
Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 1

“Interactive Computing”
Overview

Introduction to Python
Introduction to XML
Introduction to WebServices

Exercise session (3h) on Thursday

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 2

Introduction to Python

2004 CERN School of Computing,
Vico Equense

Andreas Pfeiffer
CERN, PH/SFT

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 3

Overview
Python
Python types
OO and Python
Modules, file I/O and serialization
Extending Python and modules

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 4

Python
Python is an Agile Programming Language excellent for
beginners, yet superb for experts

highly scalable, suitable for large projects as well as small ones
rapid development cycles: ideal for Prototyping
portable, cross-platform (Unices, Windows, Mac, …)
embeddable
easily extensible
object-oriented
you can get the job done
simple yet elegant
stable and mature
powerful standard libs
wealth of 3rd party packages

And don't forget that with Python, programming is fun again!

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 5

Multi-paradigm
Imperative

“command-line” style

Object oriented
Classes and methods

Functional
Sequential

Introspection
dir(), type(), isinstance(), .__name__

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 6

Incremental development
No edit-compile-debug cycle

Interpreted language

Make tiny changes and test them
immediately
Program state is not lost
Can reduce development time by an
order of magnitude or more !

Rapid Application Development (RAD)

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 7

Python types (I)
Numerical types

int, float (double)
1 , 3.1415926

Complex
1 + 1j

long (arbitrary precision)
E.g., factorial(100)

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 8

Python types (II)
Sequences

List – mutable, heterogeneous
[] , [1, 2] , [1, “hi there”, 42.]
[[1,2], [3,4], [4,5]] – list of lists

Tuple – immutable, heterogeneous
() , (1,) , (1, ‘hello’, 42.)
Parentheses are not always needed

String – immutable, homogeneous
‘a string’, “another string”, ‘with “ quotes’

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 9

Dictionaries
Dictionaries are hash-tables (maps)

>>> d = {} # empty dict
>>> d[1] = ‘one’
>>> d[‘two’] = 2

Heavily used in Python’s implementation, so
dictionaries are highly optimized
Replacement for “switch” construct

dispatch={ ‘q’ : quit, ‘r’ : redisplay, ‘e’ : evaluate}
reply = get_reply() ; dispatch[reply]()

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 10

Sequence indexing and
slicing

>>> a = range(10)
>>> a[3]
>>> a[3:6]
>>> a[-1]
>>> a[-2]

>>> a[2:5] = [‘x’]
>>> a[-1:] = [‘a’, ‘b’, ‘c’]

[0,1,2,3,4,5,6,7,8,9]
3
[3,4,5,6]
9
8

[0, 1, 'x', 5, 6, 7, 8, 'a', 'b', 'c']
[0,1,’x’,5,6,7,8,9]

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 11

Unpacking tuples
>>> a,b,c = 1,2,3
>>> a,b = b,a
>>> w = 5,6,7
>>> x,y,z = w
Use tuples to return multiple values
from functions

Output parameters are “un-Pythonic”

Note the lack
of parentheses

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 12

Indentation

Python uses indentation to determine the
structure of blocks (methods/functions)

Empty block: pass

if True :
print ‘eggs’
print ‘spam’

else :
print ‘ni ni’

Blocks start
with colons

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 13

Loops
Python has two loop constructs

while … :
for … in … :

For-loops work with any iterable
Use xrange rather than range for large ranges

range creates a list, xrange generates the numbers as
required

for i in range(10):
print i, i*i

Both have an optional
else: clause

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 14

Variables, binding, call-by-
value

Variables do not have type; objects
have type – dynamic binding
Binding is the association of a variable
with an object
Python uses call-by-value semantics

But all non-numeric values are references !

a = [5]
b = a
b[0] = 3

a
[]

b a == [3]

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 15

Functions
def my_function(arg1, arg2) :

”””The optional documentation string
goes here”””

a = arg1
b = arg2
c = a + b
return a,b,c # optional

do_something_else()

a,b,c are local variables

returns copies of a,b,c

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 16

More on Functions
def parrot(voltage, state='a stiff',

action='voom', type='Norwegian Blue'): pass
parrot(1000)
parrot(action = 'VOOOOOM', voltage = 1000000)

def cheeseshop(kind, *arguments, **keywords): pass
cheeseshop('Limburger',

"It's very runny, sir.",
"It's really very, VERY runny, sir.",
client='John Cleese', shopkeeper='Michael Palin',
sketch='Cheese Shop Sketch')

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 17

OO in Python
Group code and data together

Polymorphism
Encapsulation

Use of “self” in methods
All methods are virtual
Private and protected only by convention
“Magic methods”

__init__(self) constructor
baseClass.__init__(self)
__str__(self) formatter for print

A “cat” is an “animal”

A “car” has an “engine”

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 18

Classes in Python

class counter (object):

def __init__ (self,start):

self.count = start

def up(self, n=1):

self.count += n

def down(self, n=1):

self.count -= n a = counter(10)
a.up()
print a

Constructor

“old-style” class:
class counter :

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 19

Inheritance and operators

class addcounter(counter):
def __repr__(self):

return '<counter: ' + str(self.count) + '>'
def __add__(self, other):

return addcounter(self.count + other.count)

Baseclass

addcounter(3) + addcounter(4)

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 20

Private members
Python does not enforce ‘privacy’

Unlike C++ and Java

Convention: names starting with a single underscore, refer to
objects you should not access directly, outside their defining
scope

self._localVariable

Identifiers starting (but not ending) with two underscores will
be mangled; intended as protection against ACCIDENTAL
clobbering

self.__mangledVariable

Identifiers both starting and ending with two underscores are
language-defined special names

self.__init__

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 21

Modules
Group together functionality
Provide namespaces

import moduleName
from moduleName import *

Means of extending Python
Also using other languages (C, C++,…)

Python comes with a vast collection of
modules in its standard library

“Batteries included”
More on “Vaults of Parnassus”

http://www.vex.net/parnassus/

> moduleName.spam
> spam

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 22

The os and sys modules

Using os.system
To execute commands in a shell
os.system(“ls –al”)

Using os.path
All kind of PATH related functionality
os.path.walk(dir,self.checkForLocks,"")

Extending the PYTHONPATH
sys.path.append("/my/dir/PyModules")

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 23

Dealing with strings
The string module: lots of useful methods for
string handling

words = string.split(line, “-”)

line = string.join(words, “:”)

index = string.find(line,“:”)

The re module: regular expressions
Very powerful !
m=re.match(r"(?P<int>\d+)\.(\d*)",'3.14')

m.group(1), m.group(‘int’) is 3
m.group(2) is 14

“nightmare to debug”

Optionally specify
start,end

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 24

Exceptions
try:
code body

except ArithmeticError:
what to do if arithmetic error

except IndexError, data:
what to do if index error

except:
what to do for any other error

else:
what to do if no exception

try:
code body

finally:
what to do ALWAYS ... e.g. some "clean-up" code

Throwing exceptions:
raise IndexError [,data]

optional

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 25

LBYL vs. EAFP
Look Before You Leap

Easier to Ask Forgiveness than Permission

if denominator == 0:
print "Oops"

else:
print numerator/denominator

try:
print numerator/denominator

except ZeroDivisonError:
print "Oops"

“Pythonic” way !

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 26

Exception hierarchy
The standard exceptions are organised in an
inheritance hierarchy

E.g. ZeroDivisionError is a subclass of
ArithmeticError

Allows you to catch a “range” of exceptions
with a single statement

E.g. : except ArithmeticError:

You can derive (== extend) your own
exceptions from any of the standard ones.

E.g. class MyOverflow(ArithmeticError):

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 27

Files
Print and print >>file

sys.stdin, sys.stdout, sys.stderr
Are “normal” files

>>> file = open('myfile','w')
>>> print >> file, 1,2,3,4
>>> file.write('5 6 7 8')
>>> file.close()

>>> file = open('myfile','r')
>>> for line in file: print line

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 28

Object persistency in Python
“Serialization” of complex objects

Conversion into/from set of bytes
Sent over network, stored/read from file
Aka: “pickling”, “marshalling” or “flattening”

“DBM” style
Provide namespace (key) for the objects
Similar to dictionary and file
Can store only strings, no python objects

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 29

Object persistency (II)
Two modules for serialization

marshal for only simple python objects
pickle for recursive objects, complex,
user-defined classes

One module for all
shelve pickling of Python objects as well
as a DBM storage for the flattened objects

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 30

Command line options
List of command-line args: sys.argv

Number of items: len(sys.argv)

Module for manipulation: getopt
import getopt
try:

optlist, args = getopt.getopt(sys.argv[1:],['?','h'],['help','tmpDir='])
except :

print "\nunknown option.\n"
usage()
raise

for o, a in optlist:
if o in ("-?", "-h", "--help"):

usage() ; sys.exit()
elif o in ("--tmpDir",):

tmpDir = a

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 31

Extending Python
Using C or C++ modules
Tools to help with the “boring” part

SWIG, boost::python, …
Convert C/C++ header files to Python files
and write the “glue” code using the C-API
of Python for you !
Flexibility to change interface

Adding, removing, renaming of methods
Templates, STL ongoing work, but about ok

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 32

Items for further study
Lambda

The anonymous function

Generators
Iterating “like in C++” ☺

List Comprehensions
[x*x for x in range(10)]

Testing
The unittest framework

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 33

Python in HEP
Interactive sessions of experiment or analysis
framework

Using the C++ classes of the framework

“Glue” various toolkits/frameworks together
Loosely coupled components with well-defined
(abstract) interfaces as Python modules !

Rapid Application Development
Develop an algorithm in Python, then convert it
into C++ component (performance) and deploy it

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 34

Thanks
To Jacek Generowicz for allowing me to
(re-)use his slides
To Guido van Rossum for the creation of
Python
To all writers of modules
To you for coming !

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 35

References
Python (with lots of interesting links)

http://www.python.org

The “Python Cookbook”, lots of “recipes”
http://aspn.activestate.com/ASPN/Python/Cookbook/

Vaults of Parnassus, lots of user-land Python
modules

http://www.vex.net/parnassus/

http://www.python.org/
http://aspn.activestate.com/ASPN/Python/Cookbook/
http://www.vex.net/parnassus/

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 36

Optional slides

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 37

The Zen of Python - part 1/2
(Formulated by Tim Peters)

1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
5. Flat is better than nested.
6. Sparse is better than dense.
7. Readability counts.
8. Special cases aren't special enough to break the rules.
9. Although practicality beats purity.
10. Errors should never pass silently.
11. Unless explicitly silenced.

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 38

The Zen of Python - part 2/2
12. In the face of ambiguity,

refuse the temptation to guess.
13. There should be one —and preferably only one— obvious way

to do it.
14. Although that way may not be obvious at first unless you're

Dutch.
15. Now is better than never.
16. Although never is often better than right now.
17. If the implementation is hard to explain,

it's a bad idea.
18. If the implementation is easy to explain,

it may be a good idea.
19. Namespaces are one honking great idea

— let's do more of those!

	“Interactive Computing” Overview
	Introduction to Python
	Overview
	Python
	Multi-paradigm
	Incremental development
	Python types (I)
	Python types (II)
	Dictionaries
	Sequence indexing and slicing
	Unpacking tuples
	Indentation
	Loops
	Variables, binding, call-by-value
	Functions
	More on Functions
	OO in Python
	Classes in Python
	Inheritance and operators
	Private members
	Modules
	The os and sys modules
	Dealing with strings
	Exceptions
	LBYL vs. EAFP
	Exception hierarchy
	Files
	Object persistency in Python
	Object persistency (II)
	Command line options
	Extending Python
	Items for further study
	Python in HEP
	Thanks
	References
	Optional slides
	The Zen of Python - part 1/2
	The Zen of Python - part 2/2

