Grid solution), MDS 3 (web service approach)
- The three approaches use different protocols but same schema

Grid Monitoring Architecture (GMA)

- From GGF
- Very simple model
- Does not define:
 - Data model
 - Data transfer mechanism
 - Registry implementation

Defined in GGF Document: GFD-I.7

http://forge.gridforum.org/projects/ggf-editor/document/GFD-I.7

Information Systems in General

Specific Implementations

R-GMA – MDS2 – MDS3

Schema

Relational Grid Monitoring Architecture (R-GMA)

- Use the GMA from GGF
- A relational implementation
 - Powerful data model and query language
 - All data modelled as tables
 - SQL can express most queries in one expression
- Applied to both information and monitoring
- Creates impression that you have one RDBMS per VO

R-GMA (2)

- Not a general distributed RDBMS system, but a way to use the relational model in a distributed environment where global consistency is not important.
- Producers announce: SQL "CREATE TABLE" publish: SQL "INSERT"
- Consumers collect: SQL "SELECT"
- Some producers, the Registry and Schema make use of RDBMS as appropriate – but what is central is the relational model.
- All R-GMA tuples are time-stamped
- Uses web service technology:
 - Tomcat web server client server interaction via HTTP
 - SOAP is not yet used
 - Plans for "OGSIfying" R-GMA, i.e. use OGSA approach
- Replaces MDS in EU DataGrid project

Relational Data Model in R-GMA

- Not a general distributed RDBMS system, but a way to use the relational model in a distributed environment where global consistency is not important
- Producers announce: SQL "CREATE TABLE" publish: SQL "INSERT"
- Consumers collect: SQL "SELECT"
- Some producers, the Registry and Schema make use of RDBMS as appropriate – but what is central is the relational model
- All R-GMA tuples are time-stamped

Example: 2 tables

Service

URI	VARCHAR(255)	URI to contact the service
VO	VARCHAR(50)	Where info should be published – or an empty string to indicate all
type	VARCHAR(50)	Type of service
emailContact	VARCHAR(50)	The e-mail of a human being to complain to
site	VARCHAR(50)	Domain name of site hosting the service
secure	VARCHAR(1)	'y' or 'n' - indicates whether or not this is a secure service
majorVersion	INT	Version of protocol not implementation
minorVersion	INT	Version of protocol not implementation
patchVersion	INT	Version of protocol not implementation

ServiceStatus

URI	VARCHAR(255)	URI to contact the service
status	INT	status code. 0 means the service is up.
message	VARCHAR(255)	Message corresponding to status code

SQL example 1

SELECT DISTINCT type FROM Service

+
+
Ì

R-GMA.ResilientStreamProducerService R-GMA.ArchiverService R-GMA.StreamProducerService R-GMA.CanonicalProducerService R-GMA.DBProducerService R-GMA.LatestProducerService GIN R-GMA.RegistryService R-GMA.SchemaService R-GMA.BrowserService GOUT edg-netmon edg-iperf edg-udpmon myproxy edg-pinger 25 Rows in set

SQL Example 2

SELECT Service.site, ServiceStatus.status, ServiceStatus.message, Service.URI FROM Service,ServiceStatus WHERE Service.URI = ServiceStatus.URI AND ServiceStatus.status <> 0 AND Service.Type = 'GIN'

Registry and Schema

- Registry has two main tables:
 - Producer
 - Table name
 - · Predicate
 - Location
 - Consumer
 - Query
 - Location
- Schema holds description of tables
 - Column names and types of each table
- Registry predicate defines subset of "global" table

Contributions to the "global" table (Aggregation)

CPULoad (Global Schema)															
	Co	untry	Sit	e	Faci	ility		Load		Time	estamp	I			
	→ ик		RA	L	CDF			0.3		190	557110)22002	2		
	UK RAL ATLAS		AS		1.6		19055611022002			2					
	UK		GL	A	CDF			0.4		190	558110)22002	2	←	1
	UK		GL	A	ALICE		0.5		19055611022002		2				
	СН		CE	RN	ALI	CE		0.9		19055611022002		2			
	СН		CE	RN	CDF			0.6		190	555110	22002	2		
CPULoad	(Producer	- 1)				7		CPULoa UK	ad (Prod GLA	ucer 2) CDF	0.4	4	190558	11022002
UK	RAL	CDF	0.3	1905571102	2002			UK	GLA		ALICE	0.5	5	190556	11022002
UK	RAL	ATLAS	1.6	1905561102	2002										
WHE	RE		VHE	RE		CPULC	oad (P	Producer	3)						
country = 'UK' country = 'CH' сн				СН	C	CERN	ATLAS	1	.6 19	9055611022002					
AND : 'RAL'	AND site = 'RAL' CERN' CH CERN CDF 0.6 19055511022002														

Queries over "global" table – merging streams

	SELECT * from CPULoad WHERE country = 'UK'													
	CPULoad (Consumer)]			
		Со	untry	Sit	e	Facili	ity	Load Timestamp						
ſ		∪к		RA	RAL			0.3		19055711022002				
	UK		RA	RAL		S	1.6		19055611022002					
	υκ		GL	GLA			0.4		19055811022		002	↓	1	
	UK		GL	GLA		E	0.5		190	19055611022002				
									_					
	CPULoad (Producer 2)													
CP	CPULoad (Producer 1)					UK	GLA		CDF	0.4	190558	11022002		
UK	ζ	RAL	CDF	0.3	1905571102	2002		UK	GLA		ALICE	0.5	190556	11022002
UK	(RAL	ATLAS	1.6	1905561102	2002								

Mediator handles merging information from multiple producers for queries on one table

CPULoad (Producer 3)							
СН	CERN	ATLAS	1.6	19055611022002			
СН	CERN	CDF	0.6	19055511022002			

Queries over "global" table – joining tables

SELECT Service.URI Service.emailContact from Service S, ServiceStatus SS WHERE (S.URI= SS.URI and SS.up='n')

	Service/ServiceStatus (Consumer)							
	URI	emailContact						
→	gppse02	sysad@rl.ac.uk						

Service/ServiceStatus (Latest Producer)

Service											
URI	VO	type	emailContact	site	secure	majorVersion	minorVersio	on p	atchV	ersio	on
gppse01	alice	SE	sysad@rl.ac.uk	RAL							
gppse01	atlas	SE	sysad@rl.ac.uk	RAL							
gppse02	cms	SE	sysad@rl.ac.uk	RAL							
lxshare0404	alice	SE	sysad@cern.ch	CERN				ServiceStatus			;
Ixshare0404	atlas	SE	sysad@cern.ch	CERN			URI			up	message
<u></u>							gppse01			у	SE is running
							gppse02			n	SE ERROR 10
							Ixshare0404			у	SE is running

R-GMA Tools

- R-GMA Browser
 - Application dynamically generating web pages
 - Supports pre-defined and user-defined queries
- R-GMA CLI (edg-rgma)
 - Command Line Interface (similar to MySQL)
 - Supports single query and interactive modes
 - Can perform simple operations with Consumers, Producers and Archivers
- R-GMA packaged SQL (edg-rgma-util)
 - e.g. edg-rgma-util contacts:
 - Command: SELECT siteName, sysAdminContact, userSupportContact, siteSecurityContact FROM SiteInfo

🙋 R-GMA Browser Home Page -	Microsoft Internet Explorer provided by CLR		_ 8 >
	ools <u>H</u> elp		
← + → - 🐼 😰 🚮 🕏	Q 🖻 🧭 🖪 🚽 🗐 🗉 🖓 🛛		
Address 🛃 http://adc0011.cern.ch	8080/R-GMA/index.html		🔻 🔗 Go
Links 🙋 Google 🔌 CVS-Idap 🤞	🖻 CVS-rgma 🔌 WP3-RPMS 🧔 ATF 🧔 ED(G 🕘 WP3 🙋 WP6 🧟 DEV Browser 🖉 WP3 Browser 🧔 BugList 🖉 MapCenter 🧔 BBC News 🙆 status	3
R-GMA Browser Home Predefined Queries Site Info Table Sets	All tables EDG Info Providers Network Monitoring CMS EDG Info Providers GlueCE GlueCE GlueCESEBind	SELECT UniqueID Name GlueClusterUniqueID TotalCPUs LRMSType FROM GlueCE WHERE	
	GlueCluster GlueHostRemoteFileSystem GlueSA GlueSAAccessControlBaseRule GlueSE GlueSEAccessProtocol GlueSEAccessProtocolSupportedSecur GlueSL GlueSubCluster GlueSubCluster GlueSubClusterSoftwareRunTimeEnviro SiteInfo	Description of table Type of query: • History • Latest • Continuous • Cont.+Old Queries wait for 5 • Use Mediator • Select Producers you want to query: There are no available History producers for table GlueCE	
		Latest Producer producerServlet.http://gpprg06.gridpp.rl.ac.uk:8080/R-GMA/LatestProducerServlet ConnectionId:301164355 Continuous Producer producerServlet.http://gpprg06.gridpp.rl.ac.uk:8080/R-GMA/StreamProducerServlet ConnectionId:291549138 producerServlet.http://gpprg06.gridpp.rl.ac.uk:8080/R-GMA/StreamProducerServlet ConnectionId:291549226 Ouery	

edg-rgma – Example

\$> edg-rgma

- rgma> stream declare userTable
- rgma> stream minret 0.2
- rgma> stream INSERT into userTable (userId, aString, aReal, anInt) values ('fisher', 'hello', 3.162, 21)
- rgma> timeout 0.3
- rgma> old continuous SELECT * from userTable

APIs

- Exist in Java, C++, C, Python and Perl
- C, Python and Perl follow an object based style reflecting the Java and C++ APIs

```
Java
```

myProducer = new StreamProducer();

```
C++
```

```
myProducer= new edg::info::StreamProducer();
```

```
С
```

```
myProducer = StreamProducer_new();
```

Perl

```
$myProducer = edg_rgma_perl::StreamProducer_new();
```

Python

```
myProducer = edg_rgma_python.StreamProducer_new() or
myProducer = rgma.StreamProducer()
```

Information Systems in General

Specific Implementations

R-GMA - MDS2 - MDS3

Schema

Information Systems in Globus

 Currently, two versions of MDS (Monitoring & Discovery Service):

- MDS 2 in GT2: based on LDAP protocol
- MDS 3 in GT3: based on web service approach
 - Provides the same features as the earlier version MDS 2

MDS2 has been in used at several Grid projects for a few year

- Uses the "early" set of protocols in GT2
 - LDAP (Lightweight Directory Assess Protocol) network protocol
 - Was originally used in other services too like the "early" Replica Catalogue provided by Globus

LDAP-based Services

LDAP (Lightweight Directory Assess Protocol)

- See RFC 1777 for details: ftp://ftp.rfc-editor.org/in-notes/rcf1777.txt
- Many "early" services provided Globus or the EU DataGrid project use the LDAP protocol for:
 - Information service (Globus' MDS (Monitoring and Discovery Service))
 - Replica Catalogue (Globus): to locate replicas
- Several services are/will be replaced by newer services that use different technologies:
 - Globus' MDS vs. EDG's R-GMA vs. MDS3
 - LDAP based replica catalogue is replaced by SQL/web service based service
- General trend in the Grid community:
 - Web service approach (HTTP, SOAP, WSDL)
 - Open Grid Service Architecture (OGSA) based on web services
 - SQL based services rather than LDAP based for storing/retrieving information

LDAP Hierarchy

- Lightweight Directory Assess Protocol (LDAP) offers a hierarchical view of information
- The entries are arranged in a Directory Information Tree (DIT)

- The entry name represents the Relative Distinguished Name (RDN). example: "cn=Flavia Donno"
- An entry is identified by its Distinguished Name
 This is its RDN with the Distinguished name of its parent.
 example: "C=I, o=University of Pisa, cn=Flavia Donno"

Usage of LDAP-based Services

Information Service

 Used for identifying and locating all resources in the Grid

Replica Catalogue

 Used for locating identical replicas of files

RDNs and DNs in Globus Information Service (MDS)

site SE status supported protocols

◆ <u>RDN</u>

- SE
 - seld=dev02.hepgrid.clrc. ac.uk

Status

- in=status
- Protocols
 - seProtocol=gridftp
 - seProtocol=rfio
 - seProtocol=file

- DN
 - Site
 - Mds-Vo-name=ral-dev, o=Grid
 - SE
 - seld=dev02.hepgrid.clrc.ac.uk, Mds-Vo-name=ral-dev, o=Grid
 - Status
 - in=status,seld=dev02.hepgrid.c
 lrc.ac.uk,Mds-Vo-name=ral-dev,
 o=Grid
 - Protocols
 - seProtocol=gridftp, seId=dev02.hepgrid.clrc.ac.uk, Mds-Vo-name=ral-dev, o=Grid
 - seProtocol=rfio, seId=dev02.hepgrid.clrc.ac.uk, Mds-Vo-name=ral-dev, o=Grid
 - seProtocol=file,
 seId=dev02.hepgrid.clrc.ac.uk,
 Mds-Vo-name=ral-dev, o=Grid

MDS Hierarchy: GRISs & GIISs

- Information providers are scripts which when invoked by the LDAP server make available the desired information
 - Information is cached by the server to improve performance
 - LDAP was designed for use with relatively static data, not rapidly changing data
- Within MDS the EDG information providers are invoked by a local LDAP server, the Grid Resource Information Server (GRIS)
- "Aggregate directories", Grid Information Index Servers (GIIS), are used to group resources
- The GRISs use soft state registration to register with one or more GIISs
- The GIIS can then act as a single point of contact for a number of resources
 - A GIIS may represent a site, country, virtual organization, etc.
- In turn a GIIS may register with another GIIS

Querying the Information & Monitoring Service

 Queries can be posed to the current Information and Monitoring Service using LDAP search commands:

```
$ldapsearch\
```

```
-x \setminus
```

```
-H ldap://lxshare0225.cern.ch:2135\
```

```
-b 'Mds-Vo-name=datagrid,o=grid' \setminus
```

```
'objectclass=StorageElement'\
```

```
seId SEsize \
```

```
-s base one sub
```

- "simple" authentication
- uniform resource identifier
- base distinguished name for search filter
- attributes to be returned
- scope of the search specifying just the base object, one-level or the complete subtree

Querying the GRIS/GIIS Hierarchy

Information Systems in General

Specific Implementations

R-GMA-MDS2-MDS3

Schema

GT3 Index Service - MDS 3

• Key capabilities of Index Service:

- interface for connecting external Service Data Provider programs to service instances
- Generic framework for aggregation of service data
- Registry of Grid services
- Information Service: generates, registers, indexes, aggregates, subscribes, monitors, queries, or displays Service Data
- The GT3 Index Service provides an information aggregation service that is more extensible than the GT2 GIIS
 - GRIS is not needed since each Grid service has its Service Data Element that contains the service status

GT3 Index Service cont.

• MDS 2 and MDS 3 are not interoperable:

- MDS2: Idif format
- MDS3: XML format
- But: GT2 information providers can be ported into GT3
- Host information is represented by default in the GLUE schema

• Queries:

- FindServiceData operation from the GridService interface is used
- standard, extensible query operation against a service's Service Data Elements may use either the simple default "by name" query or a more complex language like XPath or XQuery

GT3 Index Service Overview

Standard Grid Service

Information Systems in General

Specific Implementations

R-GMA – MDS2 – MDS3

Schema

MDS vs. R-GMA

	MDS 2	R-GMA	MDS 3				
communicaton	LDAP	HTTP	SOAP				
Information storage	LDAP based backends	Relational Data Base	Any web-service compliant backend				
queries	LDAP queries Ldapsearch -x -H Idap://host.cern.ch:2135\ -b 'Mds-Vo-name=datagrid,o=grid'\ 'objectclass=StorageElement'\ seld SEsize	SQL queries Select * from StorageElement	default "by name" or Xpath/Xquery ogsi-find-service-data –service http://128.9.72.46:9103/ogsa/services/core /registry/ContainerRegistryService -sde gsdl:entry -output registry				
Components	GIIS GRIS CE SE	consumer Registry Producer CE Producer SE	Grid Service CE Grid Service SE				

Information Systems in General Specific Implementations R-GMA – MDS2 – MDS3

Schema

The GLUE schema

Developed within High Energy Physics (HEP) community

- DataGrid
- DataTAG
- Globus

Currently defines CEs and SEs

Coming soon...

- Network monitoring
- Services

Computing Element Hierarchy

♦ GLUE Schema v1.1

GlueCluster

UniqueID

Name

InformationServiceURL

ion 1.1 4/2003 espace: Glue

Storage Element

GlueSL

UniqueID

GlueSEUniqueID

Name

ArchitectureType

MaxIOC apacity

InformationServiceURL

storage library, the machine providing the storage service

R-GMA Binding Table

Conclusion

- Several information systems have been discussed
- More standardisation is going on
- Further information
 - <u>http://www.r-gma.org</u>
 - http://www.globus.org/mds
 - <u>https://forge.gridforum.org/projects/isp</u>
 - http://www.cnaf.infn.it/~sergio/datatag/glue/v11/SE/index.htm

Abbreviations

- ◆ CE Computing Element
- ♦ GMA Grid Monitoring Architecture
- MDS Metadata and Directory Service
- LDAP Light-weight Directory Access Protocol
- LRMS Local Resource Management System
- R-GMA Relational Grid Monitoring Architecture
- SE Storage Element
- WN Worker Node