
Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 1

Distributed computing
technologies and protocols

2004 CERN School of Computing,
Vico Equense

Andreas Pfeiffer
CERN, PH/SFT

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 2

Distributed computing
technologies and protocols

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 3

Distributed computing
technologies and protocols

Definition of Web Services
Architecture of Web Services
XML-RPC
SOAP
WSDL

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 4

Distributed computing
technologies and protocols

Will use generic term “Web services”
Although there is a more specialized
definition from W3C

Requires SOAP and WSDL

Allow for cross platform interoperability
“The Internet is the platform”

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 5

Web Services
Web/network interface to application

Independent of language of implementation

Using XML for information exchange
For both: methods and data

Kind of “Remote Procedure Call” using XML
SOAP needs a rather complex “infrastructure”

Where, what and how to find

XML-RPC is more simple, less heavy

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 6

W3C on Web Services
“Definition: A Web service is a software
system identified by a URI [RFC 2396],
whose public interfaces and bindings are
defined and described using XML. Its
definition can be discovered by other
software systems. These systems may then
interact with the Web service in a manner
prescribed by its definition, using XML based
messages conveyed by Internet protocols.”

http://www.w3.org/TR/wsa-reqs#RFC2396

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 7

Agents and Services
A distributed
system, consists of
discrete software
agents that must
work together to
implement some
intended
functionality
Agents implement a
service

Generic Service Oriented Architecture Diagram

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 8

Architecture of Web
Services (I)

Service
provider

Service
consumer

Service
registry

Find Publish

Bind (use)

XML

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 9

Architecture of Web
Services (II)

Web Service Description
(XML document)

Semantics
of service

Agents

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 10

Roles of the agents
Service requestor
Service provider
Discovery agency
Are not fixed, a given agent can “play”
several roles

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 11

Calling a procedure on a
remote system

Needs
A procedure (with agreed semantics)
Arguments to the procedure
Return values from the procedure
Remote system where the procedure is
implemented/running
An agreement on how to communicate

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 12

Remote procedure calls
RPC

Since early 1980’s in unix world
eXternal Data Representation (XDR) to
communicate values
Specific server/client models
CORBA and DCOM

Enter XML
XML-RPC
SOAP
Late 1990’s (parallel development)

Will be discussed in
more detail later

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 13

XML-RPC
http://www.xmlrpc.org/

“It's remote procedure calling using
HTTP as the transport and XML as the
encoding. XML-RPC is designed to be as
simple as possible, while allowing
complex data structures to be
transmitted, processed and returned.”

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 14

XML-RPC
Is a Remote Procedure Call protocol

Working over the Internet
Using HTTP as the transport layer

An XML-RPC message is an HTTP-POST request
And XML as the encoding

The body of the request is in XML. A procedure
executes on the server and the value it returns is
also formatted in XML.
Procedure parameters can be scalars, numbers,
strings, dates, etc.; and can also be complex
record and list structures.

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 15

XML-RPC goals
Discoverability

“We wanted a clean, extensible format that's very
simple. It should be possible for an HTML coder to
be able to look at a file containing an XML-RPC
procedure call, understand what it's doing, and be
able to modify it and have it work on the first or
second try. “

Easy to implement
“We also wanted it to be an easy to implement
protocol that could quickly be adapted to run in
other environments or on other operating
systems.”

From: http://www.xmlrpc.org/spec

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 16

XML-RPC example
POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>

<methodName> examples.getStateName </methodName>
<params>

<param> <value> <i4> 41 </i4> </value> </param>
</params>

</methodCall>

HTTP POST request

Content-length must be correct

Body of the request

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 17

XML-RPC Basic Types

Tag Type Example
<i4> or <int> Four-byte

signed integer
42

<boolean> 0(false) or
1(true)

1

<string> string Hello world

<double> Double-
precision
signed

-3.14.15926

<dateTime.iso8601> Date/time 20030716T09:53:42

<base64> Base64-encoded
binary

eW91IGNhbid0IHJlYWQgdGhpcyE=

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 18

XML-RPC <struct>
<struct>

<member>
<name> lowerBound </name>
<value> <i4> 18 </i4> </value>

</member>
<member>

<name> upperBound </name>
<value> <i4> 139 </i4> </value>

</member>
</struct>

structs contain members,
members have name and value

<struct>s can be recursive, any <value>
may contain a <struct> (or <array>)

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 19

XML-RPC <array>
<array>

<data>
<value> <i4> 42 </i4> </value>
<value> <string> Egypt </string> </value>
<value> <boolean> 0 </boolean> </value>
<value> <i4> -31 </i4> </value>

</data>
</array> arrays contain data,

data contains value(s),
array elements have no names

<array>s can be recursive, any <value> may
contain an <array> (or <struct>)

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 20

Response example
HTTP/1.1 200 OK
Connection: close
Content-Length: 158
Content-Type: text/xml
Date: Fri, 17 Jul 1998 19:55:08 GMT
Server: UserLand Frontier/5.1.2-WinNT

<?xml version="1.0"?>
<methodResponse>

<params>
<param>

<value> <string>South Dakota</string> </value>
</param>

</params>
</methodResponse>

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 21

Fault-Response example
[HTTP header …]
<?xml version="1.0"?>
<methodResponse>

<fault>
<value>
<struct>

<member>
<name>faultCode</name>
<value> <int>4</int></value>

</member>
<member>

<name>faultString</name>
<value><string>Too many parameters.</string></value>

</member>
</struct>

</value>
</fault>

</methodResponse>

fault contains a value, which is a struct
with two elements:
- one int member named faultCode and
- one string member named faultString

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 22

XML-RPC extensions
Multicall

Problem with HTTP round-trip times
(latency)
Solution: group requests/responses in
arrays and use only one call (“boxcarring”)

Proposal to add to XML-RPC by Eric Kidd

Server side introspection
system.listMethods
system.methodSignature
system.methodHelp

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 23

SOAP
Developed in parallel to XML-RPC

Started by UserLand and Microsoft developers
(1998)
Now mainly Microsoft and IBM

SOAP vs. XML-RPC
User defined data types
Able to specify the recipient
Message specific processing control

Extensive use of namespaces and attribute
specification tags in almost every element of
a message

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 24

SOAP data types (I)
Same basic types as for XML-RPC

int, boolean, double, string, date/time, base64

References (to the same object in memory)
<value xsi:type=“xsd:int” id=“v1”> 42 </value>
<value href=“#v1” />

Structs
SOAP structs define a set of name value pairs.
Structs can be named.

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 25

SOAP Arrays
SOAP arrays define a grouping of elements
with no limitation mixing data types like
integers and strings within the same array.
Arrays can be named.

Access by ordinal position in the group (structs by
name)
ArrayType attribute to specify which types occur
where in the array
Multidimensional arrays possible
Handling of sparse arrays

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 26

SOAP Array Examples

<someArray xsi:type=“SOAP-ENC:Array”
SOAP-ENC:arrayType=“se:string[3]”>

<se:string> Joe </se:string>
<se:string> John </se:string>
<se:string> Louis </se:string>

</someArray>

1-dim, 3 entries

<names xsi:type=“SOAP-ENC:Array”
SOAP-ENC:arrayType=“xsd:string[10,10]”>

<name SOAP-ENC:position=“[2,5]”> Guido </name>
<name SOAP-ENC:position=“[4,2]”> Jim </name>

</names>

2-dim, sparse: 2 entries

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 27

SOAP data types (II)
Array of Bytes

Rules for an array of bytes are similar to those for a
string.
Containing element of the array of bytes value MAY
have an "id" attribute. Additional accessor elements
MAY then have matching "href" attributes."

Enumerations
A list of distinct values appropriate to the base type
All simple types except boolean.
"XML Schema Part 2: Datatypes"
http://www.w3.org/TR/xmlschema-2/

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 28

SOAP data types (III)
Polymorphic Accessors

An accessor "...that can polymorphically access
values of several types, each type being available
at run time. A polymorphic accessor instance
MUST contain an "xsi:type" attribute that
describes the type of the actual value."

<cost xsi:type="xsd:float">29.95</cost>

User Defined Data-Types
Developers can define their own simple, or
complex, data types.

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 29

SOAP envelope
SOAP Envelope

SOAP Header

SOAP Body

Header data

Body data

Structure of a SOAP
message
Header

Optional
Information on how the
message is to be
processed

Body
Required
Contains actual message
to be delivered

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 30

SOAP example
<env:Envelope xmlns:env=“http://www.w3.org/2003/05/soap-envelope”>

<env:Header>
<n:alertcontrol xmlns:n=“http://example.org/alertcontrol”>
<n:priority>1</n:priority>
<n:expires>2001-06-22T14:00:00-05:00</n:expires>

</n:alertcontrol>
</env:Header>
<env:Body>

<m:alert xmlns:m=“http://example.org/alert”>
<m:msg>Pick up Mary at school at 2pm</m:msg>

</m:alert>
</env:Body>

</env:Envelope>

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 31

SOAP additional features
Control of routing

“role”s in headers, “mustUnderstand” flags
Nodes may modify the header blocks (or add new
ones)
Allows for encryption/authentication of messages

Bindings to various protocols
HTTP

Post and Get methods

E-mail
RPC

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 32

WSDL
Web Service Description Language
Describes the abstract interface of a web
service and the details how a specific web
service has implemented it

“WSDL defines an XML grammar for describing
network services as collections of communication
endpoints capable of exchanging messages. WSDL
service definitions provide documentation for
distributed systems and serve as a recipe for
automating the details involved in applications
communication.”

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 33

WSDL Service (I)
Services are defined using six major elements:

types, which provides data type definitions used to
describe the messages exchanged.
message, which represents an abstract definition of
the data being transmitted. A message consists of
logical parts, each of which is associated with a
definition within some type system.
portType, which is a set of abstract operations.
Each operation refers to an input message and
output messages.

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 34

WSDL Service (II)
binding, which specifies concrete protocol and
data format specifications for the operations and
messages defined by a particular portType.
port, which specifies an address for a binding,
thus defining a single communication endpoint.
service, which is used to aggregate a set of
related ports.

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 35

WSDL Interface
<definitions …>

<wsdl:message name=“sayHello_IN”>
<part name=“name” type=“xsd:string” />

</wsdl:message>
<wsdl:message name=“sayHello_OUT”>

<part name=“greeting” type=“xsd:string” />
</wsdl:message>

<wsdl:portType name=“HelloWorldInterface”>
<wsdl:operation name=“sayHello”>

<wsdl:input message=“tns:sayHello_IN” />
<wsdl:output message=“tns:sayHello_OUT” />

</wsdl:operation>
</wsdl:portType>

</definitions>

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 36

WSDL Binding the Interface
to an Implementation

<wsdl:binding name=“HelloWorldBinding”
type=“tns:HelloWorldInterface”>

<soap:binding style=“rpc”
transport=http://schemas.xmlsoap.org/soap/http/>

<wsdl:operation name=“sayHello”>
<soap:operation soapAction=“urn:Hello” />
<wsdl:input>
<soap:body use=“encoded”

namespace=“…” encodingStyle=“…” />
</wsdl:input>
<wsdl:output>
<soap:body use=“encoded”

namespace=“…” encodingStyle=“…” />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 37

WSDL Linking the Binding to
a network address

<wsdl:service name=“HelloWorldService”>

<wsdl:port name=“HelloWorldPort”
binding=“tns:HelloWorldBinding”>

<soap:address location=“http://localhost:8080” />
</wsdl:port>

<wsdl:port name=“HelloWorldPort_Java”
binding=“tns:HelloWorldBinding”>

<soap:address
location=“http://localhost/soap/servlet/rpcrouter” />

</wsdl:port>

</wsdl:service>

Multiple instances
of the same server

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 38

Using a Web Service

Create a proxy and connect to service

List the methods available
from this service

Start Python

Get the weather for Geneva airport (GVA)

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 39

Web services in HEP
Distributed analysis (reconstruction)

E.g. Clarens
CMS distributed data server for remote analysis
Python with XML-RPC (and SOAP)
Interfacing to Grid services
http://clarens.sourceforge.net/

Similar activities at SLAC
Using Java and Agents

Just starting …

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 40

Summary
Web/network interface to application

Independent of language of implementation
“The Internet is the platform”

Using XML for information exchange
Methods and data

SOAP needs a rather complex “infrastructure”
WDSL, UDDI

XML-RPC is more simple, less heavy
But follows development of SOAP

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 41

Links
WWW consortium

http://www.w3.org/

XML-RPC
http://www.xmlrpc.org/

SOAP
http://www.w3.org/TR/2003/REC-soap12-
part0-20030624/

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 42

Optional slides

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 43

UDDI
WSDL provides all the info on how to
interact with a service to the consumer
How to find what services are there ?

Universal Description, Discovery and
Integration project

Two parts
A registry of all metadata of a web service
A set of WSDL port type definitions for
manipulating and searching that registry

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 44

UDDI Registry
<businessEntity>

representing the provider of a web service
Information on the company

Contact information, …

List of services provided

<businessService>

represents a specific web service provided by that
businessEntity

How to bind to the service
What type of service it is
Uses binding templates (for each implementation)

Andreas.Pfeiffer@cern.ch CERN School of Computing 2004 45

UDDI Features
Global network of linked registries

Alternatively private ones
For communication between selected companies or
industry group

UDDI Interfaces
Publisher IF
Inquiry IF

Toolkits for using the UDDI IFs
Registration programs
Tools to locate services
Generating UDDI from WSDL

	Distributed computing technologies and protocols
	Distributed computing technologies and protocols
	Distributed computing technologies and protocols
	Distributed computing technologies and protocols
	Web Services
	W3C on Web Services
	Agents and Services
	Architecture of Web Services (I)
	Architecture of Web Services (II)
	Roles of the agents
	Calling a procedure on a remote system
	Remote procedure calls
	XML-RPC
	XML-RPC
	XML-RPC goals
	XML-RPC example
	XML-RPC Basic Types
	XML-RPC <struct>
	XML-RPC <array>
	Response example
	Fault-Response example
	XML-RPC extensions
	SOAP
	SOAP data types (I)
	SOAP Arrays
	SOAP Array Examples
	SOAP data types (II)
	SOAP data types (III)
	SOAP envelope
	SOAP example
	SOAP additional features
	WSDL
	WSDL Service (I)
	WSDL Service (II)
	WSDL Interface
	WSDL Binding the Interface to an Implementation
	WSDL Linking the Binding to a network address
	Using a Web Service
	Web services in HEP
	Summary
	Links
	Optional slides
	UDDI
	UDDI Registry
	UDDI Features

