
The 7 Sins of Software 
Engineers in HEP

Ioannis Baltopoulos
CERN Summer Student 2004

CSC Student Lectures (Vico Equence)
Monday, 6th September, 2004



2

Outline

• The Context (HEP)
• The Sins!

• Observation
• Problem
• Solution (definitely not exclusive)

• Conclusion



3

Establishing the Context

• Although these sins are applicable in many other 
situations, they are going to be addressed in the 
context of HEP.

• Agree that HEP Software Engineering is a special 
case because of the:
• Size of projects
• Amount of money invested
• Amount of people involved
• High expectations from research



4

Sin#1: Tool-coupled Productivity

Observation:
• We’ve used the same tools for the past 25 years
• Religious “wars” about the toolkit

Problem:
• Tools don’t scale.
• They slow us down. 

Solution:
• New free tools can do the “dirty” repetitive work for you.
• Automate as much as you can!



5

Sin#2: Code Infected

Observation:
• Software Engineers love writing code.
• Write it in small chunks; its easier to understand.

Problem:
• Easy to write code.
• Easy to prototype a system.

Solution:
• Understand the problem & the solution before coding.
• Design first, code later.



6

Sin#3: Process Infected

Observation:
• Very detailed and specific processes
• Quality Assurance is postponed or flawed

Problem:
• Reduce productivity/creativity
• Create unnecessary overhead

Solution:
• Process Reengineering from the SE themselves
• Have bare minimum that will save us from chaos
• Describe only the functional aspects of the work



7

Sin#4: Reinventing The Wheel

Observation:
• Recurring problems get solved all over again
• Rewriting algorithms (sorting?)
• Several projects that do almost the same thing

Problem:
• Duplicated effort, wasted man-power/months
• Half completed projects (80% maybe?) 

Solution:
• Use patterns/templates/existing code/catalogs
• Ask for other peoples’ experiences



8

Sin#5: Functional but not Usable

Observation:
• Overexposing interfaces
• Information packed applications/websites
• Inadequate help system/updated documentation

Problem:
• User’s given too much choice and makes wrong one

Solution:
• Get feedback. Don’t think for your users, ask them!
• Be consistent! Guide the users’ actions.
• Spend that 10% of time to make the application shine!



9

Sin#6: Documentation Paralysis

Observation:
• Huge amount of documentation

Problem:
• Out of date
• Manually produced
• Not informational/relevant

Solution:
• Source code metadata documentation
• Reverse engineer diagrams during implementation



10

Sin#7: Change Resistant

Observation:
• Pieces are only added, never taken away
• “This is how we do it here, try and adapt.”

Problem:
• People like to stay in their zone of comfort

Solution:
• Be flexible!
• “The reasonable man adapts himself to the 
environment; the unreasonable man persists in trying to 
adapt the environment to himself. If any progress has 
been achieved it was due to the unreasonable man.”



11

Summary

Things to take home:
• Automate as much as you can.
• Over-design, under-engineer.
• Be lazy! Re-use code, Patterns, Templates.
• Looks matter!
• Be unreasonable! Change how things are done.



Thank You!

Ioannis Baltopoulos
CERN Summer Student 2004

CSC Student Lectures (Vico Equence)
Monday, 6th September, 2004



13

Tools of the Trade: Build tools

• ANT (ant.apache.org)
• Maven (maven.apache.org)
• GNU Make (www.gnu.org/software/make)
• NAnt (nant.sourceforge.net)

http://www.gnu.org/software/make


14

Tools of the Trade: IDEs

• Eclipse (www.eclipse.org)
• NetBeans (www.netbeans.org)
• JCreator (www.jcreator.com)
• IntelliJ IDEA (www.jetbrains.com)
• Sun Java Studio Creator (www.sun.com/jscreator)
• JDeveloper (otn.oracle.com/products/jdev)
• Visual Studio (http://msdn.microsoft.com/vstudio/)

http://www.eclipse.org/
http://www.netbeans.org/
http://www.jcreator.com/
http://www.jetbrains.com/
http://www.sun.com/jscreator


15

Tools of the Trade: Testing

• JUnit (www.junit.org)
• Clover (www.cenqua.com/clover)
• JCoverage (www.jcoverage.com)
• SQLUnit (sqlunit.sourceforge.net)
• DBUnit (dbunit.sourceforge.net)
• HTTPUnit (httpunit.sourceforge.net)

http://www.junit.org/
http://www.jcoverage.com/


16

Tools of the Trade: Quality Assurance

• Checkstyle (checkstyle.sourceforge.net)



17

Tools of the Trade: Auto Documentation

• JavaDoc (www.sun.com)
• Doxygen (www.doxygen.org)
• yDoc (www.yworks.com)

http://www.sun.com/
http://www.doxygen.org/
http://www.yworks.com/


18

Tools of the Trade: Design Tools

• ArgoUML
• Poseidon for UML
• Rational Rose
• MagicDraw
• Visio
• Together



19

Tools of the Trade: Version Control

• CVS (www.cvshome.org)
• Subversion (subversion.tigris.org)
• Visual SourceSafe (msdn.microsoft.com/ssafe)
• RCS

http://www.cvshome.org/


20

Source Code Resources

• Java Almanac
• Java Forums (forums.java.sun.com)
• Numerical Recipes in C
• Stony Brook Algorithm Repository



21

Design Patterns Resources


	The 7 Sins of Software Engineers in HEP
	Outline
	Establishing the Context
	Sin#1: Tool-coupled Productivity
	Sin#2: Code Infected
	Sin#3: Process Infected
	Sin#4: Reinventing The Wheel
	Sin#5: Functional but not Usable
	Sin#6: Documentation Paralysis
	Sin#7: Change Resistant
	Summary
	Thank You!
	Tools of the Trade: Build tools
	Tools of the Trade: IDEs
	Tools of the Trade: Testing
	Tools of the Trade: Quality Assurance
	Tools of the Trade: Auto Documentation
	Tools of the Trade: Design Tools
	Tools of the Trade: Version Control
	Source Code Resources
	Design Patterns Resources

