
Introduction To Software Engineering

With thanks to Bob Jones for ideas and illustrations

Bob Jacobsen September 2004Tools and Methods 3

Two recurring terms: “Processes” and “Models”

Bob Jacobsen September 2004Tools and Methods 3

A Process:
• A set of partially ordered steps intended to reach a goal
• In software engineering the goal is to build or enhance a software product
• Defines who is doing what, when and how to reach a certain goal - Ivor Jacobson

A Model:
• A model is a description of a system from a particular perspective
• Models are created as part of the defined process

“Why do we have to formalize these?”

Scale and process:
Building a dog house

• Can be built by one person

• Minimal plans

• Simple process

• Simple tools

• Little risk

Rational Software Corporation

Bob Jacobsen September 2004Tools and Methods 3

Scale and process:
Building a family house

• Built by a team
• Models

• Simple plans, evolving
to blueprints

• Well-defined process
• Architect
• Planning permission
• Time-tabling and

Scheduling
• ...

• Power tools
• Considerable risk

Rational Software Corporation

Bob Jacobsen September 2004Tools and Methods 3

Scale and process:
Building a skyscraper

• Built by many companies
• Modeling

• Simple plans, evolving to
blueprints

• Scale models
• Engineering plans

• Well-defined process
• Architectural team
• Political planning
• Infrastructure planning
• Time-tabling and

scheduling
• Selling space

• Heavy equipment
• Major risks Rational Software Corporation

Bob Jacobsen September 2004Tools and Methods 3

Why do software projects fail?
Even if you do produce the code it does not guarantee that the project will
be a success

There are many other factors (both internal and external) that can affect
the success of a project...

Bob Jacobsen September 2004Tools and Methods 3

Communication explosion

More people means more time communicating which means more
misunderstandings and less time for the software

Bob Jacobsen September 2004Tools and Methods 3

Why software projects fail...

Analysis and design can catch such misunderstandings

Misunderstandings between users/developers/sponsors

Bob Jacobsen September 2004Tools and Methods 3

Why software projects fail...

Bob Jacobsen September 2004Tools and Methods 3

Gary Larson

Undefined responsibilities

“Hey... this could be the chief”

Project planning can help
identify needed responsibilities

Why software projects fail...

Bob Jacobsen September 2004Tools and Methods 3

Gary Larson

Missed user requirements

Write down and discuss
requirements with the users

Iterate to get them right

Why software projects fail...

Bob Jacobsen September 2004Tools and Methods 3

Gary Larson

Badly defined interfaces

Fumbling for his recline
button, Bob unwittingly instigates a
disaster

Spend the time to design
and test good interfaces

Why software projects fail...

Bob Jacobsen September 2004Tools and Methods 3

Creeping featurism

“No, no… Not this one. Too many bells and
whistles”

Focus on what the users are
asking for, not what the
developers think is cool

Gary Larson

Why software projects fail...

Bob Jacobsen September 2004Tools and Methods 3

Gary Larson

Unrealistic goals

“It’s time we face reality, my friends… We’re
not exactly rocket scientists”

Analysis and design would make it
clear the project is not feasible

R. Brun

The life time of HEP software

Software is a long-term commitment
Users like stable and maintained systems

Vote with their feet

It takes time to develop a new system

• Geant3 6+ yrs 3 people 300 KLOCs
• PAW 6+ yrs 5 people 300
• Zebra 4+ yrs 2 people 100
• ROOT 5* yrs 3 people 630
• Working system after 1 year.

Real work is after that !!

Many releases of the software are needed over its lifetime
to fix bugs, add new features, support new platforms etc

Bob Jacobsen September 2004Tools and Methods 3

How do we cope?

We try to find a way of working that leads to success
• We create a “process” for building systems
• We devise methods of communicating and record keeping: “models”
• We use the best tools & methods we can lay our hands on

And we engage in denial:

Bob Jacobsen September 2004Tools and Methods 3

So many software processes!

Bob Jacobsen September 2004Tools and Methods 3

“OMT”, “Booch”, “Objectory”, “Unified”,…

People have been defining and promoting processes for decades
• Millions of books sold & conference talks given

But, much commonality between them:
• Process stages

Plan and Elaborate, Build, Deploy
• Iterative software development

Plan & Elaborate - define scope of project and justify its need
plan project, specify features & baseline architecture

Build - construct the project

Deploy - move the software to the users site

• Models constructed
Use cases, class diagrams, interaction diagrams, …

The Unified Software Development Process

Bob Jacobsen September 2004Tools and Methods 3

Published in 1998 (http://www.rational.com)
Key concepts

• Iterative
• Architecture-centric
• Use-case driven
• Risk confronting

Describes a list of tasks to follow to develop software
• Not all tasks are required for or even applicable for all development projects

http://www.rational.com/

How do we represent the development process?

Bob Jacobsen September 2004Tools and Methods 3

Through models
• The language of the designer
• Representations of the system that allow reasoning about some

characteristic of the real system
• Vehicle for communications with various stakeholders
• Visual

Through views
• View = simplified model (slice of model)
• An architectural view is an abstraction of a system from a particular

perspective or vantage point, covering particular concerns, and omitting
entities that are not relevant to this perspective

How do we document models and views?

Bob Jacobsen September 2004Tools and Methods 3

Use a standard language and diagramming method
• Unified Modelling Language (UML)
• Standardized by the Object Management Group (OMG) in 1997

http://www.omg.org
• A(nother) language for representing a sw. dev. process

Booch, Rumbaugh, etc all defined their own languages before UML
• UML is “process independent“

it is a language for modelling, it does not define how to use the language to assist
in software development

For more information see book
UML Distilled (2nd. Edition)
Martin Fowler et al, Addison-Wesley,
1999

http://www.omg.org/

Overview of UML

The UML is a language for

• Visualizing

• Specifying

• Constructing

• Documenting

Covers all phases of software development process

Communicating

Bob Jacobsen September 2004Tools and Methods 3

What do people communicate with UML?

Bob Jacobsen September 2004Tools and Methods 3

Requirements of a software system
• Use Cases

Structure/Architecture of a software system
• Class diagrams / (Object diagrams)

Views that emphasize concepts, specifications, implementation
• Deployment diagrams
• Component/package diagrams

Dynamic behavior of a software system
• Sequence/Interaction (Collaboration) diagrams
• State charts
• Activity diagrams

UML Diagram Types

Use Case
DiagramsUse Case

DiagramsUse Case
Diagrams

Scenario
DiagramsScenario

DiagramsCollaboration
Diagrams

State
DiagramsState

DiagramsComponent
Diagrams

Component
DiagramsComponent

DiagramsDeployment
Diagrams

State
DiagramsState

DiagramsObject
Diagrams

Scenario
DiagramsScenario

DiagramsStatechart
Diagrams

Use Case
DiagramsUse Case

DiagramsSequence
Diagrams

State
DiagramsState

DiagramsClass
Diagrams

Activity
Diagrams

Models

Rational Software Corporation

Bob Jacobsen September 2004Tools and Methods 3

Requirements: What do we need to build?

Initial description of needs/desires of a product

• Overview statement

• Customers/users

• Goals

• System functions - what is the system supposed to do?

• System attributes - what are desirable qualities of the system?

Bob Jacobsen September 2004Tools and Methods 3

Capturing functional requirements with use cases

Captures system functionality as seen by users

Actor Association

Use Case

A typical interaction between a user and the system under development

Bob Jacobsen September 2004Tools and Methods 3

Use Cases

Bob Jacobsen September 2004Tools and Methods 3

“Narrative document describing the sequence of events of an actor (external agent)
using a system to complete the process” -Ivar Jacobson

• Not requirements or functional specifications, but they imply requirements

High-level use case format
Use Case: Create reduced data
Actors: Physicist
Type: primary (secondary/optional)
Description: The physicist provides a reduction routine to be run, and selection criteria

for the input data. The processing is done without further interaction, and
when completed the reduced output is available to be selected for further
processing.

What does this buy us?

Bob Jacobsen September 2004Tools and Methods 3

Use cases & the discussion surrounding their creation:

• Provide a high-level description for discussion with stakeholders

• Ensure that the requirements of the system are captured

• Help decompose tasks into small manageable entities

• Drive the conceptual/object model construction

• Ensure that important requirements are tackled early

The physicist provides a reduction routine to be run, and selection criteria
for the input data. The processing is done without further interaction, and
when completed the reduced output is available to be selected for further processing.

Ranking use cases

Bob Jacobsen September 2004Tools and Methods 3

• Is this a main purpose of the system?

Primary - major tasks

Secondary - minor or rare tasks

Optional - tasks that may be tackled

• Some other factors:

Does the use case impact the overall architectural design?

Is insight obtained with little effort?

Is the use case risky, time critical or complex?

Use case summary

Bob Jacobsen September 2004Tools and Methods 3

Use cases are part of the analysis phase

• Emphasize what rather than how

Use cases help lead to real functional requirements

• Good starting point

• Not performance & environmental constraints, etc. (see Contracts)

Use cases help scheduling

• Determine focus of project iterations and development

Use cases remain a focus as you develop

• “Can I do this one yet?”

Capturing structure with deployment diagrams

Bob Jacobsen September 2004Tools and Methods 3

Shows the “configuration of run-time processing elements with the

software components, processes and objects that live on them”

Includes
• Communication associations (networks)
• Nodes (processors)
• Components (software packages)

components can depend on other components
components can show objects

Often called system “architecture”

Architectural Design Qualities

Bob Jacobsen September 2004Tools and Methods 3

A well designed architecture has certain qualities:

• Clear interfaces

• Layered subsystems

• Low inter-subsystem coupling

• Robust, resilient and scalable

• High degree of reusable components

• Driven by the most important and risky use cases

• EASY TO UNDERSTAND

Example Deployment Diagram

Bob Jacobsen September 2004Tools and Methods 3

Node

Component

Link
Dependency

Object

Process Summary

Choice of process depends on scale of problem
A process is a (partially ordered) set of tasks to develop and deploy a
software system
The process should be

• iterative & architecture centric
• use-case driven & risk confronting

The Unified Modeling Language is a common/standard way to document
the models and views of the process

Don’t become a process evangelist!

Bob Jacobsen September 2004Tools and Methods 3

In closing,

When Boeing wanted to design the 747, they had two choices:

1. Hire “SuperEngineer”, who could do it by alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

Why?

What can we learn from this?

Bob Jacobsen September 2004Tools and Methods 3

Bob Jacobsen September 2004Tools and Methods 3

But the problems
just keep on coming….

Design

Specify the details of inter-object collaboration mechanisms

•Determine the structure of classes and their associations
Relationships of access, ownership, authority

•Determine the behavior of classes
E.g. Interactions with other objects

Collaboration

Sequence

How do we record and

communicate this?

Bob Jacobsen September 2004Tools and Methods 3

UML Diagrams

Use Case
DiagramsUse Case

DiagramsUse Case
Diagrams

Scenario
DiagramsScenario

DiagramsCollaboration
Diagrams

State
DiagramsState

DiagramsComponent
Diagrams

Component
DiagramsComponent

DiagramsDeployment
Diagrams

State
DiagramsState

DiagramsObject
Diagrams

Scenario
DiagramsScenario

DiagramsStatechart
Diagrams

Use Case
DiagramsUse Case

DiagramsSequence
Diagrams

State
DiagramsState

DiagramsClass
Diagrams

Activity
Diagrams

Models

Bob Jacobsen September 2004Tools and Methods 3

Class Diagram

Describes the types of objects in the
system and the various kinds of static
relationships that exist between them

Rational Software Corporation

Bob Jacobsen September 2004Tools and Methods 3

Example Class Diagrams

LHC++/Anaphe:
Event structure as defined in DDL file for

populateDb exercise

Cluster

phi : double
theta : double
energy : double

getPhi() : double
getTheta() : double
getEnergy() : double

Calo

/ clusters : integer

getNoOfClusters() : integer

0..# clusters

clusters

1

Track

phi : double
theta : double
pt : double

getPhi() : double
getTheta() : double
getPt() : double

Tracker

/ tracks : integer

getNoOfTracks() : integer

0..# tracks

tracks

1

Event

eventNo : integer

getEventNo() : integer

1

1
1

1

trackercalo

ROOT:
Histogram classes

Bob Jacobsen September 2004Tools and Methods 3

Sequence Diagram

Captures dynamic behavior (time-oriented)
• Model flow of control
• Illustrate typical scenarios

Rational Software Corporation

Bob Jacobsen September 2004Tools and Methods 3

Example Sequence diagram

LHC++/Anaphe: scenario for createTag exercise with 1 event and 2 tracks

eventNo:=getEventNo()

getPlus(phiPlus,ptPlus,
phiMinus,ptMinus)

evt1:Event trk1:Track trk2:TrackmyApp:CreateTagsApp

run()

getPt()

getPhi()
getPt()

getPhi()

tag1:Tag
create(eventNo,phiPlus,ptPlus,

phiMinus,ptMinus)

Bob Jacobsen September 2004Tools and Methods 3

Collaboration Diagram
Captures dynamic behavior (message-oriented)

• Model flow of control
• Illustrate coordination of object structure and control

Rational Software Corporation

Bob Jacobsen September 2004Tools and Methods 3

Example Collaboration Diagram
LHC++/Anaphe: messages between classes for CreateTag exercise

:CreateTagsApp
:Event

:Tag :Track

1* for all events:
getPlus(phiPlus,ptPlus,
 phiMinus,ptMinus);
eventNo := getEventNo()

3* for all events:
create(phiPlus,ptPlus,phiMinus,

ptMinus,eventNo) 2* for all tracks: getPt(); getPhi()

run(): integer

Bob Jacobsen September 2004Tools and Methods 3

“So is field theory”
• Which is physicist-speak for “I don’t get it either, so I’ll call it ‘trivial’”

“It’s just notation”
• The notation is complicated because it’s representing a complicated thing

“These are complicated”

“Yes, and how do we know they’re right?”
• That’s the key question.

Bob Jacobsen September 2004Tools and Methods 3

This is where iterative development comes in…

Imagine the project is not to build software but a bridge…
Initial Requirements: A to B

B A

Bob Jacobsen September 2004Tools and Methods 3

Iteration I

Meets primary requirement: A to B
Basic architecture is in place
Single user version
Can only be used in winter
Not very safe

Bob Jacobsen September 2004Tools and Methods 3

Iteration II

Bob Jacobsen September 2004Tools and Methods 3

New requirements:
• Works in the summer
• Multi-user

Same basic architecture but different
technology
Multi-user version!
Can be used all year round

Iteration III

Bob Jacobsen September 2004Tools and Methods 3

New requirements
• more stable and safe

Same architecture and technology
More solid construction
Extra security

Iteration V

Bob Jacobsen September 2004Tools and Methods 3

New requirements
• Protected from the rain
• Two-way

Same architecture with improved
technology
Protected from environment (at least
from above)
Bi-directional

Iteration VI

Bob Jacobsen September 2004Tools and Methods 3

New requirements:
• “I want to move house to B”

Same basic architecture but advanced
technology
Can carry other goods

Iteration VII

Bob Jacobsen September 2004Tools and Methods 3

New requirements:
• “I want to be able to use my car and

let ships go by”
Multi-purpose

Successful Development Program!

Bob Jacobsen September 2004Tools and Methods 3

Analogy shows successful iterations:
• The basic product existed from the first iteration and met the primary requirement:

A to B
• Early emphasis on defining the architecture
• Basic architecture remained the same over iterations
• Extra functionality/reliability/robustness was added at each iteration
• Each iteration required more analysis, design, implementation and testing
• Use case (requirements) driven

does what the users want - not what the developers think is cool

Some limits to analogy:
It took people centuries to figure out how to build big bridges

And we developed engineering processes to do the big ones!
Little of the early cycles survived in final one

How to pick what goes in the next iteration?

Bob Jacobsen September 2004Tools and Methods 3

Choice of additions for an iteration is risk driven

• Early development focuses on components with the highest risk and

uncertainty

Avoids investing resources in a project that is not feasible

• But it has to do something basically useful

So all involved will take it seriously

Bad outcomes I

Bob Jacobsen September 2004Tools and Methods 3

Does not go from A to B
Went for “full functionality” from the start

• Big bang approach
• Face too much complexity at the start

Users/sponsors got cold feet?
• Ran out of resources, patience

or enthusiasm
Requirements have long since changed

• no feedback from users since never used

Sounds like the traditional “one-pass” approach?

Bad outcome II

Bob Jacobsen September 2004Tools and Methods 3

Does not go from A to B any more
Insufficient testing?
Unstable environment?
Lack of routine maintenance?
Too many concurrent users?

Went straight to the code?

Legacy systems

Bob Jacobsen September 2004Tools and Methods 3

Still goes from A to B
Been in use for a long time
Difficult to determine the original architecture
The original development team are no longer
around
No documentation
Lots of inconsistencies resulting from later
additions made with insufficient analysis and
design

Advantages of Iterative and Incremental Development

Bob Jacobsen September 2004Tools and Methods 3

Complexity is never overwhelming
Only tackle small bits at a time
Avoid analysis paralysis and design decline

Early feedback from users
Provides input to the analysis of subsequent iterations

Developers skills can grow with the project
Don’t need to apply latest techniques/technology at the start
Get used to delivering finished software

Requirements can be modified
Each iteration is a mini-project (analysis, design….)

Note that these benefits come from completing, deploying and using the iterations!

Detailed design

Bob Jacobsen September 2004Tools and Methods 3

Important step just before coding
• maps to code in the chosen programming language

Determine the structure of an object’s information and it’s manipulation
• data structures (attributes)
• implementation of associations
• sets of operations defined for the data (methods)
• visibility of data and operations

(C++: private, protected, public)
• Error handling techniques (e.g. exceptions thrown)

Bob Jacobsen September 2004Tools and Methods 3

Associations

Implementation depends on nature and locality
objects in the same thread, different processes or machines
persistent or transient
cardinality of association

Mix of tasks, threads and comms.

X-Events()

Dat
a

Statu
s

Logger
1

GUI

Event Loop
Exec

Command

Comman
d

Analysis task Display task

X
timer

G
ra

p
h

ic
s

Objects Objects

c
a

n
c

e
l/r

e
st

a
rt

Draw

DAQ Logger
2

Examples

class testAssoc {
T t1; // 1-to-1 only
T* t2; // 1-to-1 & 1-to-(0,1)
list<T> t3; // 0-to-n STL container
TList *tracks; t4; // 0-to-n ROOT container
d_vector<T> t5; // 0-to-n Objy container
};

Operations

Mapping of methods from design to
code may change according to code
ownership, dynamics and practicality

eventNo:=getEventNo()

getPlus(phiPlus,ptPlus,
phiMinus,ptMinus)

evt1:Event trk1:Track trk2:TrackmyApp:CreateTagsApp

run()

getPt()

getPhi()
getPt()

getPhi()

tag1:Tag
create(eventNo,phiPlus,ptPlus,

phiMinus,ptMinus)

design

implementation

eventNo:=getEventNo()

evt1:Event trk1:Track trk2:TrackmyApp:CreateTagsApp

run()

getPt()

getPhi()
getPt()

getPhi()

tag1:Tag

create(eventNo,phiPlus,ptPlus,
phiMinus,ptMinus)

Bob Jacobsen September 2004Tools and Methods 3

Bob Jacobsen September 2004Tools and Methods 3

Class definitions

Difference between design class diagram and
implementation

Cluster

phi : double
theta : double
energy : double

getPhi() : double
getTheta() : double
getEnergy() : double

Calo

/ clusters : integer

getNoOfClusters() : integer

0..# clusters

clusters

1

Track

phi : double
theta : double
pt : double

getPhi() : double
getTheta() : double
getPt() : double

Tracker

/ tracks : integer

getNoOfTracks() : integer

0..# tracks

tracks

1

Event

eventNo : integer

getEventNo() : integer

1

1
1

1

trackercalo

designimplementation
Reverse engineered from LHC++/Anaphe
Event.ddl using Together/C++ CASE tool

Lecture summary

Bob Jacobsen September 2004Tools and Methods 3

Software engineering is the art of building complex computer systems

It’s ideas and techniques spring from our need to handle size & complexity

As you do your own work & develop your own skills, consider:
• How your effort effects or contributes to things 10X, 100X, 1000X larger
• How you’ll do things different/better when it’s your problem

Exercise 8 is way to consider some of these ideas in context
• Adding some minor functionality to an existing system

Today’s Exercises

Bob Jacobsen September 2004Tools and Methods 3

6) Demonstration of profiling tools
7) Practice tuning a small application

8) Project: Add a new feature to an existing program

Instruction sheets are available via web browser at
file:/home/jake/index.html

	Introduction To Software Engineering
	Two recurring terms: “Processes” and “Models”
	Scale and process:Building a dog house
	Scale and process:Building a family house
	Scale and process:Building a skyscraper
	Why do software projects fail?
	Communication explosion
	Why software projects fail...
	Why software projects fail...
	Why software projects fail...
	Why software projects fail...
	Why software projects fail...
	Why software projects fail...
	The life time of HEP software
	How do we cope?
	So many software processes!
	The Unified Software Development Process
	How do we represent the development process?
	How do we document models and views?
	Overview of UML
	What do people communicate with UML?
	UML Diagram Types
	Requirements: What do we need to build?
	Capturing functional requirements with use cases
	Use Cases
	What does this buy us?
	Ranking use cases
	Use case summary
	Capturing structure with deployment diagrams
	Architectural Design Qualities
	Example Deployment Diagram
	Process Summary
	In closing,
	But the problemsjust keep on coming….
	Design
	UML Diagrams
	Class Diagram
	Example Class Diagrams
	Sequence Diagram
	Example Sequence diagram
	Collaboration Diagram
	Example Collaboration Diagram
	“These are complicated”
	This is where iterative development comes in…
	Iteration I
	Iteration II
	Iteration III
	Iteration V
	Iteration VI
	Iteration VII
	Successful Development Program!
	How to pick what goes in the next iteration?
	Bad outcomes I
	Bad outcome II
	Legacy systems
	Advantages of Iterative and Incremental Development
	Detailed design
	Associations
	Operations
	Class definitions
	Lecture summary
	Today’s Exercises

