
Tools and Methods

Track introduction

Tools you can use individually (part 1)
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What do you need to do the job?

I need to calculate the sum of primes less than 100:

This is quick, throw-away code
• Not well structured, efficient, general or robust
• I understand what I intended, because I wrote it just now

Already, I need an editor, compiler, linker, and probably a debugger

intsumPrimes() {  
intsum = 0;
for ( inti=1; i < 100; i++ ) {  // loop over possible primes

bool prime = true;
for (intj=1; j < 10; j++) { // loop over possible factors
if (i % j == 0) prime = false;

}
if (prime) sum += i;

}
return sum;

}
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“Don’t worry, I’ll remember 
what I changed.”

“The answer looks OK, lets 
move on.”

“Does anybody know where 
this value came from?”

“Your #%@!& code broke 
again!”



Projects come in different sizes

My sample program is a pretty small project!

Size (arbitrary units)
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Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

Size (arbitrary units)
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Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

Size (arbitrary units)
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Projects come in different sizes

A larger project may need a different approach
• Those tend to require more effort up front

What do you do when your project grows?

Size (arbitrary units)

Method 1
Method 2
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Projects come in different sizes

If you’re trying to solve a really large problem:

Size (arbitrary units)

Method 1
Method 2
Method 3
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What has all this to do with us?

Our systems tend to be complex systems
• HEP tends to work at the limit of what we know how to do

“If you only have a hammer, wood screws look a lot like nails” - ??
“If you only have a screwdriver, nails are pretty useless” - Don Briggs
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Larger projects have standard ways of doing things

To make it possible to communicate, you need a shared vocabulary
• Standards for languages, data storage, etc.

For people to work together, you have to control integrity of source code 
• E.g. CVS to provide versioning and control of source code

Just building a large system can be difficult
• Need tools for creating releases, tracking problems, etc.
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But individual effort is still important!
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You can’t build a great system 
from crummy parts

You want your efforts to make a 
difference

Good tools & methods can help 
you do a better job

“Whatever you do may seem 
insignificant, but it is most 
important that you do it.” -
Gandhi



The Software Technologies Track

int sumPrimes() {  
int sum = 0;
for ( inti=1; i < 100; i++ ) {  // loop over possible primes

bool prime = true;
for (intj=1; j < 10; j++) { // loop over possible factors
if (i % j == 0) prime = false;

}
if (prime) sum += i;

}
return sum;

}
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A spectrum of places to improve:
• What you do in the next minutes
• What you do over the next years

Three basic themes:
• Individual tools & methods
• Working with existing code
• Building new systems



Plan for this week:
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Design

PackageNode
Task

Architectural Design

Scope: Processors, 
packages, tasks

Class

Class

Class

Class

Class 
__________  

attribute 
__________  

operation

Mechanistic Design

Detailed Design

Scope: Classes

Scope: Groups of 
collaborating classes

System architecture

Individual project

Specific task

“Design” is how you think about what you’re doing
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Design Levels: an analogy

Imagine the project is not to build software but to go on an
inter-planetary journey...

Architectural design

Mechanistic design

Detailed design
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The Greasy
Spoon

Bill Watterson

decide which planet to fly to

select the flight path

choose where to have lunch



Architectural design
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Goals
• Capture major interfaces between 
subsystems and packages early

• Be able to visualize and reason about the 
design in a common notation

• Be able to break work into smaller pieces 
that can be developed by different teams 
(concurrently)

• Acquire an understanding of non-
functional constraints

programming languages and operating 
systems

technologies: distribution, concurrency, 
database, GUIs

component reuse



Architectural Design Qualities
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A well designed architecture has certain qualities:

• layered subsystems

• low inter-subsystem coupling

• robust, resilient and scalable

• high degree of reusable components

• clear interfaces

• driven by the most important and risky use cases

• EASY TO UNDERSTAND



Mechanistic Design
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Specify the details of inter-object collaboration mechanisms

•Determine the structure of classes and their associations
Class diagram

•Determine the behavior of classes
Interaction diagrams

Collaboration

Sequence

•Target: The people working together 
Over time & space



Class Diagram

Describes the types of objects in the 
system and the various kinds of static 
relationships that exist between them

Rational Software Corporation
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Building software is difficult
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It cannot be learned from a book
• You have got to do it and make mistakes
• Only time will tell if the result is “good”

It is a creative activity
• And hence enjoyable
• Not always clear when you should stop

It requires experience
• After a while you will tend to be more cautious and less ambitious
• Try to keep it simple

You will remember past-project horror stories 
Or am I just getting old?



Addressing these themes:
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Tools you can use
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Knowing what you’ve done - CVS

Knowing whether it works - JUnit



CVS Source Code Management
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Maintains a repository  of text files
• Allows users to check in and check out changed text
• Old code remains available

Each checked-in change defines a new revision
You can retrieve, ask for differences with any of them

• Revisions can be tagged for easy reference
Similar in concept to RCS, CMS, other products

Big advantage: checkout is not exclusive
• More than one developer can have the same file checked out
• Developers can control their own use of the code for read, write
• Changes can come from multiple sources
• CVS handles (most) of the conflict resolution

Key tool for large collaborations!
• But also an important tool for individuals



Simple usage: checkout and update

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Getting a copy of the most recent contents of a package Foo:
cvs checkout Foo

Getting a copy of version (tag) V00-02-23  of a package Foo:
cvs checkout -r V00-02-23 Foo

These produce fully editable Foo directories, etc

To update a directory to the most recent contents:
cvs update -A

To see what an update will change, without actually changing
cvs -n update -A

Update flags:
• U update      M modified      A added
• C conflict    ?   unknown     D deleted



Committing changes back to the repository
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To put your changes back into the repository:
• Merge in any changes since your checkout

cvs update -A
• commit:

cvs commit 

Many options:
• Specify comment for logs from command line
• Commit only one file
• Control processing of subdirectories

Possible failures
• Can’t get a temporary lock on the repository
• Conflict during update



Adding and removing files
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To tell CVS a new file exists:
• First create the file, then

cvs add <name>
cvs commit

• Nothing changes in the repository until the commit

To tell CVS a file is no longer needed
• First delete the file, then

cvs rm <name>
cvs commit

• Nothing changes in the repository until the commit



Labeling particular contents for later
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To add a particular label to certain contents:
• Make sure that everything is in the repository

cvs update 
cvs commit 

• Tell CVS to add a tag to the current contents
cvs tag <string>

Tags are an easy way to communicate with your colleagues
• “I just fixed that in jake20030924a, give it a try”
• This bug is back in V00-03-04, I thought it was fixed in V00-03-02”

Web based tools exist for seeing what changed, who changed it, etc



Conflict resolution & parallel development
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Its rare for developers to really conflict by changing the same line
• Usually only one person working on a particular piece of functionality
• And people working on the same thing should talk to each other!
• Conflicts happen most often during migrations of the code

When it happens, CVS can’t figure out how to cope
• Marks both sets of changed lines with markers

<<<<<<<<<<<<<<<<<
One content
=================
Other content
>>>>>>>>>>>>>>>>>

• User has to edit this to select one or other, or combine

Really not a significant problem
• Though we will provoke it during exercises



Behind the curtain
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The repository contains *,v files
• Each contains some version info at the front,
• followed by the most recent contents
• followed by enough patch information to recreate old contents

Deleted files are stored in the “Attic” directory

Each CVS-controlled directory has a CVS subdirectory
• Contains various files used by CVS
• Don’t touch!



How CVS find changes
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Triple compare
• The contents you have now
• The contents you checked out
• The current contents of the repository

CVS calculates two sets of changes:
• From second and third, it finds changes to the repository
• From first and second, it finds your changes

So long as these don’t overlap, there’s no problem merging them in

CVS thinks that any change that it detects is deliberate
• If you edit a file to remove changes, it will let you check it in
• If you copy an old version into a directory, it will let you check it in

Since CVS does not tag the file contents, copying files from one directory to 
another is a time-bomb

• CVS thinks it sees deliberate changes on commit, and the old version 
become the “current contents”



What’s in it for you?

Science, medicine, even football use a notebook as a basic tool
• What you did when
• Why you did it
• What happened then
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CVS can provide that
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Commit, tag, update operations are cheap, logged, carry comments

Use that as your record of progress
• Commit each piece as you do it
• Spend a couple seconds on a useful comment

“Added undo tool, next will use it from Frabitzoid”
“Now conserves momentum”
“Now ready for energy test cases”

Use tags to capture important states
• Tag each time it’s basically working

cvs tag jake-copy-works
• Tag to share with a coworker

cvs tag jake20030828a

Not a heavyweight action!



Now what have I done?

It worked just minutes ago…
cvs diff Foo.java

• Can also do entire directories, etc.

How did I do that last time?
cvs diff -D 6-Jun-2004 -D 12-Jun-2004
cvs diff -r 1.2 -r 1.3
cvs diff -r jake-copy-works  -r jake-added-mass
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OK, that was a bad idea
Everybody makes mistakes

• Key question: how hard to fix them?

Can remove changes:
• cvs update -j jake-this-works -j jake-messed-it-up

Even if there are more recent changes!
• CVS uses its three-file diff method to do this
• If there are conflicts, you’ll have some hand edits to do

Don’t forget to commit the resulting changes back!
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Toward an informed way of experimental working

These techniques remove the cost from small, experimental changes
• Allows you to make quick progress on little updates
• Without risk to the big picture

How do you know those steps are progress?
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Testing

But don’t you see Gerson - if the particle is too small and too short-lived to 
detect, we can’t just take it on faith that you’ve discovered it.”
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The role of testing tools

Remember our original example:
• Simple routine, written in a few minutes
• “So simple it must be right”
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intsumPrimes() {  
intsum = 0;
for ( inti=1; i < 100; i++ ) {  // loop over possible primes

bool prime = true;
for (intj=1; j < 10; j++) { // loop over possible factors
if (i % j == 0) prime = false;

}
if (prime) sum += i;

}
return sum;

}

But its not right...

"Study it forever and you'll still wonder.  Fly it once and you'll know.”
- Henry Spencer



How to test?

Simplest: Run it and look at the output
• Gets boring fast!
• How often are you willing to do this?

More realistic: Code test routines to provide inputs, check outputs
• Can become ungainly 

Most useful: A test framework
• Great feedback
• Better control over testing
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Testing Frameworks: CppUnit, Junit, et al
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To test a function:
public class FindVals{

// Test whether an number is a square

boolean isSquare(intval) {

double root = Math.floor(Math.pow(val, 0.5));

if (Math.abs(root*root -val) < 1.E-6 ) return true;

else return false;

}

}

You write a test:
public void testIsSquare() {

FindVals s = new FindVals();

Assert.assertTrue( s.isSquare(4) );

}

Plus tests for other cases…

Invoke a function

Check the result



Embed that in a framework
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Gather together all the tests
// define test suite

public static Test suite() {

// all tests from here down in heirarchy

TestSuite suite = new TestSuite(TestFindVals.class);

return suite;

}

Start the testing
• To just run the tests:  junit.textui.TestRunner.main(TestFindVals.class.getName());
• Via a GUI:   junit.swingui.TestRunner.main(TestFindVals.class.getName());

And that’s it!

Junit uses class 
name to find tests

Invoke tests for my class



Running the tests

Bob Jacobsen September 2004Tools and Methods - Lecture 1



Running the tests
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How JUnit works - one test:
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public void testOneIsPrime() {
SumPrimes s = new SumPrimes();
Assert.assertEquals("check sumPrimes(1)", 1, s.sumPrimes(1));

}

This defines a “method” (procedure) that runs one test  (line 1 and 4)
• JUnit treats as a test procedure any method whose name starts with “test”
• The tests will be run in the order they appear in the file

Line 2 creates an object “s” to be tested

Line 3 checks that sumPrimes(1) returns a 1
Assert is a class that checks conditions
assertEquals(“message”, valueExpected, valueToTest) does the check
If the check fails, the message and observed values are displayed



If the check fails:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
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Other views:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
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Demo
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Why?
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One test isn’t worth very much
• Maybe saves you a couple seconds once or twice

But consistently building the tests as you build the code does have value
• Have you ever broken something while fixing a bug? Adding a feature?

Tests remember what the program is supposed to do
• A set of tests is definitive documentation for what the code does
• Alternating between writing tests and code keeps the work incremental

Keeping the tests running prevents ugly surprises
• And its very satisfying!

“Extreme Programming” advocates 
writing the tests before the code

• Not clear for large projects
• But individuals report good results

Size (arbitrary units)

XP claim
Traditional



The art of testing
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What makes a good test?
• Not worth testing something that’s too simple to fail
• Some functionality is too complex to test reliably
• Best to test functionality that you understand, but can imagine failing

If you’re not sure, write a test
If you have to debug, write a test
If somebody asks what it does, write a test

How big should a test be?
• A JUnit test is a unit of failure

When a test fails, it stops
The pattern of failures can tell you what you broke

• Make lots of small tests so you know what still works

What about existing code?
• Probably not practical to sit down and write a complete set of tests
• But you can write tests for new code, modifications, when you have a 
question about what it does, when you have to debug it, etc



Summary 1
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The principle of ‘I think, therefore I am’, does not apply to high quality software. -
Malcolm Davis

In art, intentions are not enough.  What counts is what one does, not what one 
intends to do. - Pablo Picasso

Excellence is not a single act, but a habit. You are what you repeatedly do. -
Aristotle,  as quoted by Shaquille O’Neal
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