Tools and Methods

Track introduction

Tools you can use individually (part 1)

Ok, HOBBES, QNR TIME Wi DO Y GEEZ, D00 THRK] | WEVE GOT TO COMTEND WITH | | G038, T THIMNK M GOGGLES
MROINE 15 ALL SET. PUT W HWE | TREIEUNG YEARS | | VORTENES AMD LIGHT SPEEDS!| | ARE "N THE BEDROOM, IF 1M

O WEAR. PHITHING COULD GO WRING! | | WOT BACK IN A COURE MINATES

OF COURSE WE WEED T NOAY CAM G2 WITHOWT ME,

WEML GOGGLES ;

ON OUR GOGGLES AHD Well
BE OFF TOTHE 'FIJT'IJQE!'_#,_,,

igﬁ i

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

What do you need to do the job?

| need to calculate the sum of primes less than 100:

int sumPrimes() {
int sum = 0;
for (inti=1; i <100; i++) { //loop over possible primes
bool prime = true;
for (intj=1; j< 10; j++) {//loop over possible factors
if @ % j == 0) prime = false;

}

if (prime) sum += i;

}

return sum;

}

This is quick, throw-away code
* Not well structured, efficient, general or robust
* | understand what I intended, because | wrote it just now

Already, I need an editor, compiler, linker, and probably a debugger

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

“Don’t worry, I’ll remember
what I changed.”

“The answer looks OK, lets
move on.”

“Does anybody know where
this value came from?”

“Your #%0@!& code broke
again!”

ol at
Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Projects come in different sizes

My sample program is a pretty small project!

Effort Carbitrary units)

Size (arbitrary units)

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

Effort (arbitrary units)

Size (arbitrary units)

But that won’t solve larger problems well

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Projects come in different sizes

A larger project may need a different approach
* Those tend to require more effort up front

= \lethod 1

Method 2

Effort (arbitrary units)

Size (arbitrary units)

What do you do when your project grows?

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Projects come in different sizes

If you’re trying to solve a really large problem:

= \ethod 1
e |\ethod 2
Method 3

Effort (arbitrary units)

Size (arbitrary units)

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

What has all this to do with us?

Our systems tend to be complex systems
* HEP tends to work at the limit of what we know how to do

“If you only have a hammer, wood screws look a lot like nails™ - ?7?
“If you only have a screwdriver, nails are pretty useless” - Don Briggs

i;f,g:,-‘.‘,,.,..j,é akilled wnth e patiou—
aratnal | Fhe [{limpoodilie weenn T

T-E-'r?z]i- o Lﬂ&'? SlfEckes.

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Larger projects have standard ways of doing things

To make it possible to communicate, you need a shared vocabulary
» Standards for languages, data storage, etc.

For people to work together, you have to control integrity of source code
 E.g. CVS to provide versioning and control of source code

Just building a large system can be difficult
* Need tools for creating releases, tracking problems, etc.

T DOKT AANNA TAKE
ABAM! T MATE
TAKING BATHS/

)

=il

|

BT L P Sl
e

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

But individual effort is still important!

You can’t build a great system
from crummy parts

You want your efforts to make a
difference

Good tools & methods can help

you do a better job 93’—\\ ! 'l e

“Whatever you do may seem < -
insignificant, but it is most ¥ K . |
important that you do it.” - =
Gandhi y, 7
)"\ Gl
N A L o

S
S

“Ive got it, oo, Omar ... a strange feeling like
we've just been going in circles.”

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

The Software Technologies Track

int sumPrimes() {
A spectrum of places to improve: fox (it 4213 1< 1005 40 { //Bop over possible primes

bool prime = true;
* What you do in the next minutes fox fioe 311 35101 310 {/loop over possible facters
}

* What you do over the next years | Ertn) oun e

return sum;

}

I

=i

Applications
use DataGrid middleware
to access resources

it RO

—._

DataGrid middleware
provides access
to distributed and

heterogeneous resources

kY
4
iy
S
t

Three basic themes:
* Individual tools & methods
« Working with existing code
* Building new systems

lof testbed deployment

Technieal coordination!

QOrganisation of the technical work packages in the DataGrid project

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Plan for this week:

Tools and Methods - Lecture 1

Mon. 30 Aug.| Tue. 31 Aug. | Wed. 01 Sept. | Thu. Fri.03 Sept. | Sat. 04 Sept.
L L L E
General General Data Bases
09.00 goening | IMroduction to) introduction to Srperiment | and Object
- c eF:e m nﬁ Physics Physics 1 Persistency
09.55 Y Computing Computing M Liend] 1
1 2 A‘H]tmn D.Ddllmann
R.Frihwirth R.Frihwirth : M.Girone
L E
Sxperiment | 070 C1ECS
2 Persistency
2
“i"ﬁ']i':;' D.Diillmann
. M.Girane
Coffee | Cofee
L E
Experiment | 70575
3 Persistency
3
':"ﬁ']i':"j" D.Dillmann
: M. Girone
Lunch Lunch Lunch Lunch Lunch
L L
Physics in Physics in
Free Time Free Time Geantd Geantd
1 2
A.Ribon A.Ribon
L E L
Interactive & | Experiment
TT;’;:ﬁ f"::{é Distributed | Simulation
3 A Computing 4
1 M.Liend|
Bulacchsen APfeifier | ARibon
16.30 Coffee Coffee ETITSen Coffee Coffee Free Time
E E E E
17.00(Tools and Tools and Intg ra_cn'l.re & E:_{penm_ent
, . Distributed Simulation
- Technigue Technigue -
Computing 1
s L d 2 M.Liendi
B.Jacobsen | B.Jacobsen A Pfeiffer ARiban
E E E E
18.05| Tools and Tools and Inﬁﬁymvea. E;penngnt
; . Distributed Simulation
- Technigue Technigue C :
omputing 2
19.00 2 : 3 M Liendi
B.Jacobsen | B.Jacobsen O e T —

2004

Design

System architecture

Individual project —

Architectural Design
. . Node Package
SpGleIC task Scope: Processors, Task
packages, tasks

Mechanistic Design

Scope: Groups of
collaborating classes

Class

Class

Detailed Design

Scope: Classes

Class \

attribute

Class

operation

“Design” is how you think about what you’re doing

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Design Levels: an analoqgy

Imagine the project is not to build software but to go on an
Inter-planetary journey...

Architectural design | o %

decide which planet to fly to ‘ s ~..

Mechanistic design

select the flight path

Detailed design

choose where to have lunch

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Architectural design

Goals —— __
. THE FIFTH WAVE | | :
 Capture major interfaces between — : :
subsystems and packages early NeiasaEs S

» Be able to visualize and reason about the | :‘fg’bﬁ&% iﬁmﬂﬁiﬁ;ﬂ =57
design in a common notation ﬁke_.mﬁmmppeggin ="

* Be able to break work into smaller pieces |- ﬁ’gﬂf i P e ‘jé,
that can be developed by different teams i LA < W\f’»@
(concurrently) S " ol

» Acquire an understanding of non- ™ B
functional constraints e Q{“MS

- . '. AATah)
programming languages and operating T3 :,, «WM“:
systems .Jx}f" f

=y,

Ry
vl

R

%5
AT

technologies: distribution, concurrency,
database, GUIs

component reuse

N

Sy

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Architectural Design Qualities

A well designed architecture has certain qualities:
* layered subsystems
* low inter-subsystem coupling
e robust, resilient and scalable
* high degree of reusable components
o clear interfaces
o driven by the most important and risky use cases
*EASY TO UNDERSTAND

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Mechanistic Design

Specify the details of inter-object collaboration mechanisms
» Determine the structure of classes and their associations
Class diagram
* Determine the behavior of classes

Interaction diagrams
Collaboration
Sequence

» Target: The people working together

Over time & space

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Class Diagram

Describes the types of objects in the
system and the various kinds of static
relationships that exist between them

Tools and Methods - Lecture 1

class

PUE——

1

aggregation

name

generalization

* 1. & multlplICIl“_\,F 1%
Department T & Office |
name : Name |- 1 address : String
1 voice : Number
constraint
role —
K < {subset} | association
0——//
member | 1..* 1| manager ‘ Headquarters ‘
Person
name : Name attributes
employeelD : Integer "/—-_
title : String operations
getPhoto(p: Photo) / ,
getSoundBite() / Contactinformation
getContactinformation() - - > address : String
getPersonalRecords() -

dependency

[“;\

PersonnelRecord

taxID
employmentHistory
salary

interface

S

ISecurelnformation

Rational Software Corporation

Bob Jacobsen September 2004

Building software is difficult

It cannot be learned from a book
* You have got to do it and make mistakes
* Only time will tell if the result is “good”

It is a creative activity
* And hence enjoyable
» Not always clear when you should stop
It requires experience
» After a while you will tend to be more cautious and less ambitious
e Tryto keep it simple
You will remember past-project horror stories
Or am | just getting old?

[1 MAVE A cLoub OF DOOM | 2f 1w LookiNG FOR A |f|(A womAN wITH)
THAET ZAPS EVERMOME MEAR 5| WOMAN WHO DOESN'T _E ABSOLUTELY MO SEMSE
ME ONCE A MINUTE. : THIMK THAT PAST BEHAVIOR| £ (| OF PATTERMN RECOGNLITION,

5y

L] o

"x.—‘_ o
] IS AN INDICATION 3
Daam 2 B !
(Boam}) 2| OF THE FUTURE. il [/ e, [OUCH. trommm
o g = DoomM, o | THAT WON'T
T «:’_ : : [T :Drl;.mu:ll £ \
- Cf ..-.‘I“ . - w (=] 1 £

L —d -
% ;E [%
.:} Toor L F

- > L

Copyright 2 1997 United Feature Syndicate, lnc.
Fedistribution in whole or in part prohibited

g
©

=

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Addressing these themes:

Tools and Methods - Lecture 1

Man. 30 Aug.| Tue. 31 Aug. | Wed. 01 Sept. [Thu. 02 Sept.| Fri. 03 Sept. | Sat. 04 Sept.
L L L L E
General General Data Bases Experiment Data Bases
09.00 Openin Introduction to | Introduction to | and Object Sirl;ulation and Chject
- c e? am m—? Physics Physics Persistency 1 Persistency
09.55 Y Computing Computing 1 M Liend 1
1 2 D.DOllmann A'Ritmn D.DUOllmanm
R.Frihwirth R Frihwirth M.Girone : M.Girone
L L = L E
L ’ Data Bases : Data Bases
10.05| Toolsand | ‘MerECiie & | SOTWErS | and Object | ‘ohoe"t | and Object
11—[][] Tem:nque C uting testing F’ers:rz,tency 2 F'ersgtenc*,f
: 2 1 . M.Liendl .
B.Jacobsen . D.Ddllmann . D.Dallmann
A Pfeiffer FP.Tonella M.Girone ARibon M.Girone
11.06 Coffee Coffee Coffee Coffee Coffee Coffee
L L L L E
L Interactive & Software Data BH.SES Experiment Data EE.EEE
11.30) _Jocls8nd | ‘Distibuted | evolution and | 200 OYE | Simuiation | 307 Oblect
12.25 2 a Computing testing 3 oy 3 3 oy
' 3 2 . M.Liendl .
B.Jacobsen . D.DOllmann . D.DUOllmanm
A Pfeiffer P.Tanella M.Girane A.Ribon M.Girane
12.30 Lunch Lunch Lunch Lunch Lunch Lunch
L L
14.30 Physics in Physics in
- Free Time Free Time Geantd Geantd
15.25 1 2
A Ribon A Ribon
L L E L
1530 WD | Tooksanc oo, [
- | Computing | Technigue C . 4
1625 L d M MLiendl
BN ©-/acobsen APfeifier | ARibon
16.30 Coffee Coffee ErCIrsIon Coffee Coffee Free Time
E E E E
17.00(Tools and Toaols and lrgﬁﬁﬁﬁﬂ'{g d& %?;iﬁg‘;ii?‘t
- Technique Technique)
Computing 1
1754 L d 2 M Liend|
B.Jacobsen | B.Jacobsen A Pleiffer A Ribon
E E E E
Interactive & | Experiment
18.05| Toolsand | Tools and Distributed | Simulation
- Technigque Technigue)
Computing 2
19.00 2 . 3 M Liend|
B.Jacobsen | B.Jacobsen :

8 PMaifar

8 Rikhinm

Tools you can use

Knowing what you’ve done - CVS

Knowing whether it works - JUnit

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

CVS Source Code Management

Maintains a repository of text files
 Allows users to check in and check out changed text

* Old code remains available
Each checked-in change defines a new revision
You can retrieve, ask for differences with any of them

* Revisions can be tagged for easy reference
Similar in concept to RCS, CMS, other products

Big advantage: checkout is not exclusive
» More than one developer can have the same file checked out
» Developers can control their own use of the code for read, write
 Changes can come from multiple sources
» CVS handles (most) of the conflict resolution

Key tool for large collaborations!
 But also an important tool for individuals

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Simple usage: checkout and update

Getting a copy of the most recent contents of a package Foo:
cvs checkout Foo

Getting a copy of version (tag) V00-02-23 of a package Foo:
cvs checkout -r V00-02-23 Foo

These produce fully editable Foo directories, etc

To update a directory to the most recent contents:
CVs update -A

To see what an update will change, without actually changing
CVS -n update -A

Update flags:

U update M modified A added
e C conflict ? unknown D deleted

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Committing changes back to the repository

To put your changes back into the repository:
* Merge in any changes since your checkout
CVS update -A
e cOMmMIt;
Cvs commit

Many options:
* Specify comment for logs from command line
« Commit only one file
« Control processing of subdirectories

Possible failures

« Can’t get a temporary lock on the repository
 Conflict during update

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Adding and removing files

To tell CVS a new file exists:
e First create the file, then

cvs add <name>

CVS commit
* Nothing changes in the repository until the commit

To tell CVS afile is no longer needed
o First delete the file, then

CVS rm <name>

CVvSs commit
 Nothing changes in the repository until the commit

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Labeling particular contents for later

To add a particular label to certain contents:

» Make sure that everything is in the repository
CVs update
Cvs commit

» Tell CVS to add a tag to the current contents
Ccvs tag <string>

Tags are an easy way to communicate with your colleagues
« “| just fixed that in jake20030924a, give it a try”
* This bug is back in V00-03-04, | thought it was fixed in \V00-03-02”

Web based tools exist for seeing what changed, who changed it, etc

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Conflict resolution & parallel development

Its rare for developers to really conflict by changing the same line
» Usually only one person working on a particular piece of functionality
» And people working on the same thing should talk to each other!
» Conflicts happen most often during migrations of the code

When it happens, CVS can’t figure out how to cope

» Marks both sets of changed lines with markers
<LLLLLLLLLLLLLL L LKL

One content

Other content
SSSSSSSSSSSSSS>S>S>

» User has to edit this to select one or other, or combine

Really not a significant problem
* Though we will provoke it during exercises

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Behind the curtain

The repository contains *,v files

 Each contains some version info at the front,

« followed by the most recent contents

« followed by enough patch information to recreate old contents
Deleted files are stored in the “Attic” directory

Each CVS-controlled directory has a CVS subdirectory
e Contains various files used by CVS
* Don’t touch!

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

How CVS find changes

Triple compare
 The contents you have now
 The contents you checked out
* The current contents of the repository
CVS calculates two sets of changes:
« From second and third, it finds changes to the repository
 From first and second, it finds your changes

So long as these don’t overlap, there’s no problem merging them in

CVS thinks that any change that it detects is deliberate
* If you edit a file to remove changes, it will let you check it in
« If you copy an old version into a directory, it will let you check it in

Since CVS does not tag the file contents, copying files from one directory to
another is a time-bomb

» CVS thinks it sees deliberate changes on commit, and the old version
become the “current contents”

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

What's in it for you?

'} i s

\

-w"'*“‘fm““‘”'*-ﬁmj
o pery e
h]'q— T e e
:I‘?I.H ‘r-.:n:-?'-r:ﬁ 'il':—-;lT ui!;i
".'T.J'i Eﬁi”‘ '_",:."' iy
R T

] | mi'n ﬂ'—u !’
E}q—- |'I"|'r I\.v.-...:l-- .—|'|.!l! b-'ﬁ \\f
o e el il AW e AR -l!'-.'h.
el ille g maad gl ki
-'«'-'""*'- T n.:-..-,.....“
"" e L TT r.- 1

Hﬁir —l-e.-r-n-n-- J-\.- _".._,..i-

r'I]-l-ﬂ'r-"l- A e L _:-:lllh
s ";j'“’" .n.1- "-'|'-|--«"'eI

-'-r: = il] |
P -h Fary S
::l"hn:l-. :u."h I-l'-r}'\r
hlil-!l-l-- Fars .-r-—--n—- I"|"\-'I-"-"if“'-"'

s] ot el g
-.'hh‘- -|' -h.-l e e
3 P msangl -||-|"-l'.-"-1-|-|'" ol
e | l"l'-'l wipmed YL we e
....,_, oo i Hli-‘-l"'-'-"i"-'-'i S
ey

| g
am o B g -
] s ol

eI el L

r-li A e

f .r""";_l:i'l_.___._ B 1-||..-'|-\.|I

H—“-H-}q--------ﬁ -+.l-+~.~.u.-n..- -"'" '::-,'

IEICTTR S e W -u-..l- vl g_-'r-"r'hl'-"l- \

1.1 4-_4.”,,:' Lrl Feuimdne.

e e
ey ey

e s T 1“ .--—"-I' '-.r.-ﬁ'

-..15 B} nionsliad !._l_-" A ,I}'
Mooy #4 |

e o At y r
Tomren o gl o] 8 “;I. 14 'f.‘. o
wlap]..]-.-‘-"- TR -.l...ﬂ:l.l:;l .J,.
o 1 L L wdl Bk rpyslags s H'I'll-lf--'\--": g
:"l‘\l-u}-—h remnitfem | Wby ofw] I-'-'\—|| e,
Ty P TR -4 "q‘.f-f-..,- ! ‘_,1"-
L% -Ll"jl -.-—I.-IL--'J.— -1-l+-'|.-|.| Ak YW
-e |-|,-|.|.1| = e} fo ed b 3
w. ‘[|'r.._-u.

W
1] | i= - IR
".-r.i -—'l-f-n'!ﬁ f-!’q-f\-".-.) ih"‘ 2 '*'r
+ -|'|-|—- =
ey e e i)
l-l-l|.+- el IE.II--I-ﬂ--.-...I.ﬂ 'I-': ,_::l_q_..-
‘1"'1 r—_r H‘l-ﬁ.dl . ,‘.1 F
Bl -ﬂ‘r ﬂur-r-w.d..h..-m'r..-.-,q.., Y

i e Ao

Science, medicine, even football use a notebook as a basic tool
» What you did when
* Why you did it
« What happened then

Tools and Methods - Lecture 1

Bob Jacobsen September 2004

CVS can provide that

Commit, tag, update operations are cheap, logged, carry comments

Use that as your record of progress
« Commit each piece as you do it

 Spend a couple seconds on a useful comment
“Added undo tool, next will use it from Frabitzoid”
“Now conserves momentum”
“Now ready for energy test cases”

Use tags to capture important states

» Tag each time it’s basically working
cvs tag jake-copy-works

» Tag to share with a coworker
cvs tag jake20030828a

Not a heavyweight action!

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Now what have | done?

It worked just minutes ago...
cvs diff Foo.java

» Can also do entire directories, etc.

How did I do that last time?
cvs diff -D 6-Jun-2004 -D 12-Jun-2004
cvs diff -r 1.2 -r 1.3
cvs diff -r jake-copy-works -r jake-added-mass

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

OK, that was a bad idea

Everybody makes mistakes
» Key question: how hard to fix them?

Can remove changes:

e cVvS update -j jake-this-works -j jake-messed-it-up
Even if there are more recent changes!

» CVS uses its three-file diff method to do this

o If there are conflicts, you’ll have some hand edits to do
Don’t forget to commit the resulting changes back!

Tools and Methods - Lecture 1

Roger screws up.

Bob Jacobsen September 2004

Toward an informed way of experimental working

These technigues remove the cost from small, experimental changes
 Allows you to make quick progress on little updates
« Without risk to the big picture

How do you know those steps are progress?

Somewhere, something went terribly wrong

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Testing

But don’t you see Gerson - if the particle is too small and too short-lived to
detect, we can’t just take it on faith that you’ve discovered it.”

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

The role of testing tools

Remember our original example:
 Simple routine, written in a few minutes
* “So simple it must be right”

int sumPrimes() {
int sum = 0;
for (inti=1; i <100; i++) { //loop over possible primes
bool prime = true;
for (intj=1; j< 10; j++) {//loop over possible factors
if @ % j == 0) prime = false;
}

if (prime) sum += i;

}

return sum;

}

But its not right...

""Study it forever and you'll still wonder. Fly it once and you'll know.”
- Henry Spencer

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

How to test?

Simplest: Run it and look at the output

* Gets boring fast!

* How often are you willing to do this?

More realistic: Code test routines to provide inputs, check outputs

 Can become ungainly

Most useful: A test framework
» Great feedback

* Better control over testing

Tools and Methods - Lecture 1

] JUhiteae———— Mg
JUnit
Test class name:
|TestFindVaIs |vH || Run |
[¥] Reload classes every run
L U
Rums: Errors: Failures:
9/'5 D D
[TestFindwvals = | | Run
testCreate
testMotSquare m
testlsSguare
testlsCube |
[¥ Failures I i Test Hierarchy|
.. =
-
1] [*]
|Finished: 2.35 seconds Exit
i

Bob Jacobsen September 2004

Testing Frameworks: CppUnit, Junit, et al

To test a function:
public dass Findvals {
// Test whether an number is a square
bodlean isSquare drtval) {
double roct = Math.floar(Math.pow(val, 0.5));
if (Math.abs (root*roct - val) < 1.E-6) returm true;
else retum false;

You write a test:

public vaid testTsSquare() {
FindVals s = new FindVals();
AgsertassertTrue(sisSquare(4));

Invoke a function

Plus tests for other cases... Check the result

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Embed that in a framework

Gather together all the tests
// defire test suite
public static Test suite() {
// all tests from here down in heirarchy
TestSuite suite = new TestSuite(TestFindVals.class);
return suite;

} Junit uses class
name to find tests

Start the testing
* To just run the tests: junit.textui.TestRunner. main(TestFindVals.class.getName());
*Viaa GUI: juni.swingui.TestRunner. main(TestFindVals.dass.getName());

And that’s it!

Invoke tests for my class

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Running the tests

Junit
Test class name:
TestFindVals - Run
v] Reload classes every run
Runs: Errors: Failures:
10/1D D 1
testhlotCube(TestFindyvals) - | Run
1| | ¥
| X Failures [& Test Hierarchy
junit.framewaork AssertionFailedErrar -
at TestFindvals.testMotCubelTestFindvals java: 29)]
< A
|Fir'|ishE|:|: 5257 secands Exit
%

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Running the tests

IaaO0ODQDQ)])])]————————— Ihhit—=————"——H™H~
JUnit
Test class name:

TestFind Vals - Run

v] Reload classes every run

—JU

Rums: Errors: Failures:
9/9 LB LB
] TestFindwvals - Run
i testiCreate
rf’?testhtSquarE
r*’;testlsSquarE
i+ testlsCube -
X #= Test Hierarchy
il
-
1] | ¥
|Fir'|ishE|:|: 2 35 seconds Exit

i

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

How JUnit works - one test:

public void testOnelsPrime() {
SumPrimes s = new SumPrimes();
Assert.assertEquals(*'check sumPrimes(1)", 1, s.sumPrimes(1));

This defines a “method” (procedure) that runs one test (line 1 and 4)
 JUnit treats as a test procedure any method whose name starts with “test”
* The tests will be run in the order they appear in the file

Line 2 creates an object “s” to be tested
Line 3 checks that sumPrimes(1) returnsa 1
Assert is a class that checks conditions

assertEquals(“message”, valueExpected, valueToTest) does the check
If the check fails, the message and observed values are displayed

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

If the check fails:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Other views:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Demo

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Why?

One test isn’t worth very much
» Maybe saves you a couple seconds once or twice

But consistently building the tests as you build the code does have value
» Have you ever broken something while fixing a bug? Adding a feature?
Tests remember what the program is supposed to do
* A set of tests is definitive documentation for what the code does
* Alternating between writing tests and code keeps the work incremental
Keeping the tests running prevents ugly surprises
* And its very satisfying!

e X P Claim

Traditional

“Extreme Programming” advocates
writing the tests before the code
 Not clear for large projects
 But individuals report good results

Effort (arbitrary units)

Size (arbitrary units)

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

The art of testing

What makes a good test?
* Not worth testing something that’s too simple to fail
« Some functionality is too complex to test reliably

* Best to test functionality that you understand, but can imagine failing
If you’re not sure, write a test
If you have to debug, write a test
If somebody asks what it does, write a test

How big should a test be?

A JUnit test is a unit of failure
When a test fails, it stops
The pattern of failures can tell you what you broke

» Make lots of small tests so you know what still works

What about existing code?
* Probably not practical to sit down and write a complete set of tests

* But you can write tests for new code, modifications, when you have a
question about what it does, when you have to debug it, etc

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

Summary 1

1 CAHT IMAGINE
HASTERING THE SIS
IMMOLNED MEQE

WILTHOUT b CLEARER
UHDERSTANDING OF
Wio's GOG To BE

The principle of ‘I think, therefore | am’, does not apply to high quality software. -
Malcolm Davis

In art, intentions are not enough. What counts is what one does, not what one
intends to do. - Pablo Picasso

Excellence is not a single act, but a habit. You are what you repeatedly do. -
Aristotle, as quoted by Shaquille O’Neal

Tools and Methods - Lecture 1 Bob Jacobsen September 2004

	Tools and Methods
	What do you need to do the job?
	
	Projects come in different sizes
	Projects come in different sizes
	Projects come in different sizes
	Projects come in different sizes
	Projects come in different sizes
	What has all this to do with us?
	Larger projects have standard ways of doing things
	But individual effort is still important!
	The Software Technologies Track
	Plan for this week:
	Design
	Design Levels: an analogy
	Architectural design
	Architectural Design Qualities
	Mechanistic Design
	Class Diagram
	Building software is difficult
	Addressing these themes:
	Tools you can use
	CVS Source Code Management
	Simple usage: checkout and update
	Committing changes back to the repository
	Adding and removing files
	Labeling particular contents for later
	Conflict resolution & parallel development
	Behind the curtain
	How CVS find changes
	What’s in it for you?
	CVS can provide that
	Now what have I done?
	OK, that was a bad idea
	Toward an informed way of experimental working
	Testing
	The role of testing tools
	How to test?
	Testing Frameworks: CppUnit, Junit, et al
	Embed that in a framework
	Running the tests
	Running the tests
	How JUnit works - one test:
	If the check fails:
	Other views:
	Demo
	Why?
	The art of testing
	Summary 1

