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Outline of the lectures

n Filtering
n Calibration and alignment
n Event Reconstruction
n Event Simulation
n Physics Analysis
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What is Physics Computing?

Ø Input: A few petabytes of data (at most)
Ø Output: A few hundred papers (at least)
Ø Not yet fully automatized
ØWhat happens to the data?

“HABENT SUA FATA DATA”
after Terentius Maurus, 2nd century AD
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What happens to the data?

Ø Data filtering and storage
Ø Conversion, calibration, alignment
Ø Event reconstruction
Ø Event simulation
Ø Physics analysis
Ø In each step they get closer to be 

interpretable in physical terms
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The challenge

Ø Very high event rate
Ø Large event size
Ø Large background of uninteresting events
Ø Large background in each event
§ many interactions in each BX
§ many low-momentum particles

Ø Large number of physicists doing 
analysis
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The challenge
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Data filtering

Ø Primary collision rate: 40 Megahertz
Ø Recording rate: 100 Hertz
Ø How is this achieved?
§ Multilevel trigger
§ Very fast first level: (Programmable) hardware
§ Slower second level: Software on fast processors

Ø Reliable: Rejected data are lost forever
Ø Conservative: Do not lose new physics
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Multilevel trigger

Ø Dead-time has to be minimized
Ø Many collisions can be discarded very 

quickly – Level 1
Ø Only the surviving ones are scrutinized 

more carefully – High Level Trigger(s)
Ø Triggers are tailored to specific physics 

channels (Higgs, top, WW, ZZ, …)
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Example: CMS
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What CMS subdetectors measure

Ø Inner tracker (pixels+strips)
§ Momentum and position of charged tracks

Ø Electromagnetic calorimeter
§ Energy of photons, electrons and positrons

Ø Hadronic calorimeter
§ Energy of charged and neutral hadrons

Ø Muon system
§ Momentum and position of muons
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What CMS subdetectors measure
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CMS L1 trigger

Ø Input rate: 40 megahertz
Ø Output rate: 30 – 100 kilohertz
Ø Latency: 3.2 ms (128 BX)
Ø Pipelined, dead-time < 1%
Ø Available time for calculations: 1.25 ms
Ø 2 detector systems: muons/calorimeters
Ø 3 main steps: local/regional/global
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CMS L1 calorimeter trigger

Ø Calorimeter trigger:
§ Two types of calorimeters
§ Local: Computes energy deposits
§ Regional: Finds candidates for electrons, photons, 

jets, isolated hadrons; computes transverse 
energy sums

§ Global: Sorts candidates in all categories, does 
total and missing transverse energy sums, 
computes jet multiplicities for different thresholds
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CMS L1 muon trigger

Ø Muon trigger:
§ Three types of muon detectors
§ Local: Finds track segments
§ Regional: Finds tracks
§ Global: Combines information from all regional 

triggers, selects best four muons, provides energy 
and direction
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Efficiency of global muon trigger
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CMS L1 global trigger

Ø Global trigger:
§ Final decision logic
§ 28 input channels (muons, jets, electrons, 

photons, total/missing ET)
§ 128 trigger algorithms running in parallel
§ 128 decision bits
§ Apply conditions (thresholds, windows, deltas)
§ Check isolation bits
§ Apply topology criteria (close/opposite)
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CMS L1 trigger
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CMS L1 trigger software

Ø Algorithms are developed in C++
Ø They are tested by extensive simulation 

studies (® Event Simulation)
Ø Manual translation into VHDL (Very high

speed integrated circuit Hardware 
Description Language)

Ø Comparison with C++ implementation
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High level trigger

Ø Further data filtering:
§ 30 – 100 kilohertz input rate
§ 100 Hertz output rate

Ø Event tagging:
§ Reconstruct physics objects
§ Mark events having interesting features
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High level trigger (cont)

Ø More detailed analysis of event and 
underlying physics

Ø Runs on standard processors 
(commodity PCs) 

Ø Algorithms are similar to the ones used 
in event reconstruction (® Event 
Reconstruction), but optimized for 
speed.
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High level trigger (cont)

Ø Regional reconstruction
§ Concentrates on region(s) found by Level 1
§ Muons, electrons, jets, …

Ø Partial reconstruction
§ Abandon goal of optimal precision
§ Stop as soon specific questions are answered
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CMS High level trigger

Ø Has to keep pace with the L1 Output
Ø Filter farm with about 1M SpecInt95
§ About 25000 Pentium III @ 1 GHz
§ About 2000 CPUs at startup (2007)

Ø Organized in subfarms
Ø Same software framework as in “offline”

reconstruction
Ø Transparent exchange of algorithms
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CMS HLT example

Ø back-to-back opposite sign isolated 
muons
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After the high level trigger

Ø Data are written to mass storage
Ø 1 Megabyte @ 100 Hertz = 

100 Megabyte/sec
Ø LHC runs for ~ 2*107 sec/year
Ø 2 Petabyte per year
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From bits to GeV and cm

Ø Raw data are mostly ADC or TDC 
counts

Ø They have to be converted to physical 
quantities like energy or position

Ø Very detector dependent
Ø Every detector needs calibration
Ø Calibration constants need to be stored 

and updated
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Calorimeter calibration

Ø Kinetic energy of incoming particle is 
converted into light or electric charge

Ø Destructive measurement
Ø Relation between deposited charge and 

energy needs to be known
Ø Long term drifts need to be monitored
Ø Huge amounts of data are accumulated
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Silicon Tracker calibration

Ø Incoming particle creates electric 
charge in strips or pixels

Ø Charge distribution depends on location 
of crossing point and crossing angle

Ø Solve inverse problem: reconstruct 
crossing point from charge distribution 
and crossing angle

Ø Test beam, real data
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Drift tube calibration

Ø Incoming particle ionizes gas in tube
Ø Electrons/ions drift to anode/cathode
Ø Drift time is measured
Ø Must be converted to drift distance
Ø Time/distance relation must be 

determined (not always linear)
Ø Test beam, real data



CSC 2004 Rudi Frühwirth, HEPHY Vienna 28

Introduction to Physics Computing
CERN School of Computing 2004, Vico Equense

Where are the detectors?

Ø Tracking detectors are very precise 
instruments

Ø Silicon strip detector: ~ 50 mm
Ø Pixel detector: ~ 10 mm
Ø Drift tube: ~ 100 mm
Ø Position needs to be known to a similar 

precision
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Example: CMS tracker
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Alignment

Ø Mechanical alignment
Ø Measurements taken before assembly
Ø Switching on the magnetic field
Ø Laser alignment
Ø Alignment with charged tracks from 

collisions, beam halo and cosmic rays
Ø Continuous process
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Environmental data

Ø Calibration data 
Ø Alignment data
Ø Temperatures, gas pressures, …
Ø Machine parameters
Ø Need to be made persistent
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Detector related software

Ø Configuration
§ Load trigger files, set thresholds, set HV, set 

amplifier gains, …

Ø Slow control
§ Measure temperature, gas pressure, dark 

currents, …

Ø Monitoring
§ Check trigger rates, detector efficiency, cluster 

sizes, wire maps, 
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Event reconstruction

Ø Find out which particles have been 
created where and with which 
momentum

Ø Some of them are short-lived and have 
to be reconstructed from their decay 
products

Ø Some of them (neutrinos) escape 
without leaving any trace
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Event reconstruction (cont)

Ø Reconstruct charged particles
Ø Reconstruct neutral particles
Ø Identify type of particles
Ø Reconstruct interaction points (vertices)
Ø Reconstruct kinematics of the 

interaction
Ø Not trivial …
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CMS: Higgs decay into two jets
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Charged particles

Ø Charged particles are detected by 
tracker and calorimeters

Ø Muons also reach the muon system
Ø Very high number of low-momentum 

charged particles
Ø Select by threshold on transverse 

momentum
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Neutral particles

Ø Neutral particles are detected mainly by 
calorimeters (e.g. photons, neutrons)

Ø Some of them decay into two (or more) 
charged tracks which are detected by 
the tracker (e.g. K0 )

Ø Some of them escape without leaving a 
trace (neutrinos)
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Reconstruction of charged particles

Ø Trajectory is curved because of the 
magnetic field

Ø Position is measured in a number of 
places –“hits”

Ø Determine track parameters (location, 
direction, momentum) from the position 
measurements

Ø Data compression
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The difficulties

Ø Charged particles interact with all the 
material, not only the sensitive parts

Ø Multiple Coulomb scattering 
§ Changes direction, but not momentum

Ø Energy loss by ionization
§ Changes momentum, but not direction

Ø Energy loss by bremsstrahlung
§ Only for electrons
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More difficulties

Ø Assignment of hits to particles is 
unknown

Ø Huge background from low-momentum 
tracks

Ø Additional background from other 
interactions in the same beam crossing 
and from adjacent beam crossings
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Tracks only 
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Tracks with hits 
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Hits only 
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Decomposition of the problem

Ø Pattern Recognition or Track Finding
§ Assign hits to track candidates

Ø Parameter estimation or Track Fit
§ Determine track parameters + covariance matrix

Ø Test of the track hypothesis
§ Check chi-square, residuals, remove outliers
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Track finding

Ø Depends a lot on the properties of the 
detector:
§ Geometry, configuration
§ Magnetic field
§ Precision
§ Occupancy

Ø Many solutions available
Ø No general recipe
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A few track finding algorithms 

Ø Track following
Ø Simple Kalman filter
Ø Combinatorial Kalman filter
Ø Track road
Ø Hough transform
Ø Hopfield network
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Track following

Ø Generate an initial track segment (“seed”)
Ø Extrapolate the seed
Ø Pick up hits close to extrapolated seed
Ø Can be done in a projection or in 3d
Ø Runs into trouble if too many competing 

hits are close to the extrapolation
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Simple Kalman filter

Ø Generate an initial track segment (“seed”)
Ø Extrapolate the seed to the next layer
Ø Pick up closest compatible hit and update 

the seed (® Track fit)
Ø Repeat until last layer
Ø Might pick up wrong hit somewhere and 

go astray
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Combinatorial Kalman filter

Ø Generate an initial track segment (“seed”)
Ø Extrapolate the seed to the next layer
Ø Pick up all compatible hits and make 

branches for all of them (+1 empty)
Ø Extrapolate all branches and continue
Ø Number of branches must be limited
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Track road

Ø Define a road using three hits or two hits 
plus a vertex (beam-line)

Ø Pick up hits in the road
Ø Can be done in a projection or in 3d
Ø Runs into trouble if too many competing 

hits are picked up in the road
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Hough transform

Ø Transform hits from “image space” to 
“parameter space”

Ø Hits on the same track cluster in 
parameter space

Ø Find clusters in parameter space
Ø Feasible only for very simple track 

models (line, circle)
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Hopfield network

Ø Build recurrent neural network
Ø Neurons are track segments connecting 

hits in adjacent layers
ØWeights reflect probability that two 

adjacent segments belong to the same 
track

Ø Minimize energy function of the network
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Hopfield network (cont)
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Hopfield network (cont)

Ø Track candidates are formed by neurons 
that are “on” in the final state 

Ø No track model used
Ø Runs into trouble with high background 

and complicated detector geometry
Ø Successfully used in ALEPH TPC
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Track fit

Ø Determine track parameters
Ø Determine covariance matrix
Ø Test track hypothesis
Ø Reject outliers
§ Distorted hits (cluster fusion, d - electron)
§ Extraneous hits
§ Electronic noise
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Ingredients

Ø Magnetic field
§ Constant or variable

Ø Track model
§ Solution of the equation of motion
§ Analytic (explicit) or numerical

Ø Error model
§ Observations errors
§ Process noise
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Magnetic field

Ø Fast computation required
Ø Interpolation in a large table
Ø Global approximation by harmonic 

functions
Ø Local approximation by low-order 

polynomials
Ø Constant field plus correction terms



CSC 2004 Rudi Frühwirth, HEPHY Vienna 58

Introduction to Physics Computing
CERN School of Computing 2004, Vico Equense

Track model

Ø Propagate track parameters from A to B:
pB = fA®B(pA)

Ø Provide Jacobian:
FA®B=¶fA®B / ¶p

Ø Careful choice of track parameters 
important for linear approximation

Ø fA®B is analytic only in very simple cases
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Track model (cont)

Ø No field: straight line
Ø Constant field: helix
Ø Even in these cases, track model is 

analytic only for simple detector surfaces 
(plane, cylinder)

Ø In all other cases, fA®B and FA®B have to be 
computed numerically
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Error model

Ø Observation error
§ Covariance matrix usually comes along with the hit

Ø Process noise
§ Mainly multiple Coulomb scattering, treated in 

Gaussian approximation
§ Bremsstrahlung (for electrons), treated in Gaussian or 

Gaussian mixture approximation
§ Energy loss by ionization, mostly mean only, no 

spread
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Estimation of track parameters

Ø Most estimators minimize a least-squares 
objective function

Ø Least-squares estimation
§ Linear regression
§ Kalman filter

Ø Robust estimation
§ Adaptive filter
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Linear regression

Ø Set up linear model:
m=Fp+e, E(e)=V, cov(e)=V=G-1

Ø V describes observation errors and 
process noise

Ø Estimation of p:
p’=(FTGF)-1FTGm

Ø Covariance matrix of p:
cov(p’)=(FTGF)-1
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Linear regression (cont)

Ø Chi-square statistic
c2 =(m-Fp’)TG(m-Fp’)

Ø Outliers may be masked by multiple 
scattering

Ø Optimal estimate only at a single point
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Kalman filter

Ø Iterative version of least-squares estimation
Ø Start with approximate track parameters

and large errors
Ø Extrapolate to observation, adding up 

process noise
Ø Incorporate observation by weighted mean



CSC 2004 Rudi Frühwirth, HEPHY Vienna 65

Introduction to Physics Computing
CERN School of Computing 2004, Vico Equense

Kalman filter (cont)

Ø Iterate until all observations are used
Ø Last estimate contains full information
Ø Propagate back the full information to all 

previous observations – “Smoothing”
Ø Optimal estimates are available anywhere 

along the track
Ø Full power for outlier search
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Adaptive filter

Ø Robust version of the Kalman filter
Ø Compute Kalman filter/smoother
Ø Compute “assignment probability” of each 

observation to the track
Ø Re-compute Kalman filter /smoother, using 

assignment probabilities as weights
Ø Iterate until convergence
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Adaptive filter (cont)

Ø Outliers are suppressed automatically
Ø Automatic choice between competing or 

ambiguous observations
Ø “Soft” assignment of hits to tracks: 

assignment probabilities can vary between 
0 and 1
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Reconstruction of neutral particles

Ø Neutral particles are only seen by the 
calorimeters

Ø Photons are absorbed in the 
electromagnetic calorimeter

Ø Neutral hadrons are absorbed in the 
hadronic calorimeter

Ø Neutrinos are not detected directly
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Shower finding 

Ø An incident particle produces a shower in 
the calorimeter

Ø A shower is a cluster of cells with energy 
deposit above threshold

Ø Various clustering techniques are used to 
find showers

Ø Overlapping clusters must be separated
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Shower finding (cont) 

Ø The algorithms depend on various 
characteristics of the calorimeter
§ Type (electromagnetic or hadronic)
§ Technology (homogeneous or sampling)
§ Cell geometry
§ Granularity
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Particle identification 

Ø Determining the type of a particle
Ø Dedicated detectors
§ Threshold Cherenkov
§ Ring imaging Cherenkov (RICH)
§ Transition radiation detector
§ Ionization measurements
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Particle identification

Ø Combining information from several 
detectors
§ Shower in elmag calorimeter + no matching track in 

tracker ® photon
§ Shower in elmag calorimeter + matching track in 

tracker ® electron
§ Track in muon system + matching track in tracker 
® muon
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Vertex reconstruction

Ø Primary vertex: interaction of the two beam 
particles – easy

Ø Secondary vertices: decay vertices of 
unstable particles – difficult

Ø Emphasis on short-lived unstable particles 
which decay before reaching the tracker

Ø Data compression
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The difficulties

Ø Association of tracks to vertices is 
unknown

Ø Secondary tracks may pass very close 
to the primary vertex
§ Especially if decay length is small

Ø Track reconstruction may be less than 
perfect
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Primary and secondary tracks
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Decomposition of the problem

Ø Pattern Recognition or Vertex Finding
§ Assign tracks to vertex candidates

Ø Parameter estimation or Vertex Fit
§ Determine vertex location + covariance matrix, 

update track parameters

Ø Test of the vertex hypothesis
§ Check chi-square, residuals, remove outliers
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Vertex finding

Ø Almost independent of the detector 
geometry

Ø Secondary vertex finding may depend on 
the physic channel under investigation

Ø Essentially a clustering problem
Ø Many solutions available
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A few vertex finding algorithms 

Ø Hierarchical clustering
§ Single linkage, complete linkage,…

Ø Non-hierarchical clustering
§ k-means, robust location (mode) estimation, iterated 

vertex fit

Ø Neural network/physics inspired
§ Competitive learning, deterministic annealing, 

superparamagnetic clustering, quantum 
clustering,…
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Hierarchical clustering 

Ø Agglomerative
ØWorks with distances between objects 

(tracks) and clusters
Ø Single linkage
§ Distance between clusters is minimum of pair-wise 

object distances 

Ø Complete linkage
§ Distance between clusters is maximum of pair-wise 

object distances 
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Hierarchical clustering (cont)

Ø Start with singleton clusters
Ø Merge clusters with the smallest distance
Ø Iterate until smallest distance exceeds 

some threshold
Ø Fast, but explores only a very small 

subset of possible clustering
Ø Complete linkage works quite well



CSC 2004 Rudi Frühwirth, HEPHY Vienna 81

Introduction to Physics Computing
CERN School of Computing 2004, Vico Equense

Hierarchical clustering (cont)
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Non-hierarchical clustering 

Ø K-means
§ Start out with a number of prototype vertices
§ For each prototype, find all tracks for which this is 

the closest prototype
§ Update the prototype by doing a vertex fit using only 

those tracks
§ Requires careful initialization
§ Number of prototypes fixed
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Non-hierarchical clustering (cont)

Ø Robust location estimation
§ Represent each track by a space point (“apex point”)
§ Find accumulation point of apex points using location 

or mode estimators with high break-down point
§ Remove apex points in the vicinity of the estimated 

accumulation point
§ Iterate
§ High break-down point estimators have low precision
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Non-hierarchical clustering (cont)

Ø Iterated vertex fit
§ Vertex fit with all tracks 
§ Find and remove outlier(s)
§ Redo vertex fit until no outliers are found
§ Iterate procedure on all remaining tracks
§ Very powerful
§ Can be speeded up by using a robust vertex fit
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Neural network inspired clustering

Ø Competitive learning
§ Start out with a number of prototype vertices
§ Prototypes are attracted to the tracks according to 

some learning rule
§ Iterate learning steps until convergence
§ Can be made more “just” by letting all prototypes 

learn at about the same rate
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Neural network inspired clustering

Ø Deterministic annealing
§ Start out with a single prototype at a certain 

“temperature”
§ Prototype is attracted to the tracks according to some 

learning rule
§ Compute largest eigenvalue of spread around the 

prototype
§ Split prototype if eigenvalue is too large for the 

current temperature
§ Iterate for each new prototype



CSC 2004 Rudi Frühwirth, HEPHY Vienna 87

Introduction to Physics Computing
CERN School of Computing 2004, Vico Equense

Estimation of vertex parameters

Ø Most estimators minimize a least-squares 
objective function

Ø Least-squares estimation
§ Linear regression
§ Kalman filter

Ø Robust estimation
§ Adaptive filter



CSC 2004 Rudi Frühwirth, HEPHY Vienna 88

Introduction to Physics Computing
CERN School of Computing 2004, Vico Equense

Linear regression

Ø Set up linear model:
pi=ci+Aiv+Bqi +ei, E(ei)=Vi, 
cov(ei)=Vi=Gi

-1

Ø Vi describes track errors of track i
Ø Estimation of vertex v:

v’=C [ S Ai
T Gi

B (pi –ci) ]
Ø Covariance matrix of p:

cov(v’)=C= ( S Ai
T Gi

B Ai )-1
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Linear regression (cont)

Ø Track residuals:
ri= pi – ci – Aiv’

Ø Chi-square statistic
c2 = S ri

T Gi ri

Ø Multiple outliers may be masked
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Kalman filter

Ø Iterative version of least-squares estimation
Ø Start with approximate vertex position

and large errors
Ø Add one track after the other
Ø For each track, check compatibility with 

current vertex estimate
Ø Remove outliers immediately
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Kalman filter (cont)

Ø Iterate until all tracks are used
Ø Last estimate contains full information
Ø Update all track parameters – “Smoothing”
§ Improvement of track parameters by vertex constraint
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Adaptive vertex fit

Ø Robust version of the linear vertex fit 
(regression/Kalman filter)

Ø Make linear vertex fit 
Ø Compute “assignment probability” of each 

track to the vertex
Ø Re-compute linear vertex fit, using 

assignment probabilities as weights
Ø Iterate until convergence
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Adaptive vertex fit (cont)

Ø Outliers are suppressed automatically
Ø “Soft” assignment of tracks to vertices: 

assignment probabilities can vary 
between 0 and 1

Ø Assignment can be made “hard” by 
cooling down to low temperature

Ø Adaptive filter can be reapplied to rejected 
tracks – vertex finding
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Kinematical  fit

Ø Impose constraints on a reconstructed 
vertex
§ Momentum conservation
§ Energy conservation (if masses are known)
§ Invariant mass of mother particle

Ø Put constraints into a Lagrange multiplier
Ø Construct least-squares objective function
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Kinematical  fit

Ø Taylor-expand objective function with 
respect to all momentum vectors

Ø Minimize objective function
Ø Neutral particles have to be included 

(calorimeter information)
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Persistency

Ø Event reconstruction produces physics 
objects
§ Tracks
§ Vertices
§ Identified particles
§ Jets
§ Tags

Ø Need to be made persistent
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Persistency (cont)

Ø Physics objects depend on
§ Alignment
§ Calibration
§ Version of the reconstruction program
§ Algorithm parameters

Ø Must be made persistent as well
Ø About 200 kbyte per event (CMS)
Ø Tools: Objectivity, ROOT, POOL



CSC 2004 Rudi Frühwirth, HEPHY Vienna 98

Introduction to Physics Computing
CERN School of Computing 2004, Vico Equense

POOL

Ø Common persistency framework for 
physics applications at LHC

Ø Part of the LCG (LHC Computing Grid)
Ø Data are stored in a distributed and grid-

enabled fashion
Ø You will hear a LOT about POOL later!
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Simulation

ØWhy do we need simulation?
Ø Optimization of detector in design phase
Ø Testing, validation and optimization of 

reconstruction algorithms
Ø Computation of reconstruction efficiency
Ø Computation of acceptance corrections 
Ø Background studies
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Simulation steps

Ø Event generation
Ø Tracking through the detector, using 

detector geometry and magnetic field
Ø Interaction of particles with matter
Ø Signal generation in sensitive volumes
Ø Digitization (simulate ADC or TDC)
Ø Digitized data and truth information are 

made persistent
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Event generation packages

Ø PYTHIA/JETSET
§ Also known as “Lund Monte Carlo”
§ General purpose event generator
§ Collisions of electrons, positrons, protons and 

antiprotons in various combinations.
§ “Together they contain theory and models for a 

number of physics aspects, including hard and soft 
interactions, parton distributions, initial and final state 
parton showers, multiple interactions, fragmentation 
and decay.”
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Event generation packages (cont)

Ø HERWIG
§ Hadron Emission Reactions With Interfering Gluons
§ General purpose event generator
§ Hard lepton-lepton, lepton-hadron and hadron-hadron 

scattering and soft hadron-hadron collisions 
§ Current version in FORTRAN, HERWIG++ planned
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Event generation packages (cont)

Ø PANDORA
§ Physics event generator for linear collider studies 
§ Collisions of electrons, positrons and photons
§ Current version in FORTRAN, HERWIG++ planned
§ Written in C++
§ Interface to PYTHIA
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Event generation packages (cont)

Ø LOTS of specialized generators for
§ Electroweak physics
§ QCD
§ Higgs
§ Supersymmetry
§ Exotic physics
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Detector simulation 

ØWas frequently (and still sometimes is) 
experiment-specific

Ø Nowadays there is a widely used standard: 
GEANT
§ GEANT3: FORTRAN
§ GEANT4: C++

Ø You will hear a LOT about GEANT4 later!
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GEANT4 functionality

Ø Description of geometry and materials
Ø Particle tracking and interactions with 

matter
Ø Generation of the detector response
Ø Bookkeeping, metadata management
Ø Visualization of geometry, tracks and hits
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User responsibility

Ø Link to the event generator
Ø Description of the detector
Ø Setting of physics processes and cuts
Ø Code for digitization of the detector 

response and generation of noise
Ø Tuning – simulated data should resemble 

real ones as closely as possible
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Detector description

Ø Geometry
§ Shape
§ Placement relative to mother volume
§ Symmetries

Ø Material
§ Composition
§ Density
§ Radiation length, interaction length, …
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DD examples

Ø CMS
§ XML Schema detector description database
§ Derive detector descriptions for simulation (GEANT4), 

reconstruction and visualization

Ø ATLAS
§ Primary Numbers stored in relational database
§ GeoModel C++ library
§ Derive detector descriptions for simulation (GEANT4), 

reconstruction and visualization
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DD examples

Ø Alice
§ ROOT classes
§ Used for simulation and reconstruction
§ Invoke physics processes from GEANT and FLUKA

Ø LHCb
§ XML DTD (Document Type Definition)
§ Interpreted by GAUDI plug-ins to build  detector 

representations for simulation and reconstructions
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Physics analysis

Ø Event selection
§ Multidimensional criteria

Ø Signal extraction
§ Study background
§ Determine significance of signal

Ø Corrections
§ Detector acceptance, reconstruction efficiency, …
§ From simulated data
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Physics analysis (cont)

Ø Computation of physical quantities
§ Cross sections, masses, decay widths, …

Ø… and of their errors
§ Statistical errors: uncertainty because of limited 

number of observations
§ Systematic errors: uncertainty because of limited 

knowledge of key assumptions (beam energy, 
calibration, alignment, magnetic field, theoretical 
values, background channels, …)
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Analysis tools

Ø Need versatile tools for
§ Multidimensional selection
§ Event display and interactive reprocessing
§ Histogramming
§ Plotting
§ Fitting of curves and models
§ Point estimation and confidence intervals
§ …
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Analysis tools (cont)
Ø ROOT
§ Builds on HBOOK and PAW (CERN)

Ø JAS
§ Java Analysis Studio (SLAC)

Ø OpenScientist
§ “Open, modular, free, portable, efficient and 

collaborative” (LAL Orsay)

Ø AIDA
§ common interfaces for data analysis and visualisation
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Distributed analysis

Ø Physics analysis will take place in many 
labs all over the world

Ø Physicists need access to event data and 
corresponding calibration, alignment and 
bookkeeping data … and to simulated data

ØWe need the grid!
Ø You will hear a LOT about the grid next 

week!
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Reconstruction on demand

Ø Objects are reconstructed if and when 
required by the user

Ø User requests fitted vertices 
® triggers vertex  reconstruction 
® triggers track reconstruction
® triggers hit reconstruction
® hit reconstruction is done
® track reconstruction is done
® vertex reconstruction is done
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Metadata challenge

Ø Metadata are data describing other data
Ø Distributed analysis needs lots of metadata 

to track the location and validity of 
alignment constants, calibration constants, 
reconstructed objects, …

Ø Frequent updates
Ø Frequent access 
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Summary

Ø Physics computing involves:
§ Event filtering with multilevel trigger
§ Persistency of raw data
§ Calibration and alignment
§ Persistency of calibration, alignment and 

environmental data
§ Event reconstruction
§ Persistency of reconstruction objects and metadata
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Summary (cont)

Ø Physics computing involves:
§ Event simulation 
§ Persistency of simulated raw data and truth 

information
§ Reconstruction of simulated events
§ Persistency of reconstruction object and truth 

information
§ Distributed physics analysis
§ Persistency of high-level physics objects
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Outlook on the track

Ø Data bases and persistency
§ 3 L, 3 E

Ø Experiment simulation
§ 4 L, 3 E

Ø Physics in GEANT4
§ 2 L (optional)


