Introduction To Software Engineering

Dithert By Scott Adams

I'D LIKE TO START
WITH A CARTOON.

www.dilbert.com

scottadams@aol.com

ITS ABOOT A GUY
WHO SHOWS A
CARTOON BEFORE
GIVING A BCORING
PRESENTATION.

\{

Tl]

3:"'{?? © 1999 United Feature Syndicate. tnc.

BUT 1T DOESN'T
WORK, BECAUSE
THE CARTOON HAS
NO PUNCHLINE .

With thanks to Bob Jones for ideas and illustrations

Tools and Methods 3

Bob Jacobsen September 2004

Two recurring terms: “Processes” and “Models”

A Process:

* A set of partially ordered steps intended to reach a goal

* In software engineering the goal is to build or enhance a software product

* Defines who is doing what, when and how to reach a certain goal - Ivor Jacobson
A Model:

» A model is a description of a system from a particular perspective

* Models are created as part of the defined process
“Why do we have to formalize these?”

s

BEFORE I ACCEPT THE SOFT-
WARE YOU WROTE UNDER

WE HOLD WILLAGE MEET-
INGS TO BOAST OF OUR

AT THE LAST MINUTE
WE SLAM OUT SOME

3
CONTRACT, TELL ME WHAT |3] SKILLS AND CURSE THE CODE AND (T (UOULD FIND
DEVELOPMENT METHODOLOGY|Z| DEVIL-SPALINED END- GO ROLLER | TWTS HUMOROUS
YOU USE. E UE:EF:aE.. (SOMETIMES LIE SKATING. | TF NOT FOR THE
3 | JTEJGGLE._‘[_'_ i- PIG OM MY BALK
: Y

o5 Aedpans

Adanfas ® 1988 United Feature Syndicaie. Ine. (NYC)

Tools and Methods 3 Bob Jacobsen September 2004

Scale and process:
Building a dog house

e (Can be built by one person
e Minimal plans

e Simple process

e Simple tools

e Little risk

Rational Software Corporation

Tools and Methods 3 Bob Jacobsen September 2004

Scale and process:
Building a family house

Tools and Methods 3

Built by a team

Models
e Simple plans, evolving
to blueprints
Well-defined process
e Architect
e Planning permission
e Time-tabling and
Scheduling

Power tools
Considerable risk

Rational Software Corporation

Bob Jacobsen September 2004

Scale and process:
Building a skyscraper

e Built by many companies

e Modeling
e Simple plans, evolving to
blueprints

e Scale models

e Engineering plans

e Well-defined process

e Architectural team

e Political planning

e Infrastructure planning

e Time-tabling and
scheduling

e« Selling space

e Heavy equipment

° Maj()r risks Rational Software Corporation

Tools and Methods 3 Bob Jacobsen September 2004

Why do software projects fail?

Even if you do produce the code it does not guarantee that the project will

be a success

There are many other factors (both internal and external) that can affect

the success of a project...

GALVIN AND HOBBES » Bill Walterson

ey

|
!
-

Tools and Methods 3

Lo Chth SOMETHING SEE'H‘L‘
= PLAUSIELE AT TVE TIME:

Al S0 1DHGTIC . b
RETROSFECT 7 j_/—"

la GLAE BV
-

T
s
=l
™

Bob Jacobsen September 2004

Communication explosion

More people means more time communicating which means more
misunderstandings and less time for the software

Chris Youy L Arbaric Skl
Deguty Fronk Frtar “oa
Wanagar
1 1 1 1 1
Bicts Joactean Chorlses YoungTonigue Boutigny | | Andy LonkicrdMaurn Morandin Pl Fsdras
off.Ling Coordinclor onling Coordinplor Toals

Tovn Gowdy John LoSem Wika Hufler Wark#lams
i Depul s siont Producion Manager i Doka Fiow Webmasier
| Ed Frark hris Homkas [ersgory pubar Fatsnom

R Maregar sl by ASSLrae’oC & Evart Procassing Fackat video
| Bl Lodkman | Walkr Tokl | Tom Glanzman Aoz K

Sm sanagar Do Manoger Prompt Rem Diskiop Suppor
| Dod Cugmie [Dominique Bouigry | Gy AbruTe

Detbena Manager Detn Distritaion Confred
Cuug Johreon | Do B
Relcane Managar Cal bration
Gaular Haned de sonchan oot hall Gedes

[Fisics Tecks Archiso i Aun Carim
| [¥ury Hoomaresy | Ell Fansanbarg

Physirs Contoet Fidlpase Manager

I I [1

h
e

T JUST HEARD THAT ALL
OUR TOP EXECUTIVES
GOT LOCKED IN A
CONFERENCE ROOM AND
STARNED. TO DEATH.

www_difherl.com

iy

Tools and Methods 3

5 Ak s

LIHY DIDM'T THEY
USE THE PHOME TO
CALL FOR HELPT

ONE WEEK AGO. ..

Syndicals, Ine.

ulhrﬂg & 198 United Faalure

ITS AGREED:
WE DIAL
8.3 TO GET
AW OUTSIDE

UH-OH.
THIS ONE

DOESNT DO
DECIMALS.

Bob Jacobsen September 2004

Why software projects fail...

Misunderstandings between users/developers/sponsors

MEN ARE
FROM MARS,

Women, Are’

from Venus
& Prnchod e e

[armrgrschon o
Mard s o

excited suicidal][IHH EHM Fh-.[].
How to recognize the moods of an Irish setter

Analysis and design can catch such misunderstandings

Tools and Methods 3 Bob Jacobsen September 2004

Why software projects fail...

Undefined responsibilities

“Hey... this could be the chief”

Project planning can help
Identify needed responsibilities

Tools and Methods 3

Bob Jacobsen September 2004

Why software projects fail...

Missed user requirements

Write down and discuss
requirements with the users

Iterate to get them right

Tools and Methods 3

Bob Jacobsen September 2004

Why software projects fail...

Badly defined interfaces

Fumbling for his recline
button, Bob unwittingly instigates a
disaster

Spend the time to design
and test good interfaces

Tools and Methods 3

ot ".:: :\-'i ;-.- B v-'\-.-'-\.-
S e e
A et R -:-:-"'ﬁ ;‘2
o

P R

""':":"""‘:“'i-:"?h-::--:.«.a..:.,
b

B
A
Hidoan .«.,‘:,,-’:_:h

- MINBS

b

:ET."'I"'C f}ﬂ .‘"‘

"'\..-'\..:. Sl

¢ FALL OFF i3

‘:’h‘:’.&.vﬁﬁ A

ol L {
ot e
Lo MM¢h¢ﬁ$+'{ﬁ'{+{?+x+ﬁ¢\'+i el v
l:‘WWanv.&v.mv.}v.pH..:-}h
;’Jﬁ{;ﬂ#ﬂ#‘:#%ﬁavav.@x.@d-}-\',-:--:-h.&-.\.:} e
e
e
i g:--:-x-:-:-:#gﬁ'ﬁ :--:-.-:d-.vb.wwqu.y-}x-}xﬂ
R

+‘:“7'-':':'-}'-'1-"Q+W+h¢3 R A A

Bob Jacobsen September 2004

Why software projects fail...

Creeping featurism

“No, no... Not this one. Too many bells and
whistles”

Focus on what the users are
asking for, not what the
developers think is cool

&

~—
<" '$6ary Larson

Tools and Methods 3 Bob Jacobsen September 2004

Why software projects fail...

Unrealistic goals

“It’s time we face reality, my friends... We’re
not exactly rocket scientists”

Analysis and design would make it
clear the project is not feasible

Tools and Methods 3 Bob Jacobsen September 2004

R. Brun

The life time of HEP software

Software is a long-term commitment

Users like stable and maintained systems N Deliverables
Vote with their feet

It takes time to develop a new system
* Geant3 6+ yrs 3 people 300 KLOCs

* PAW 6+ yrs 5 people 300

e Zebra 4+ yrs 2 people 100

ROOT 5* yrs 3 people 630

Working system after 1 year.

Real work is after that !!

Many releases of the software are needed over its lifetime
to fix bugs, add new features, support new platforms etc

Tools and Methods 3 Bob Jacobsen September 2004

How do we cope?

We try to find a way of working that leads to success
» We create a “process” for building systems
» We devise methods of communicating and record keeping: “models”
» We use the best tools & methods we can lay our hands on

And we engage in denial:

p=
HERE'S WHAT I
DOMNT UNMDER-
5TAND

B ————
YOU TJUST ASKED ME
TO FOLLOW A

PROCESS THAT HAS

AT GHAT POINT
CAN THIS NO
LONGER BE CP..LLED

scotiadama@acloom

) FAILED THIRTY OPTIMISM' T
7 TIMES IN A Fu::m Tmf M
""" WHEN TT

e—O : SUCCEEDST "*T

& 18588 Unljed Foatura Syndicats, Inc

ND ”*r"G'LJ
HHCIL-.'I IT

wiwraLdilbert. cam

tafi frd

Tools and Methods 3 Bob Jacobsen September 2004

So many software processes!

“OMT”, “Booch”, “Objectory”, “Unified”,...

People have been defining and promoting processes for decades
« Millions of books sold & conference talks given

But, much commonality between them:

* Process stages
Plan and Elaborate, Build, Deploy

 |terative software development

Plan & Elaborate - define scope of project and justify its need
plan project, specify features & baseline architecture

Build - construct the project

Deploy - move the software to the users site

* Models constructed
Use cases, class diagrams, interaction diagrams, ...

Tools and Methods 3 Bob Jacobsen September 2004

The Unified Software Development Process

Published in 1998 (http://www.rational.com)
Key concepts
o Iterative
* Architecture-centric
» Use-case driven
* Risk confronting
Describes a list of tasks to follow to develop software
 Not all tasks are required for or even applicable for all development projects

Tools and Methods 3 Bob Jacobsen September 2004

http://www.rational.com/

How do we represent the development process?

Through models
« The language of the designer

* Representations of the system that allow reasoning about some
characteristic of the real system

* Vehicle for communications with various stakeholders
* Visual

Through views
* View = simplified model (slice of model)

» An architectural view is an abstraction of a system from a particular
perspective or vantage point, covering particular concerns, and omitting
entities that are not relevant to this perspective

Tools and Methods 3 Bob Jacobsen September 2004

How do we document models and views?

Use a standard language and diagramming method
 Unified Modelling Language (UML)
« Standardized by the Object Management Group (OMG) in 1997
http://www.omg.org
 A(nother) language for representing a sw. dev. process
Booch, Rumbaugh, etc all defined their own languages before UML
« UML is “process independent*

it is a language for modelling, it does not define how to use the language to assist
in software development

UML DISTILLED

For more information see book SECOND EDITION
UML Distilled (2nd. Edition) '
Martin Fowler et al, Addison-Wesley, =
1999 E

Tools and Methods 3 Bob Jacobsen September 2004

http://www.omg.org/

Overview of UML

The UML is a language for
* Visualizing
« Specifying Communicating
» Constructing
« Documenting

Covers all phases of software development process

UNIFIED o

MODELING
LANGUAGE

Tools and Methods 3 Bob Jacobsen September 2004

What do people communicate with UML?

Requirements of a software system
» Use Cases
Structure/Architecture of a software system

* Class diagrams / (Object diagrams)
Views that emphasize concepts, specifications, implementation

 Deployment diagrams
» Component/package diagrams
Dynamic behavior of a software system
« Sequence/Interaction (Collaboration) diagrams
« State charts
o Activity diagrams

Tools and Methods 3 Bob Jacobsen September 2004

UML Diagram Types

Use Case
Diagrams

Models

Rational Software Corporation

Tools and Methods 3 Bob Jacobsen September 2004

Requirements: What do we need to build?

Initial description of needs/desires of a product
» Overview statement
 Customers/users
» Goals
« System functions - what is the system supposed to do?

o System attributes - what are desirable qualities of the system?

TVE GOT THE
SOECIFICATONE
HE®E !

4 CONTRAET.
WHE Are BEO CO-
MITTECE T PR UCiN S
A SaLrL T wiTaL

CIRCLHT TEFiHE By T mH'T
Tl Towewtv-F1ESH BALIEH, Chans,
CF Mooif dasmi T FUT WE Have

= i START
P -/_E:.iqu,‘.—ﬁ?ﬁ
e

Tools and Methods 3 Bob Jacobsen September 2004

Capturing functional requirements with use cases

Captures system functionality as seen by users

Actor %

Phwsicist

Use Case

database with
enerated events

Course Exercises

populate

==gtendssr |
create tags for

=<gitendss== events

- apph.' cuts to 3
eyents
==extends=» visualize results

A typical interaction between a user and the system under development

Tools and Methods 3

Association

S —

Bob Jacobsen September 2004

Use Cases

“Narrative document describing the sequence of events of an actor (external agent)
using a system to complete the process’ -Ivar Jacobson

« Not requirements or functional specifications, but they imply requirements

High-level use case format

Use Case: Create reduced data
Actors: Physicist
Type: primary (secondary/optional)

Description: The physicist provides a reduction routine to be run, and selection criteria
for the input data. The processing is done without further interaction, and
when completed the reduced output is available to be selected for further

processing.

Tools and Methods 3 Bob Jacobsen September 2004

What does this buy us?

Use cases & the discussion surrounding their creation:
* Provide a high-level description for discussion with stakeholders
* Ensure that the requirements of the system are captured
» Help decompose tasks into small manageable entities
* Drive the conceptual/object model construction

 Ensure that important requirements are tackled early

The physicist provides a reduction routine to be run, and selection criteria
for the input data. The processing is done without further interaction, and
when completed the reduced output is available to be selected for further processing.

Tools and Methods 3 Bob Jacobsen September 2004

Ranking use cases

* Is this a main purpose of the system?
Primary - major tasks
Secondary - minor or rare tasks
Optional - tasks that may be tackled
» Some other factors:
Does the use case impact the overall architectural design?
Is insight obtained with little effort?

Is the use case risky, time critical or complex?

Tools and Methods 3 Bob Jacobsen September 2004

Use case summary

Use cases are part of the analysis phase
* Emphasize what rather than how
Use cases help lead to real functional requirements
» Good starting point
* Not performance & environmental constraints, etc. (see Contracts)
Use cases help scheduling
 Determine focus of project iterations and development
Use cases remain a focus as you develop

« “Can | do this one yet?”

Tools and Methods 3 Bob Jacobsen September 2004

Capturing structure with deployment diagrams

Shows the “configuration of run-time processing elements with the

software components, processes and objects that live on them™

Includes

« Communication associations (networks)
* Nodes (processors)

» Components (software packages)
components can depend on other components
components can show objects

Often called system “architecture”

Tools and Methods 3 Bob Jacobsen September 2004

Architectural Design Qualities

A well designed architecture has certain qualities:
o Clear interfaces
o Layered subsystems
 Low inter-subsystem coupling
* Robust, resilient and scalable
» High degree of reusable components
* Driven by the most important and risky use cases
*EASY TO UNDERSTAND

Tools and Methods 3 Bob Jacobsen September 2004

Example Deployment Diagram

Node

Link

Tools and Methods 3

7

22PFOCEEE0rE:
Application Host

Application

==suppats==

Y
%bjy Client |—
b

22PNOCESS0kEE
Application Host

Application

==guppartss=

o\
%m«; Cliert JQ
Ry

2LPFOCESS0r=:
HPZS Server

@?@ Component
<

x\ ==netwark== Etherﬁet

= - Dependency

S

“=supports== czzypportsss ==gupporta== ==supportsss !
i ; ; ', =<supportse= < l
1 by ’ b I.
T b T Y
1 3 4 !
1 . 1 ! !
1 5 1 4 !
==prOcessars» | «:q’prucesémr:b | «:qprucessnﬁ:
Chijy Disk Server : Chiy Lock Server Chjy Disk Server
1 h 1 h]
1

Ohjy Server|

Event

i 1

Ohjy Server| - I‘: ObJ eCt

b
==sLphartss= < |
1
% HPSS Cliert —C‘g

Bob Jacobsen September 2004

Process Summary

Choice of process depends on scale of problem

A process is a (partially ordered) set of tasks to develop and deploy a
software system

The process should be
o iterative & architecture centric
* use-case driven & risk confronting

The Unified Modeling Language is a common/standard way to document
the models and views of the process

SALINT DOGBERT ENTERS SUDDEMLY HE FTNDS AN

= 2| THE MONSTER 15 DISPATCHED
THE LAND OF CUBICLES SEARCH] 2| OVER-PROMOTED COMPUTER |3| TO THE DARK (WORLD BY
ING FOR THE DEMONS OF 2| GURL SPOUTIMNG USELESS || THE STGHT OF TTS MOST
STUPTOLTY. 2| DATABASE CONCEPTS. Z| FEARED OBTECT,

& S

£ YOU'D BE FCOLS TO ¢ | (LOOK! ACTUAL CODE!)

2 IGHNORE THE BOOLEAN |3 Y coo!

£ ANTL-BINARY LEAST- |3

i /¥ SQUARE APPROACH | £

" =AY D, E

é d-'-:;"" i . bl ;

v =

Don’'t become a process evangelist!

Tools and Methods 3 Bob Jacobsen September 2004

In closing,

When Boeing wanted to design the 747, they had two choices:
1. Hire “SuperEngineer”, who could do it by alone
2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

Why?

What can we learn from this?

Tools and Methods 3 Bob Jacobsen September 2004

But the problems
[ust keep on coming....

Tools and Methods 3

= |

“Oh.oh ... here comes troubler™

UM ViU U

T AT

o
. 1 |

R LA

—vwvT

Design

Specify the details of inter-object collaboration mechanisms
» Determine the structure of classes and their associations
Relationships of access, ownership, authority

e Determine the behavior of classes

E.g. Interactions with other objects

Collaboration

Sequence satmere] bt o) '{-1-4\-—\...-! ?T N F - i) it e
B Bt i g et et ' haof o =) 4 o5 e LR
'm-uﬁ r\?-*--m--..‘ it o o X s ‘Li-lj--f-ﬂr '-Ijﬂ:"_”: ""-f
et T S N u::-*;, il

How do we record and

communicate this?

T g
res oetar 1
bl iy B Xar ekl s %
L M i i |
el e 1 A wﬁ + AR
i i o ey e ‘"h i -4 2 :
mow we] rial AP ‘| .
Frad wig ...l. ‘.._,'... L VY
Il-_l I-’I '-. sy ha o _Ir-
'."“ L T g oW, s e >
iy s s :’1""“"""’-""I o o L i A
.\-
i

Tools and Methods 3 Bob Jacobsen September 2004

UML Diagrams

Use Case
Diagrams

Models

Tools and Methods 3 Bob Jacobsen September 2004

Class Diagram

Describes the types of objects in the
system and the various kinds of static
relationships that exist between them

Tools and Methods 3

.1

role

‘_._'_'-'_// - -
K <_{s_ul_as_e_t}_ association % ikl el

class

aggregation
PO

1

* 1.*e_ — n"]|.J|t|[:)||C|t},lr 1.% /
Ij‘Deparlment Locatiorp Office
name : Name |- 1 address : String

name

* *

*—

voice : Number

constraint

getPersonalRecords() -

member [1..* 1| manager ‘ Headquarters ‘
Person

name : Name attributes
employeelD : Integer l(r—
title : String operations
getPhoto(p: Photo) /)
getSoundBite() i Contactinformation
getContactinformation()r - - > address : String

N interface
[= PersonnelRecord l

dependency | 1@xID))
employmentHistory

sala .
Y ISecurelnformation

Rational Software Corporation

Bob Jacobsen September 2004

Example Class Diagrams

ROOT:
Histogram classes

TH3

TH3C TH3s

Tools and Methods 3

LHC++/Anaphe:
Event structure as defined in DDL file for

populateDb exercise

TH1

THIC TH1S THiF THID

THz TProfile

TH3D THz2C TH25 TH2F TH2D

TPrefile2D

Cluster

phi : double
theta : double
energy : double

getPhi() : double
getTheta() : double
getEnergy() : double

Track
phi : double
theta : double

pt : double

getPhi() : double
getTheta() : double
getPt() : double

0..# clusters 0..# tracks
clusters tracks
1 1
Calo Tracker

/ clusters : integer

getNoOfClusters() : integer

/ tracks : integer

getNoOfTracks() : integer

1

calo

1
tracker

eventNo : integer

getEventNo() : integer

Bob Jacobsen September 2004

Sequence Diagram

Captures dynamic behavior (time-oriented)

* Model flow of control
* lllustrate typical scenarios

object

Interaction

\4 t: Thread

: Toolkit

sequence
label

/t al :fm{ﬁ

message

focus of control ~

o lifeline
]

Tools and Methods 3

run() ' callbackLoop()
/, 1 /, creation
«Create» .
call ———— P> p: Peer

handleExpose& '.

recursion —_|

- o

e
| «destroy» o\
e / 0

destruction Rational Software Corporation

Bob Jacobsen September 2004

Example Seqguence diagram

LHC++/Anaphe: scenario for createTag exercise with 1 event and 2 tracks

myApp:CreateTagsApp

evtl:Event

Tools and Methods 3

run() i

eventNo:=getEventl\la

getPlus(phiPlus,ptPlus,
phiMinus,ptMinus)[]

trk1:Track

trk2:Track

create(eventNo,phiPTlJ—s, ptPlus,
- phiMinus,ptMinus)

getPt() >D
getPhi() :
ﬂ getPt()
getPhi() ﬂ
{tagl:Tag

Bob Jacobsen September 2004

Collaboration Diagram
Captures dynamic behavior (message-oriented)

* Model flow of control
* Illustrate coordination of object structure and control

c : Client

collaboration diagram

1 : «create»
link —e | 2: setActions(a, d, o)
3: «destroy»
«|local» message

«l 5
global p : ODBDProxy

- Transaction i

{transient}
object 2.1 : setValues(d, 3.4)
2.2 : setValues(a, "CO")

Rational Software Corporation

Tools and Methods 3 Bob Jacobsen September 2004

Example Collaboration Diagram

LHC++/Anaphe: messages between classes for CreateTag exercise

run(): integer

'

‘CreateTagsApp |-1* for all events: |
getPlus(phiPlus,ptPlus, .Event

phiMinus,ptMinus);
eventNo := getEventNo()

3* for all events:
create(phiPlus,ptPlus,phiMinus,

ptMinus,eventNo) 2* for all tracks: getPt(); getPhi()

:Tag ‘Track

Tools and Methods 3 Bob Jacobsen September 2004

“These are complicated”

“So is field theory”

* Which is physicist-speak for “I don’t get it either, so I’ll call it “trivial’”
“It’s just notation”

* The notation is complicated because it’s representing a complicated thing

FRAMKLY, ITS BECAUSE T
LIKE MAKING COMPLEX
FICTURES MORE THAN

THLS WERT TRAMSPARENCY
1S AN INCOMPREHEMSIULE
JUMBLE OF COMPLERLTY
AMD UNDEFINED
ACRONYMS. 1

YOU MIGHT LJONDER
LWHY T'M GOING TO
SHOLW IT TONOU SINCE
THE ONLY POSSIBLE RESULT L LIKE YOU.
15 TO LOWER YOUR,

OPINION OF My

COMMUNICATION

| (5252
SKILLS. Tg r[;‘EE:%%%JI
- ,' L__ a
il Waws"N

#0S Unibed Faatare Syndicads, Inc iN¥C)

5 _q‘._ﬂ.tqli E-mail: SCOTTADEMEEALOL. D0OM

T

“Yes, and how do we know they’re right?”
 That’s the key question.

Tools and Methods 3 Bob Jacobsen September 2004

This is where iterative development comes in...

Imagine the project is not to build software but a bridge...
Initial Requirements: A to B

Tools and Methods 3 Bob Jacobsen September 2004

lteration |

Meets primary requirement: A to B
Basic architecture is in place

Single user version

Can only be used in winter

Not very safe

Tools and Methods 3 Bob Jacobsen September 2004

lteration |l

New requirements:
* Works in the summer
* Multi-user

Same basic architecture but different
technology

Multi-user version! 2 -
Can be used all year round

Tools and Methods 3 Bob Jacobsen September 2004

lteration ||

New requirements
* more stable and safe
Same architecture and technology
More solid construction
Extra security

Tools and Methods 3 Bob Jacobsen September 2004

lteration V

New requirements
* Protected from the rain
* Two-way

Same architecture with improved
technology

Protected from environment (at least
from above)

Bi-directional

Tools and Methods 3 Bob Jacobsen September 2004

lteration VI

New requirements:
* ““| want to move house to B”

Same basic architecture but advanced
technology

Can carry other goods

Tools and Methods 3 Bob Jacobsen September 2004

lteration VI

New requirements:

* ““| want to be able to use my car and
let ships go by

Multi-purpose

Tools and Methods 3 Bob Jacobsen September 2004

Successful Development Program!

Analogy shows successful iterations:

» The basic product existed from the first iteration and met the primary requirement:
AtoB

« Early emphasis on defining the architecture
 Basic architecture remained the same over iterations
« Extra functionality/reliability/robustness was added at each iteration
« Each iteration required more analysis, design, implementation and testing
» Use case (requirements) driven
does what the users want - not what the developers think is cool

Some limits to analogy:

It took people centuries to figure out how to build big bridges
And we developed engineering processes to do the big ones!
Little of the early cycles survived in final one

Tools and Methods 3 Bob Jacobsen September 2004

How to pick what goes in the next iteration?

Choice of additions for an iteration is risk driven

o Early development focuses on components with the highest risk and

uncertainty

Avoids investing resources in a project that is not feasible

 But it has to do something basically useful

So all involved will take it seriously

Tools and Methods 3 Bob Jacobsen September 2004

Bad outcomes |

Does not go from A to B
Went for “full functionality” from the start
* Big bang approach
* Face too much complexity at the start
Users/sponsors got cold feet?
 Ran out of resources, patience
or enthusiasm
Requirements have long since changed
* no feedback from users since never used

Sounds like the traditional “one-pass” approach?

Tools and Methods 3 Bob Jacobsen September 2004

Bad outcome Il

Does not go from A to B any more
Insufficient testing?

Unstable environment?

Lack of routine maintenance?
Too many concurrent users?

Went straight to the code?

Tools and Methods 3 Bob Jacobsen September 2004

L egacy systems

Still goes from A to B
Been in use for a long time
Difficult to determine the original architecture

The original development team are no longer
around

No documentation

Lots of inconsistencies resulting from later
additions made with insufficient analysis and
design

Tools and Methods 3 Bob Jacobsen September 2004

Advantages of lterative and Incremental Development

Complexity is never overwhelming
Only tackle small bits at a time
Avoid analysis paralysis and design decline
Early feedback from users
Provides input to the analysis of subsequent iterations
Developers skills can grow with the project
Don’t need to apply latest techniques/technology at the start
Get used to delivering finished software
Requirements can be modified
Each iteration is a mini-project (analysis, design....)

Note that these benefits come from completing, deploying and using the iterations!

Tools and Methods 3 Bob Jacobsen September 2004

Detailed design

Important step just before coding
* maps to code in the chosen programming language
Determine the structure of an object’s information and it’s manipulation
* data structures (attributes)
« implementation of associations
» sets of operations defined for the data (methods)

« visibility of data and operations
(C++: private, protected, public)
* Error handling techniques (e.g. exceptions thrown)

Tools and Methods 3 Bob Jacobsen September 2004

Associations

Implementation depends on nature and locality
objects in the same thread, different processes or machines

persistent or transient
cardinality of association

Examples

class testAssoc {

T t1; // 1-to-1 only
T* t2; // 1-to-1 & 1-to-(0,1)
list<T> t3: // 0O-to-n STL container

TList *tracks; t4; // 0O-to-n ROOT contain
d_vector<T> t5; // 0-to-n Objy container

I

Tools and Methods 3

D
—

cancel/restart

Mix of tasks, threads and comms.

Analysis task Display task
; X-Events()
Comman
| GuI
Event Loop i(ime " G)
Exec : -3
fommand \ Dat P>| Draw +%
r E a ; ‘]
Objects : Objects 2-.
............................ \\ 0
Logger >N
1
D AQ — Logger =
2

Bob Jacobsen September 2004

Operations

Mapping of methods from design to
code may change according to code
ownership, dynamics and practicality

myApp:CreateTagsApp

evtl:Event

myApp:CreateTagsApp evtl:Event trk1:Track trk2:Track

run()

] eventNo:zgetEvent%\ii|

getPt()

|
getPhi() %
L, getPt() ‘D

getPhi()
~]

Y

create(eventNo,phiPlusjptPlus,
phiMinus,ptMinus)

tagl:Tag

Tools and Methods 3

run() _

eventNo:=getEventNa

trkL:Track

trk2: Track

T

getPIus(phiPIus,ptPIus@
hiMinus,ptMi]
phiMinus,ptMinus) getPt() >[:|
getPhi() H
'L'j getPt()
getPhi()
create(eventNo, phiPIjis,ptPlus,
L phiMinus,ptMirus) {tagl:Tag

design

h implementation

Bob Jacobsen September 2004

Class definitions

- - - Cluster Track
Difference between design class diagram and
- . phi : double phi : double
Implementatlon theta : double theta : double
energy : double pt : double
getPhi() : double getPhi() : double
getTheta() : double getTheta() : double
getEnergy() : double getPt() : double
Ewent
Eals —=vklfo - iat
tclust=zing:HeoContainscHint 1 ‘T . Hiat 0..# clusters 0..# tracks
izl +Ev=at - clusters tracks
+o=tllclfClust=rs-ant +q=t P entllo:int
1 1
Calo Tracker

]

Cluster

—-zhi:-double=
-theta-double
—=n=roy doubl=

4+ luster:

4+ luster:
+oe=tFhidoubl=
+q=tTheta-doubl=

+o=tEn=rgy: doubles

Tools and Methods 3

+Tracksx:

+oetllcOfTracks - loag

B

Track

-ohi:doubls=
~th=ta:doubl=
—ot cdouble

+Track:

+Track:

+g=tPhi -doubkl=
+g=tTheta:doubl=
+getPt cdoubl=

/ clusters : integer

getNoOfClusters() : integer

/ tracks : integer

getNoOfTracks() : integer

1
1
calo tracker
1 1

Implementation

Event
eventNo : integer

getEventNo() : integer

'design

Reverse engineered from LHC++/Anaphe
Event.ddl using Together/C++ CASE tool

Bob Jacobsen September 2004

Lecture summary

Software engineering is the art of building complex computer systems
It’s ideas and techniques spring from our need to handle size & complexity
As you do your own work & develop your own skills, consider:

* How your effort effects or contributes to things 10X, 100X, 1000X larger
« How you’ll do things different/better when it’s your problem

Exercise 8 is way to consider some of these ideas in context
» Adding some minor functionality to an existing system

Tools and Methods 3 Bob Jacobsen September 2004

Today’'s Exercises

6) Demonstration of profiling tools
7) Practice tuning a small application

8) Project: Add a new feature to an existing program

Instruction sheets are available via web browser at
file:/nome/jake/index.html

Tools and Methods 3 Bob Jacobsen September 2004

	Introduction To Software Engineering
	Two recurring terms: “Processes” and “Models”
	Scale and process:Building a dog house
	Scale and process:Building a family house
	Scale and process:Building a skyscraper
	Why do software projects fail?
	Communication explosion
	Why software projects fail...
	Why software projects fail...
	Why software projects fail...
	Why software projects fail...
	Why software projects fail...
	Why software projects fail...
	The life time of HEP software
	How do we cope?
	So many software processes!
	The Unified Software Development Process
	How do we represent the development process?
	How do we document models and views?
	Overview of UML
	What do people communicate with UML?
	UML Diagram Types
	Requirements: What do we need to build?
	Capturing functional requirements with use cases
	Use Cases
	What does this buy us?
	Ranking use cases
	Use case summary
	Capturing structure with deployment diagrams
	Architectural Design Qualities
	Example Deployment Diagram
	Process Summary
	In closing,
	But the problemsjust keep on coming….
	Design
	UML Diagrams
	Class Diagram
	Example Class Diagrams
	Sequence Diagram
	Example Sequence diagram
	Collaboration Diagram
	Example Collaboration Diagram
	“These are complicated”
	This is where iterative development comes in…
	Iteration I
	Iteration II
	Iteration III
	Iteration V
	Iteration VI
	Iteration VII
	Successful Development Program!
	How to pick what goes in the next iteration?
	Bad outcomes I
	Bad outcome II
	Legacy systems
	Advantages of Iterative and Incremental Development
	Detailed design
	Associations
	Operations
	Class definitions
	Lecture summary
	Today’s Exercises

