
Tools and Methods

Track introduction

Tools you can use individually (part 1)

Bob Jacobsen September 2004Tools and Methods - Lecture 1

What do you need to do the job?

I need to calculate the sum of primes less than 100:

This is quick, throw-away code
• Not well structured, efficient, general or robust
• I understand what I intended, because I wrote it just now

Already, I need an editor, compiler, linker, and probably a debugger

intsumPrimes() {
intsum = 0;
for (inti=1; i < 100; i++) { // loop over possible primes

bool prime = true;
for (intj=1; j < 10; j++) { // loop over possible factors
if (i % j == 0) prime = false;

}
if (prime) sum += i;

}
return sum;

}

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Bob Jacobsen September 2004Tools and Methods - Lecture 1

“Don’t worry, I’ll remember
what I changed.”

“The answer looks OK, lets
move on.”

“Does anybody know where
this value came from?”

“Your #%@!& code broke
again!”

Projects come in different sizes

My sample program is a pretty small project!

Size (arbitrary units)

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

Size (arbitrary units)

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

Size (arbitrary units)

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Projects come in different sizes

A larger project may need a different approach
• Those tend to require more effort up front

What do you do when your project grows?

Size (arbitrary units)

Method 1
Method 2

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Projects come in different sizes

If you’re trying to solve a really large problem:

Size (arbitrary units)

Method 1
Method 2
Method 3

Bob Jacobsen September 2004Tools and Methods - Lecture 1

What has all this to do with us?

Our systems tend to be complex systems
• HEP tends to work at the limit of what we know how to do

“If you only have a hammer, wood screws look a lot like nails” - ??
“If you only have a screwdriver, nails are pretty useless” - Don Briggs

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Larger projects have standard ways of doing things

To make it possible to communicate, you need a shared vocabulary
• Standards for languages, data storage, etc.

For people to work together, you have to control integrity of source code
• E.g. CVS to provide versioning and control of source code

Just building a large system can be difficult
• Need tools for creating releases, tracking problems, etc.

Bob Jacobsen September 2004Tools and Methods - Lecture 1

But individual effort is still important!

Bob Jacobsen September 2004Tools and Methods - Lecture 1

You can’t build a great system
from crummy parts

You want your efforts to make a
difference

Good tools & methods can help
you do a better job

“Whatever you do may seem
insignificant, but it is most
important that you do it.” -
Gandhi

The Software Technologies Track

int sumPrimes() {
int sum = 0;
for (inti=1; i < 100; i++) { // loop over possible primes

bool prime = true;
for (intj=1; j < 10; j++) { // loop over possible factors
if (i % j == 0) prime = false;

}
if (prime) sum += i;

}
return sum;

}

Bob Jacobsen September 2004Tools and Methods - Lecture 1

A spectrum of places to improve:
• What you do in the next minutes
• What you do over the next years

Three basic themes:
• Individual tools & methods
• Working with existing code
• Building new systems

Plan for this week:

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Design

PackageNode
Task

Architectural Design

Scope: Processors,
packages, tasks

Class

Class

Class

Class

Class

attribute

operation

Mechanistic Design

Detailed Design

Scope: Classes

Scope: Groups of
collaborating classes

System architecture

Individual project

Specific task

“Design” is how you think about what you’re doing

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Design Levels: an analogy

Imagine the project is not to build software but to go on an
inter-planetary journey...

Architectural design

Mechanistic design

Detailed design

Bob Jacobsen September 2004Tools and Methods - Lecture 1

The Greasy
Spoon

Bill Watterson

decide which planet to fly to

select the flight path

choose where to have lunch

Architectural design

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Goals
• Capture major interfaces between
subsystems and packages early

• Be able to visualize and reason about the
design in a common notation

• Be able to break work into smaller pieces
that can be developed by different teams
(concurrently)

• Acquire an understanding of non-
functional constraints

programming languages and operating
systems

technologies: distribution, concurrency,
database, GUIs

component reuse

Architectural Design Qualities

Bob Jacobsen September 2004Tools and Methods - Lecture 1

A well designed architecture has certain qualities:

• layered subsystems

• low inter-subsystem coupling

• robust, resilient and scalable

• high degree of reusable components

• clear interfaces

• driven by the most important and risky use cases

• EASY TO UNDERSTAND

Mechanistic Design

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Specify the details of inter-object collaboration mechanisms

•Determine the structure of classes and their associations
Class diagram

•Determine the behavior of classes
Interaction diagrams

Collaboration

Sequence

•Target: The people working together
Over time & space

Class Diagram

Describes the types of objects in the
system and the various kinds of static
relationships that exist between them

Rational Software Corporation

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Building software is difficult

Bob Jacobsen September 2004Tools and Methods - Lecture 1

It cannot be learned from a book
• You have got to do it and make mistakes
• Only time will tell if the result is “good”

It is a creative activity
• And hence enjoyable
• Not always clear when you should stop

It requires experience
• After a while you will tend to be more cautious and less ambitious
• Try to keep it simple

You will remember past-project horror stories
Or am I just getting old?

Addressing these themes:

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Tools you can use

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Knowing what you’ve done - CVS

Knowing whether it works - JUnit

CVS Source Code Management

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Maintains a repository of text files
• Allows users to check in and check out changed text
• Old code remains available

Each checked-in change defines a new revision
You can retrieve, ask for differences with any of them

• Revisions can be tagged for easy reference
Similar in concept to RCS, CMS, other products

Big advantage: checkout is not exclusive
• More than one developer can have the same file checked out
• Developers can control their own use of the code for read, write
• Changes can come from multiple sources
• CVS handles (most) of the conflict resolution

Key tool for large collaborations!
• But also an important tool for individuals

Simple usage: checkout and update

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Getting a copy of the most recent contents of a package Foo:
cvs checkout Foo

Getting a copy of version (tag) V00-02-23 of a package Foo:
cvs checkout -r V00-02-23 Foo

These produce fully editable Foo directories, etc

To update a directory to the most recent contents:
cvs update -A

To see what an update will change, without actually changing
cvs -n update -A

Update flags:
• U update M modified A added
• C conflict ? unknown D deleted

Committing changes back to the repository

Bob Jacobsen September 2004Tools and Methods - Lecture 1

To put your changes back into the repository:
• Merge in any changes since your checkout

cvs update -A
• commit:

cvs commit

Many options:
• Specify comment for logs from command line
• Commit only one file
• Control processing of subdirectories

Possible failures
• Can’t get a temporary lock on the repository
• Conflict during update

Adding and removing files

Bob Jacobsen September 2004Tools and Methods - Lecture 1

To tell CVS a new file exists:
• First create the file, then

cvs add <name>
cvs commit

• Nothing changes in the repository until the commit

To tell CVS a file is no longer needed
• First delete the file, then

cvs rm <name>
cvs commit

• Nothing changes in the repository until the commit

Labeling particular contents for later

Bob Jacobsen September 2004Tools and Methods - Lecture 1

To add a particular label to certain contents:
• Make sure that everything is in the repository

cvs update
cvs commit

• Tell CVS to add a tag to the current contents
cvs tag <string>

Tags are an easy way to communicate with your colleagues
• “I just fixed that in jake20030924a, give it a try”
• This bug is back in V00-03-04, I thought it was fixed in V00-03-02”

Web based tools exist for seeing what changed, who changed it, etc

Conflict resolution & parallel development

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Its rare for developers to really conflict by changing the same line
• Usually only one person working on a particular piece of functionality
• And people working on the same thing should talk to each other!
• Conflicts happen most often during migrations of the code

When it happens, CVS can’t figure out how to cope
• Marks both sets of changed lines with markers

<<<<<<<<<<<<<<<<<
One content
=================
Other content
>>>>>>>>>>>>>>>>>

• User has to edit this to select one or other, or combine

Really not a significant problem
• Though we will provoke it during exercises

Behind the curtain

Bob Jacobsen September 2004Tools and Methods - Lecture 1

The repository contains *,v files
• Each contains some version info at the front,
• followed by the most recent contents
• followed by enough patch information to recreate old contents

Deleted files are stored in the “Attic” directory

Each CVS-controlled directory has a CVS subdirectory
• Contains various files used by CVS
• Don’t touch!

How CVS find changes

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Triple compare
• The contents you have now
• The contents you checked out
• The current contents of the repository

CVS calculates two sets of changes:
• From second and third, it finds changes to the repository
• From first and second, it finds your changes

So long as these don’t overlap, there’s no problem merging them in

CVS thinks that any change that it detects is deliberate
• If you edit a file to remove changes, it will let you check it in
• If you copy an old version into a directory, it will let you check it in

Since CVS does not tag the file contents, copying files from one directory to
another is a time-bomb

• CVS thinks it sees deliberate changes on commit, and the old version
become the “current contents”

What’s in it for you?

Science, medicine, even football use a notebook as a basic tool
• What you did when
• Why you did it
• What happened then

Bob Jacobsen September 2004Tools and Methods - Lecture 1

CVS can provide that

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Commit, tag, update operations are cheap, logged, carry comments

Use that as your record of progress
• Commit each piece as you do it
• Spend a couple seconds on a useful comment

“Added undo tool, next will use it from Frabitzoid”
“Now conserves momentum”
“Now ready for energy test cases”

Use tags to capture important states
• Tag each time it’s basically working

cvs tag jake-copy-works
• Tag to share with a coworker

cvs tag jake20030828a

Not a heavyweight action!

Now what have I done?

It worked just minutes ago…
cvs diff Foo.java

• Can also do entire directories, etc.

How did I do that last time?
cvs diff -D 6-Jun-2004 -D 12-Jun-2004
cvs diff -r 1.2 -r 1.3
cvs diff -r jake-copy-works -r jake-added-mass

Bob Jacobsen September 2004Tools and Methods - Lecture 1

OK, that was a bad idea
Everybody makes mistakes

• Key question: how hard to fix them?

Can remove changes:
• cvs update -j jake-this-works -j jake-messed-it-up

Even if there are more recent changes!
• CVS uses its three-file diff method to do this
• If there are conflicts, you’ll have some hand edits to do

Don’t forget to commit the resulting changes back!

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Toward an informed way of experimental working

These techniques remove the cost from small, experimental changes
• Allows you to make quick progress on little updates
• Without risk to the big picture

How do you know those steps are progress?

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Testing

But don’t you see Gerson - if the particle is too small and too short-lived to
detect, we can’t just take it on faith that you’ve discovered it.”

Bob Jacobsen September 2004Tools and Methods - Lecture 1

The role of testing tools

Remember our original example:
• Simple routine, written in a few minutes
• “So simple it must be right”

Bob Jacobsen September 2004Tools and Methods - Lecture 1

intsumPrimes() {
intsum = 0;
for (inti=1; i < 100; i++) { // loop over possible primes

bool prime = true;
for (intj=1; j < 10; j++) { // loop over possible factors
if (i % j == 0) prime = false;

}
if (prime) sum += i;

}
return sum;

}

But its not right...

"Study it forever and you'll still wonder. Fly it once and you'll know.”
- Henry Spencer

How to test?

Simplest: Run it and look at the output
• Gets boring fast!
• How often are you willing to do this?

More realistic: Code test routines to provide inputs, check outputs
• Can become ungainly

Most useful: A test framework
• Great feedback
• Better control over testing

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Testing Frameworks: CppUnit, Junit, et al

Bob Jacobsen September 2004Tools and Methods - Lecture 1

To test a function:
public class FindVals{

// Test whether an number is a square

boolean isSquare(intval) {

double root = Math.floor(Math.pow(val, 0.5));

if (Math.abs(root*root -val) < 1.E-6) return true;

else return false;

}

}

You write a test:
public void testIsSquare() {

FindVals s = new FindVals();

Assert.assertTrue(s.isSquare(4));

}

Plus tests for other cases…

Invoke a function

Check the result

Embed that in a framework

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Gather together all the tests
// define test suite

public static Test suite() {

// all tests from here down in heirarchy

TestSuite suite = new TestSuite(TestFindVals.class);

return suite;

}

Start the testing
• To just run the tests: junit.textui.TestRunner.main(TestFindVals.class.getName());
• Via a GUI: junit.swingui.TestRunner.main(TestFindVals.class.getName());

And that’s it!

Junit uses class
name to find tests

Invoke tests for my class

Running the tests

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Running the tests

Bob Jacobsen September 2004Tools and Methods - Lecture 1

How JUnit works - one test:

Bob Jacobsen September 2004Tools and Methods - Lecture 1

public void testOneIsPrime() {
SumPrimes s = new SumPrimes();
Assert.assertEquals("check sumPrimes(1)", 1, s.sumPrimes(1));

}

This defines a “method” (procedure) that runs one test (line 1 and 4)
• JUnit treats as a test procedure any method whose name starts with “test”
• The tests will be run in the order they appear in the file

Line 2 creates an object “s” to be tested

Line 3 checks that sumPrimes(1) returns a 1
Assert is a class that checks conditions
assertEquals(“message”, valueExpected, valueToTest) does the check
If the check fails, the message and observed values are displayed

If the check fails:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Other views:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Demo

Bob Jacobsen September 2004Tools and Methods - Lecture 1

Why?

Bob Jacobsen September 2004Tools and Methods - Lecture 1

One test isn’t worth very much
• Maybe saves you a couple seconds once or twice

But consistently building the tests as you build the code does have value
• Have you ever broken something while fixing a bug? Adding a feature?

Tests remember what the program is supposed to do
• A set of tests is definitive documentation for what the code does
• Alternating between writing tests and code keeps the work incremental

Keeping the tests running prevents ugly surprises
• And its very satisfying!

“Extreme Programming” advocates
writing the tests before the code

• Not clear for large projects
• But individuals report good results

Size (arbitrary units)

XP claim
Traditional

The art of testing

Bob Jacobsen September 2004Tools and Methods - Lecture 1

What makes a good test?
• Not worth testing something that’s too simple to fail
• Some functionality is too complex to test reliably
• Best to test functionality that you understand, but can imagine failing

If you’re not sure, write a test
If you have to debug, write a test
If somebody asks what it does, write a test

How big should a test be?
• A JUnit test is a unit of failure

When a test fails, it stops
The pattern of failures can tell you what you broke

• Make lots of small tests so you know what still works

What about existing code?
• Probably not practical to sit down and write a complete set of tests
• But you can write tests for new code, modifications, when you have a
question about what it does, when you have to debug it, etc

Summary 1

Bob Jacobsen September 2004Tools and Methods - Lecture 1

The principle of ‘I think, therefore I am’, does not apply to high quality software. -
Malcolm Davis

In art, intentions are not enough. What counts is what one does, not what one
intends to do. - Pablo Picasso

Excellence is not a single act, but a habit. You are what you repeatedly do. -
Aristotle, as quoted by Shaquille O’Neal

	Tools and Methods
	What do you need to do the job?
	
	Projects come in different sizes
	Projects come in different sizes
	Projects come in different sizes
	Projects come in different sizes
	Projects come in different sizes
	What has all this to do with us?
	Larger projects have standard ways of doing things
	But individual effort is still important!
	The Software Technologies Track
	Plan for this week:
	Design
	Design Levels: an analogy
	Architectural design
	Architectural Design Qualities
	Mechanistic Design
	Class Diagram
	Building software is difficult
	Addressing these themes:
	Tools you can use
	CVS Source Code Management
	Simple usage: checkout and update
	Committing changes back to the repository
	Adding and removing files
	Labeling particular contents for later
	Conflict resolution & parallel development
	Behind the curtain
	How CVS find changes
	What’s in it for you?
	CVS can provide that
	Now what have I done?
	OK, that was a bad idea
	Toward an informed way of experimental working
	Testing
	The role of testing tools
	How to test?
	Testing Frameworks: CppUnit, Junit, et al
	Embed that in a framework
	Running the tests
	Running the tests
	How JUnit works - one test:
	If the check fails:
	Other views:
	Demo
	Why?
	The art of testing
	Summary 1

