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Outline

• The Context (HEP)
• The Sins!

• Observation
• Problem
• Solution (definitely not exclusive)

• Conclusion
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Establishing the Context

• Although these sins are applicable in many other 
situations, they are going to be addressed in the 
context of HEP.

• Agree that HEP Software Engineering is a special 
case because of the:
• Size of projects
• Amount of money invested
• Amount of people involved
• High expectations from research
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Sin#1: Tool-coupled Productivity

Observation:
• We’ve used the same tools for the past 25 years
• Religious “wars” about the toolkit

Problem:
• Tools don’t scale.
• They slow us down. 

Solution:
• New free tools can do the “dirty” repetitive work for you.
• Automate as much as you can!
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Sin#2: Code Infected

Observation:
• Software Engineers love writing code.
• Write it in small chunks; its easier to understand.

Problem:
• Easy to write code.
• Easy to prototype a system.

Solution:
• Understand the problem & the solution before coding.
• Design first, code later.
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Sin#3: Process Infected

Observation:
• Very detailed and specific processes
• Quality Assurance is postponed or flawed

Problem:
• Reduce productivity/creativity
• Create unnecessary overhead

Solution:
• Process Reengineering from the SE themselves
• Have bare minimum that will save us from chaos
• Describe only the functional aspects of the work



7

Sin#4: Reinventing The Wheel

Observation:
• Recurring problems get solved all over again
• Rewriting algorithms (sorting?)
• Several projects that do almost the same thing

Problem:
• Duplicated effort, wasted man-power/months
• Half completed projects (80% maybe?) 

Solution:
• Use patterns/templates/existing code/catalogs
• Ask for other peoples’ experiences
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Sin#5: Functional but not Usable

Observation:
• Overexposing interfaces
• Information packed applications/websites
• Inadequate help system/updated documentation

Problem:
• User’s given too much choice and makes wrong one

Solution:
• Get feedback. Don’t think for your users, ask them!
• Be consistent! Guide the users’ actions.
• Spend that 10% of time to make the application shine!
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Sin#6: Documentation Paralysis

Observation:
• Huge amount of documentation

Problem:
• Out of date
• Manually produced
• Not informational/relevant

Solution:
• Source code metadata documentation
• Reverse engineer diagrams during implementation
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Sin#7: Change Resistant

Observation:
• Pieces are only added, never taken away
• “This is how we do it here, try and adapt.”

Problem:
• People like to stay in their zone of comfort

Solution:
• Be flexible!
• “The reasonable man adapts himself to the 
environment; the unreasonable man persists in trying to 
adapt the environment to himself. If any progress has 
been achieved it was due to the unreasonable man.”
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Summary

Things to take home:
• Automate as much as you can.
• Over-design, under-engineer.
• Be lazy! Re-use code, Patterns, Templates.
• Looks matter!
• Be unreasonable! Change how things are done.



Thank You!

Ioannis Baltopoulos
CERN Summer Student 2004

CSC Student Lectures (Vico Equence)
Monday, 6th September, 2004
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Tools of the Trade: Build tools

• ANT (ant.apache.org)
• Maven (maven.apache.org)
• GNU Make (www.gnu.org/software/make)
• NAnt (nant.sourceforge.net)

http://www.gnu.org/software/make
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Tools of the Trade: IDEs

• Eclipse (www.eclipse.org)
• NetBeans (www.netbeans.org)
• JCreator (www.jcreator.com)
• IntelliJ IDEA (www.jetbrains.com)
• Sun Java Studio Creator (www.sun.com/jscreator)
• JDeveloper (otn.oracle.com/products/jdev)
• Visual Studio (http://msdn.microsoft.com/vstudio/)

http://www.eclipse.org/
http://www.netbeans.org/
http://www.jcreator.com/
http://www.jetbrains.com/
http://www.sun.com/jscreator
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Tools of the Trade: Testing

• JUnit (www.junit.org)
• Clover (www.cenqua.com/clover)
• JCoverage (www.jcoverage.com)
• SQLUnit (sqlunit.sourceforge.net)
• DBUnit (dbunit.sourceforge.net)
• HTTPUnit (httpunit.sourceforge.net)

http://www.junit.org/
http://www.jcoverage.com/
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Tools of the Trade: Quality Assurance

• Checkstyle (checkstyle.sourceforge.net)
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Tools of the Trade: Auto Documentation

• JavaDoc (www.sun.com)
• Doxygen (www.doxygen.org)
• yDoc (www.yworks.com)

http://www.sun.com/
http://www.doxygen.org/
http://www.yworks.com/
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Tools of the Trade: Design Tools

• ArgoUML
• Poseidon for UML
• Rational Rose
• MagicDraw
• Visio
• Together
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Tools of the Trade: Version Control

• CVS (www.cvshome.org)
• Subversion (subversion.tigris.org)
• Visual SourceSafe (msdn.microsoft.com/ssafe)
• RCS

http://www.cvshome.org/
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Source Code Resources

• Java Almanac
• Java Forums (forums.java.sun.com)
• Numerical Recipes in C
• Stony Brook Algorithm Repository
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Design Patterns Resources
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