
Introduction to
Databases, Database Design and SQL

Zornitsa Zaharieva

CERN
Accelerators and Beams Department

Controls Group, Data Management Section

/AB-CO-DM/

08-SEP-2005

Zornitsa Zaharieva – CERN /AB-CO-DM/2/45

Introduction to Databases, Database Design and SQL

: Introduction to Databases

: Main Database Concepts

: Conceptual Design - Entity-Relationship Model

: Logical Design - Relational Model

: Normalization and Denormalization

: Introduction to SQL

: Implementing the Relational Model through DDL

: DML Statements – SELECT, INSERT, DELETE, UPDATE, MERGE

: Transactions

: Best Practices in Database Design

Contents

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

3/45

Introduction to DatabasesIntroduction to Databases

• Data stored in file systems – problems with
: redundancy
: maintenance
: security
: efficient access to the data

• Database Management Systems

Software tools that enable the management (definition, creation,
maintenance and use) of large amounts of interrelated data
stored in a computer accessible media.

Software tools that enable the management (definition, creation,
maintenance and use) of large amounts of interrelated data
stored in a computer accessible media.

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

4/45

Capabilities of a Database Management SystemCapabilities of a Database Management System

• Manage persistent data

• Access large amounts of data efficiently

• Support for at least one data model

• Support for certain high-level language that allow the user to
define the structure of the data, access data, and manipulate data

• Transaction management – the capability to provide correct,
concurrent access to the database by many users at once

• Access control – the ability to limit access to data by unauthorized
users, and the ability to check the validity of data

• Resiliency – the ability to recover from system failures without
losing data

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

5/45

Data ModelData Model

• A mathematical abstraction (formalism) through which the user
can view the data

• Has two parts
1. A notation for describing data
2. A set of operations used to manipulate that data

• Examples of data models
: relational model
: network model
: hierarchical model
: object model

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

6/45

Design PhasesDesign Phases

• Difficulties in designing the DB’s effectively brought design
methodologies based on data models

• Database development process

Conceptual Design
Produces the initial model of the real world in
a conceptual model

Logical Design
Consists of transforming the conceptual
schema into the data model supported by the
DBMS

Physical Design

Aims at improving the performance of the
final system

Business Information Requirements

Conceptual Data
Modeling

Logical Database
Design

Physical Database
Design

Operational Database

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

7/45

Conceptual DesignConceptual Design

• The process of constructing a model of the information used in an
enterprise

• Is a conceptual representation of the data structures

• Is independent of all physical considerations

• Should be simple enough to communicate with the end user

• Should be detailed enough to create the physical structure

Conceptual DesignConceptual DesignBusiness information
requirements

Conceptual model
(Entity-Relationship Model)

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

8/45

Entity-Relationship ModelEntity-Relationship Model

• The Entity-Relationship model (ER) is the most common conceptual
model for database design nowadays

• No attention to efficiency or physical database design

• Describes data as entities, attributes, and relationships

• It is assumed that the Entity-Relationship diagram will be turned into
one of the other available models during the logical design

Entity-relationship model

Hierarchical model Network model

Relational model

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

9/45

EntityEntity

Remote Database
/edmsdb/

Local Database
/cerndb1/

• A thing of significance about which the business needs to store
information

trivial example: employee, department
CERN controls example: controls_entity, location, entity_parameter,

system, quantity_code, data_type

• Entity instance – an individual occurrence of a given entity

trivial example: a single employee
CERN controls example: a given system (e.g. SPS Vacuum)

Note: Be careful when establishing the ‘boundaries’ for the entity, e.g.
entity employee – all employees in the company or all employees in
a given department – depends on the requirements

“a thing that exists and is distinguishable” J. Ullman

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

10/45

AttributesAttributes

• Attributes are properties which describe the entity
attributes of system - id, description, comments

• Attributes associate with each instance of an entity a value from a
domain of values for that attribute

set of integers, real numbers, character strings

• Attributes can be
: optional
: mandatory

• A key - an attribute or a set of attributes,
whose values uniquely identify each
instance of a given entity

SYSTEM
id
* description
o comments

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

11/45

RelationshipsRelationships

• Associations between entities
examples: employees are assigned to departments

entity_parameters are generated by systems

• Degree - number of entities associated with a relationship (most
common case - binary)

• Cardinality - indicates the maximum possible number of entity
occurrences

• Existence - indicates the minimum number of entity occurrences
set of integers, real numbers, character strings

: mandatory
: optional

SYSTEM
id
* description

ENTITY_PARAMETER
id
* description
o expert_name
……

produces

is generated by

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

12/45

Relationship CardinalityRelationship Cardinality

• One-to-One (1:1)
one manager is a head of one department

Note: Usually this is an assumption about the real world that the
database designer could choose to make or not to.

• One-to-Many (1:N)
one system could generate many parameters
one parameter is generated by only one system

• Many-to-Many (N:M)
many employees are assigned to one project
one employee is assigned to many projects

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

13/45

CERN Controls ExampleCERN Controls Example

• Entity-Relationship diagram example – LHC Naming Database

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

14/45

Logical DesignLogical Design

Logical DesignLogical DesignConceptual model
(Entity-Relationship Model)

Normalized Relational
Model

Business Information Requirements

Conceptual Data
Modeling

Logical Database
Design

Physical Database
Design

Operational Database

Logical Database
Design

• Translate the conceptual representation
into the logical data model supported by
the DBMS

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

15/45

Relational ModelRelational Model

• The most popular model for database implementation nowadays

• Supports powerful, yet simple and declarative languages with which
operations on data are expressed

• Value-oriented model

• Represents data in the form of relations

• Data structures – relational tables

• Data integrity – tables have to satisfy integrity constraints

• Relational database – a collection of relations or two-dimensional tables

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

16/45

• Composed by named columns and unnamed rows

• The rows represent occurrences of the entity

• Every table has a unique name

• Columns within a table have unique names

• Order of columns is irrelevant

• Every row is unique

• Order of rows is irrelevant

• Every field value is atomic (contains a single value)

Relational TableRelational Table

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

17/45

Primary Key (PK) and Foreign Key (FK)Primary Key (PK) and Foreign Key (FK)

• Primary Key - a column or a set of columns that uniquely identify
each row in a table

• Composite (compound) key
• Role is to enforce integrity - every table must have a primary key
• For every row the PK

: must have a non-null value
: the value must be unique
: the value must not change or become ‘null’ during the table lifetime
: columns with the above mentioned characteristics are candidate keys

• Primary Key - a column or a set of columns that uniquely identify
each row in a table

• Composite (compound) key
• Role is to enforce integrity - every table must have a primary key
• For every row the PK

: must have a non-null value
: the value must be unique
: the value must not change or become ‘null’ during the table lifetime
: columns with the above mentioned characteristics are candidate keys

• Foreign Key - column(s) in a table that serves as a PK of another
table

• Enforces referential integrity by completing an association
between two tables

• Foreign Key - column(s) in a table that serves as a PK of another
table

• Enforces referential integrity by completing an association
between two tables

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

18/45

Data IntegrityData Integrity

• Refers to the accuracy and consistency of the data by applying
integrity constraints rules

• Attributes associate with each instance of an entity a value from a
domain of values for that attribute

Constraint type Explanation
___ _
Entity Integrity No part of a PK can be NULL
--
Referential Integrity A FK must match an existing PK value or else be NULL
--
Column Integrity A column must contain only values consistent with the

defined data format of the column
--
User-defined Integrity The data stored in the database must comply with the

business rules

Constraint type Explanation
___ _
Entity Integrity No part of a PK can be NULL
--
Referential Integrity A FK must match an existing PK value or else be NULL
--
Column Integrity A column must contain only values consistent with the

defined data format of the column
--
User-defined Integrity The data stored in the database must comply with the

business rules

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

19/45

From Entity-Relationship Model to Relational ModelFrom Entity-Relationship Model to Relational Model

Entity-Relationship model

Entity
Attribute
Key
Relationship

Entity-Relationship model

Entity
Attribute
Key
Relationship

Relational model

Relational table
Column (attribute)
Primary Key (candidate keys)
Foreign Key

Relational model

Relational table
Column (attribute)
Primary Key (candidate keys)
Foreign Key

SYSTEM

id

* description

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

20/45

Relationships TransformationsRelationships Transformations

• Binary 1:1 relationships
Solution : introduce a foreign key in the table on the optional side

• Binary 1:N relationship
Solution : introduce a foreign key in the table on the ‘many’ side

• M:N relationships
Solution : create a new table;

: introduce as a composite Primary Key of the new table,
the set of PKs of the original two tables

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

21/45

CERN Controls ExampleCERN Controls Example

• Relational Model diagram example – before normalization

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

22/45

NormalizationNormalization

1st Normal Form

2nd Normal Form

3rd Normal Form

Boyce/Codd Normal Form

4th Normal Form

5th Normal Form

Normalized relational db
model

Relational db model• A series of steps followed to obtain a database
design that allows for consistent storage and
avoiding duplication of data

• A process of decomposing relationships with
‘anomalies’

• The normalization process passes through
fulfilling different Normal Forms

• A table is said to be in a certain normal form if
it satisfies certain constraints

• Originally Dr. Codd defined 3 Normal Forms,
later on several more were added

• For most practical purposes databases are
considered normalized if they adhere to
3rd Normal Form

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

23/45

DenormalizationDenormalization

• Queries against a fully normalized database often perform poorly

Explanation: Current RDBMSs implement the relational model poorly.
A true relational DBMS would allow for a fully normalized database at
the logical level, whilst providing physical storage of data that is tuned
for high performance.

• Two approaches are used

Approach 1: Keep the logical design normalized, but allow the DBMS
to store additional redundant information on disk to optimize
query response (indexes, materialized views, etc.).
In this case it is the DBMS software's responsibility to ensure
that any redundant copies are kept consistent.

Approach 2: Use denormalization to improve performance,
at the cost of reduced consistency

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

24/45

DenormalizationDenormalization

• Denormalization is the process of attempting to optimize the
performance of a database by adding redundant data

• This may achieve (may not!) an improvement in query response, but
at a cost

• There should be a new set of constraints added that specify how the
redundant copies of information must be kept synchronized

• Denormalization can be hazardous
: increase in logical complexity of the database design
: complexity of the additional constraints

• It is the database designer's responsibility to ensure that the denormalized
database does not become inconsistent

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

25/45

CERN Controls ExampleCERN Controls Example

•Relational Model diagram example – after normalization

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

26/45

Structured Query LanguageStructured Query Language

• Most commonly implemented relational query language

• SQL
: originally developed by IBM
: official ANSI standard

• Used to create, manipulate and maintain a relational database by using
Data Definition Language (DDL)
: defines the database schema by creating, replacing, altering and dropping

objects – e.g. CREATE, DROP, ALTER, RENAME, TRUNCATE table

Data Manipulation Language (DML)
: manipulates the data in the tables by inserting, updating, deleting and

querying data – e.g. SELECT, INSERT, UPDATE, DELETE

Data Control Language (DCL)
: controls access to the database schema and its objects – e.g.

GRANT, REVOKE privileges
: guarantees database inconsistency and integrity

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

27/45

Database Schema ImplementationDatabase Schema Implementation

Definition: Database schema is a collection of logical structures of data

• The implementation of the database schema is realized through
the DDL part of SQL

• Although there is a standard for SQL, there might be some features
when writing the SQL scripts that are vendor specific

• Some commercially available RDBMS
: Oracle
: DB2 – IBM
: Microsoft SQL Server
: Microsoft Access
: mySQL

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

28/45

Create TableCreate Table

• Create table - describes the layout of the table by providing
: table name
: column names
: datatype for each column
: integrity constraints – PK, FK, column constraints, default values, not null

CREATE TABLE systems (
sys_id VARCHAR2(20)
,sys_description VARCHAR2(100)

);

• Each attribute of a relation (column in a table) in a RDBMS has a
datatype that defines the domain of values this attribute can have

• The datatype for each column has to be specified when creating a table
: ANSI standard
: Oracle specific implementation

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

29/45

ConstraintsConstraints

• Primary Key
ALTER TABLE systems ADD
(CONSTRAINT SYSTEM_PK PRIMARY KEY (sys_id));

• Foreign Key
ALTER TABLE entity_parameters ADD
(CONSTRAINT EP_SYS_FK FOREIGN KEY (system_id) REFERENCES systems(sys_id))

• Unique Key
ALTER TABLE entity_parameters ADD
(CONSTRAINT EP_UNQ UNIQUE (ep_name));

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

30/45

SequencesSequences

• A db object that generates in in/de-creasing order a unique
integer number

• Can be used as PK for a table
(in the absence of a more ‘natural’ choice)

• Better than generating ID in application
code
: very efficient thanks to caching
: uniqueness over multiple sessions, transaction safe

• Get sequence values
: current value
: next value

SELECT ep_seq.NEXTVAL
FROM DUAL;

SELECT ep_seq.CURRVAL
FROM DUAL;

SELECT ep_seq.NEXTVAL
FROM DUAL;

SELECT ep_seq.CURRVAL
FROM DUAL;

CREATE SEQUENCE ep_seq
START WITH 1
NOMAXVALUE
NOMINVALUE
NOCYCLE
NOCACHE

CREATE SEQUENCE ep_seq
START WITH 1
NOMAXVALUE
NOMINVALUE
NOCYCLE
NOCACHE

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

31/45

Basic DML Statements - SELECTBasic DML Statements - SELECT

• Retrieve all available data in a table

• Retrieve a sub-set of the available columns
treating NULL values and set the order
of the rows in the result set

• Retrieve all distinct values in a column

• Assign pseudonyms to the
columns to retrieve and
concatenating column values

• Data can be grouped and summary values computed

SELECT *
FROM employees;

SELECT *
FROM employees;

SELECT DISTINCT div_id
FROM employees;

SELECT DISTINCT div_id
FROM employees;

SELECT name ,NVL(email, ‘-’)
FROM employees
ORDER BY name ASC;

SELECT name ,NVL(email, ‘-’)
FROM employees
ORDER BY name ASC;

SELECT first_name || name AS employee_name
FROM employees;

SELECT first_name || name AS employee_name
FROM employees;

SELECT customer_id, COUNT(*) AS orders_per_customer
FROM orders

GROUP BY customer_id;

SELECT customer_id, COUNT(*) AS orders_per_customer
FROM orders

GROUP BY customer_id;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

32/45

Set Operators – Combining Multiple QueriesSet Operators – Combining Multiple Queries

• Union without duplicates (1+2)

• Union with duplicates (1+2+3)

• Intersect (3)

• Minus (1)

SELECT name FROM visitors
UNION

SELECT name FROM employees;

SELECT name FROM visitors
UNION

SELECT name FROM employees;

SELECT name FROM visitors
INTERSECT

SELECT name FROM employees;

SELECT name FROM visitors
INTERSECT

SELECT name FROM employees;

SELECT name FROM visitors
MINUS

SELECT name FROM employees;

SELECT name FROM visitors
MINUS

SELECT name FROM employees;

SELECT name FROM visitors
UNION ALL

SELECT name FROM employees;

SELECT name FROM visitors
UNION ALL

SELECT name FROM employees;

1 23

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

33/45

Restricting the Data SelectionRestricting the Data Selection

• Need to restrict and filter the rows of data that are displayed

• Clauses and Operators
: WHERE
: comparisons operators (=, >, < …..)
: BETWEEN, IN
: LIKE
: logical operators (AND,OR,NOT)

SELECT name
FROM employees

WHERE salary > 10000;

SELECT name
FROM employees

WHERE salary > 10000;

SELECT *
FROM employees

WHERE emp_id = 30;

SELECT *
FROM employees

WHERE emp_id = 30;

SELECT *
FROM employees

WHERE div_id = 20
AND hiredate > TO_DATE(‘01-01-2000', ‘DD-MM-YYYY');

SELECT *
FROM employees

WHERE div_id = 20
AND hiredate > TO_DATE(‘01-01-2000', ‘DD-MM-YYYY');

SELECT *
FROM employees

WHERE name LIKE ‘C%’;

SELECT *
FROM employees

WHERE name LIKE ‘C%’;

SELECT COUNT(*)
FROM employees

WHERE salary BETWEEN 1000 AND 2000;

SELECT COUNT(*)
FROM employees

WHERE salary BETWEEN 1000 AND 2000;

SELECT div_name
FROM divisions

WHERE div_id IN (SELECT div_id
FROM employees

WHERE salary > 2000);

SELECT div_name
FROM divisions

WHERE div_id IN (SELECT div_id
FROM employees

WHERE salary > 2000);

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

34/45

NATURAL JoinNATURAL Join

• Relates rows of two different tables sharing common values in one or more
columns of each table

• Typical case: a foreign key referring to a primary key

SELECT e.ename ,d.dname
FROM emp e ,dept d

WHERE e.deptno = d.deptno;

SELECT e.ename ,d.dname
FROM emp e ,dept d

WHERE e.deptno = d.deptno;

What are the names of the employees and their departments?What are the names of the employees and their departments?

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

35/45

SubqueriesSubqueries

• Logically, think of sub-queries in the following way:
Sub-queries (inner queries) execute once before the main query
The sub-query results are used by the main query (outer query)

SELECT ename
FROM emp

WHERE deptno = (SELECT deptno
FROM emp

WHERE ename = 'CLARK');

SELECT ename
FROM emp

WHERE deptno = (SELECT deptno
FROM emp

WHERE ename = 'CLARK');

Who works in the same department as Clark?Who works in the same department as Clark?

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

36/45

Correlated Sub-queriesCorrelated Sub-queries

• In previous sub-queries the inner query was executed only once before the
main query and the same inner query result applies to all outer query rows

• The inner query is evaluated for each row produced by the outer query

SELECT empno, ename, sal, deptno
FROM emp e
WHERE sal > (SELECT AVG(sal)

FROM emp
WHERE deptno = e.deptno)
ORDER BY deptno, sal DESC;

SELECT empno, ename, sal, deptno
FROM emp e
WHERE sal > (SELECT AVG(sal)

FROM emp
WHERE deptno = e.deptno)
ORDER BY deptno, sal DESC;

Who are the employees that receive more than the average salary of their
department?
Who are the employees that receive more than the average salary of their

department?

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

37/45

Inline views – Sub-queries in the FROM clauseInline views – Sub-queries in the FROM clause

• We can use a “inline view” as the data source on which the main query is
executed (FROM clause)

SQL> SELECT ename, sal, MAX(sal), deptno FROM emp;
SELECT ename, sal, MAX(sal), deptno FROM emp

*
ERROR at line 1:
ORA-00937: not a single-group group function

SQL> SELECT ename, sal, MAX(sal), deptno FROM emp;
SELECT ename, sal, MAX(sal), deptno FROM emp

*
ERROR at line 1:
ORA-00937: not a single-group group function

What are the employees salary and the maximum salary in their department?What are the employees salary and the maximum salary in their department?

SELECT e.ename ,e.sal ,a.maxsal ,a.deptno
FROM emp e,

(SELECT max(sal) maxsal ,deptno
FROM emp

GROUP BY deptno) a
WHERE e.deptno = a.deptno
ORDER BY e.deptno ,e.sal DESC;

SELECT e.ename ,e.sal ,a.maxsal ,a.deptno
FROM emp e,

(SELECT max(sal) maxsal ,deptno
FROM emp

GROUP BY deptno) a
WHERE e.deptno = a.deptno
ORDER BY e.deptno ,e.sal DESC;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

38/45

Basic DML Statements – Insert and DeleteBasic DML Statements – Insert and Delete

• Insert data in a table

• Delete data

INSERT INTO employees (
emp_id ,div_id

,name ,hire_date
)

VALUES (
emp_seq.NEXTVAL ,3

,UPPER(‘Smith’)
,SYSDATE

);

INSERT INTO bonuses
SELECT employee_id ,salary*1.1

FROM employees
WHERE commission_pct > 0.25 * salary;

INSERT INTO employees (
emp_id ,div_id

,name ,hire_date
)

VALUES (
emp_seq.NEXTVAL ,3

,UPPER(‘Smith’)
,SYSDATE

);

INSERT INTO bonuses
SELECT employee_id ,salary*1.1

FROM employees
WHERE commission_pct > 0.25 * salary;

DELETE FROM employees;DELETE FROM employees; DELETE FROM employees
WHERE div_id = 3;

DELETE FROM employees
WHERE name = UPPER(‘smith’);

INSERT ALL
WHEN ottl < 100000 THEN

INTO small_orders
VALUES(oid, ottl, sid, cid)

WHEN ottl > 100000 and ottl < 200000 THEN
INTO medium_orders

VALUES(oid, ottl, sid, cid)
WHEN ottl > 200000 THEN

INTO large_orders
VALUES(oid, ottl, sid, cid)

WHEN ottl > 290000 THEN
INTO special_orders

SELECT o.order_id oid ,o.customer_id cid
,o.order_total ottl ,o.sales_rep_id sid
,c.credit_limit cl , c.cust_email cem

FROM orders o ,customers c
WHERE o.customer_id = c.customer_id;

INSERT ALL
WHEN ottl < 100000 THEN

INTO small_orders
VALUES(oid, ottl, sid, cid)

WHEN ottl > 100000 and ottl < 200000 THEN
INTO medium_orders

VALUES(oid, ottl, sid, cid)
WHEN ottl > 200000 THEN

INTO large_orders
VALUES(oid, ottl, sid, cid)

WHEN ottl > 290000 THEN
INTO special_orders

SELECT o.order_id oid ,o.customer_id cid
,o.order_total ottl ,o.sales_rep_id sid
,c.credit_limit cl , c.cust_email cem

FROM orders o ,customers c
WHERE o.customer_id = c.customer_id;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

39/45

Basic DML Statements – Update and MergeBasic DML Statements – Update and Merge

• Update data

• Merge data
MERGE INTO bonuses B

USING (SELECT employee_id ,salary ,department_id
FROM employees

WHERE department_id = 80) S
ON (B.employee_id = S.employee_id)

WHEN MATCHED THEN
UPDATE SET B.bonus = B.bonus + S.salary*.01

WHEN NOT MATCHED THEN
INSERT (B.employee_id, B.bonus)
VALUES (S.employee_id, S.salary*0.1);

MERGE INTO bonuses B
USING (SELECT employee_id ,salary ,department_id

FROM employees
WHERE department_id = 80) S

ON (B.employee_id = S.employee_id)
WHEN MATCHED THEN

UPDATE SET B.bonus = B.bonus + S.salary*.01
WHEN NOT MATCHED THEN

INSERT (B.employee_id, B.bonus)
VALUES (S.employee_id, S.salary*0.1);

UPDATE employees
SET salary = 1000 ;

UPDATE employees
SET salary = salary+1000;

UPDATE employees
SET salary = 1000 ;

UPDATE employees
SET salary = salary+1000;

UPDATE employees
SET salary = 1000

WHERE name=‘SMITH’;

UPDATE employees
SET salary = salary+1000

WHERE div_id = 3;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

40/45

• Transaction is a sequence of SQL statements that Oracle treats as a
single unit.

• Transaction can start with SET TRANSACTION
: READ COMMITTED mode – other DML statements (users) will wait until the end

of the transaction, if they try to change locked rows
: SERIALIZABLE mode – other DML statements (users) will get error if they try to

change locked rows

• Transaction ends with COMMIT or ROLLBACK statement.
: the set of changes is made permanent with the COMMIT statement
: part or all transactions can be undone with the ROLLBACK statement
: SAVEPOINT is a point within a transaction to which you may rollback
: Oracle implicitly commits the current transaction before or after a DDL

statement

TransactionsTransactions

What happens if the database crashes in the middle of several updates?What happens if the database crashes in the middle of several updates?

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

41/45

Best Practices in Database DesignBest Practices in Database Design

• ‘Black box’ syndrome
: understand the features of the database and use them

• Relational database or a data ‘dump’
: let the database enforce integrity
: using the power of the relational database – manage

integrity in multi-user environment
: using PK and FK
: not only one application will access the database
: implementing constraints in the database, not in the

client or in the middle tier, is faster
: using the right datatypes

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

42/45

Best Practices in Database DesignBest Practices in Database Design

• Not using generic database models
: tables - objects, attributes, object_attributes, links
: performance problem!

• Designing to perform

• Creating a development (test) environment

• Testing with real data and under real conditions

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

43/45

Development ToolsDevelopment Tools

• Oracle provided tools
: Oracle Designer
: SQL* Plus
: JDeveloper

• Benthic Software - http://www.benthicsoftware.com/
: Golden
: PL/Edit
: GoldView
: at CERN - G:\Applications\Benthic\Benthic_license_CERN.html

• Microsoft Visio

• CAST - http://www.castsoftware.com/
: SQL Code-Builder

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

44/45

ReferencesReferences

[1] Ensor, D., Stevenson, I., Oracle Design, O’Reilly, 1997

[2] Kyte, T., Effective Oracle by Design, McGraw-Hill,

[3] Loney, K., Koch, G., Oracle 9i – The Complete Reference, McGraw-Hill, 2002

[4] Oracle course guide, Data Modeling and Relational Database Design, Oracle, 1996

[5] Rothwell, D., Databases: An Introduction, McGraw-Hill, 1993

[6] Ullman, J., Principles of Databases and Knowledge-Base Systems volumn 1,
Computer Science Press, 1988

[7] Oracle on-line documentation
http://oracle-documentation.web.cern.ch/oracle-documentation/

Zornitsa Zaharieva – CERN /AB-CO-DM/

Introduction to Databases, Database Design and SQL

45/45

End;End;

Thank you for your attention!

Zornitsa.Zaharieva@cern.ch

Introduction to Databases, Database Design and SQL

Information Requirements – CERN Controls ExampleInformation Requirements – CERN Controls Example

“There is a need to keep an index of all the controls entities and their parameters coming
from different controls systems. Each controls entity has a name, description and location.
For every entity there might be several parameters that are characterized by their name,
description, unit, quantity code, data type and system they are sent from. This database will
be accessed and exchange data with some of the existing databases related to the
accelerators controls. It will ensure that every parameter name is unique among all existing
controls systems.”

“There is a need to keep an index of all the controls entities and their parameters coming
from different controls systems. Each controls entity has a name, description and location.
For every entity there might be several parameters that are characterized by their name,
description, unit, quantity code, data type and system they are sent from. This database will
be accessed and exchange data with some of the existing databases related to the
accelerators controls. It will ensure that every parameter name is unique among all existing
controls systems.”

Naming db

Zornitsa Zaharieva – CERN /AB-CO-DM/
additional slidesA1

Introduction to Databases, Database Design and SQL

Information Requirements – CERN Controls ExampleInformation Requirements – CERN Controls Example

Samples of the data that has to be stored:

controls_entity
name: VPIA.10020
description: Vacuum Pump Sputter Ion type A in location 10020
entity_code: VPIA
expert_name: VPIA_10020
accelerator: SPS
location_name: 10020
location_class: SPS_RING_POS
location_class_description: SPS Ring position

entity_parameter
name: VPIA.10020:PRESSURE
description: Pressure of Vacuum Pump Sputter Ion type A in location 10020
expert_name: VPIA.10020.PR
unit_id: mb
unit_description: millibar
data_type: NUMERIC
quantity_code: PRESSURE
system_name: SPS_VACUUM
system_description: SPS Vacuum

Samples of the data that has to be stored:

controls_entity
name: VPIA.10020
description: Vacuum Pump Sputter Ion type A in location 10020
entity_code: VPIA
expert_name: VPIA_10020
accelerator: SPS
location_name: 10020
location_class: SPS_RING_POS
location_class_description: SPS Ring position

entity_parameter
name: VPIA.10020:PRESSURE
description: Pressure of Vacuum Pump Sputter Ion type A in location 10020
expert_name: VPIA.10020.PR
unit_id: mb
unit_description: millibar
data_type: NUMERIC
quantity_code: PRESSURE
system_name: SPS_VACUUM
system_description: SPS Vacuum

additional slidesA2

Introduction to Databases, Database Design and SQL

ER Modeling ConventionsER Modeling Conventions

• If you use Oracle Designer the following convention is used:

ENTITY

Soft box
Singular name
Unique
Uppercase

ENTITY

Soft box
Singular name
Unique
Uppercase

attribute

Singular name
Unique within the entity
Lowercase
Mandatory (*)
Optional (o)
Unique identifier (#)

attribute

Singular name
Unique within the entity
Lowercase
Mandatory (*)
Optional (o)
Unique identifier (#)

Note: There are different conventions for representing the ER model!

ENTITY_PARAMETER

id
* description
o expert_name
* unit_id
* unit_description

ENTITY_PARAMETER

id
* description
o expert_name
* unit_id
* unit_description

exampleexample

additional slidesA3

Introduction to Databases, Database Design and SQL

ER Modeling ConventionsER Modeling Conventions

• If you use Oracle Designer the following convention is used:

Relationship
Name – descriptive phrase
Line connecting to entities
Mandatory - solid line
Optional - dashed line
One - single line
Many - crow’s foot

Relationship
Name – descriptive phrase
Line connecting to entities
Mandatory - solid line
Optional - dashed line
One - single line
Many - crow’s foot

Note: There are different conventions for representing the ER model!
additional slidesA4

Introduction to Databases, Database Design and SQL

1st Normal Form1st Normal Form

• 1st Normal Form - All table attributes’ values must be atomic
: multi-values are not allowed

• By definition a relational table is in 1st Normal Form

additional slidesA5

Introduction to Databases, Database Design and SQL

2nd Normal Form2nd Normal Form

• 2nd Normal Form - Every non-key attribute is fully functionally dependent
on the PK

: no partial dependencies
: every attribute must be dependent on the entire PK

Solution:
: for each attribute in the PK that is involved in a partial dependency, create a

new table
: all attributes that are partially dependent on that attribute should be moved to

the new table

LOCATIONS(lc_class_id, lc_name, lc_class_description)

LOCATIONS (loc_class_id, loc_name)
LOCATION_CLASSES (lc_class_id, lc_class_description)

Definition: functional dependency (A -> B)
If attribute B is functionally dependent on attribute A,
then for every instance of A you can determine the value of B

additional slidesA6

Introduction to Databases, Database Design and SQL

3nd Normal Form3nd Normal Form

• No transitive dependencies for non-key attributes

Solution:
: for each non-key attribute A that depends upon another

non-key attribute B create a new table
: create PK of the new table as attribute B
: create a FK in the original table referencing the PK of the new table

Definition: Transitive dependence
When a non-key attribute depends on another non-key
attribute.

ENTITY_PARAMETERS(ep_id,…,unit_id, unit_description)

ENTITY_PARAMETERS(ep_id,…,unit_id)
UNITS(unit_id, unit_descrption)

additional slidesA7

Introduction to Databases, Database Design and SQL

Oracle Datatypes (excerpt)Oracle Datatypes (excerpt)

• CHAR (size) fixed-length char array
• VARCHAR2(size) variable-length char string
• NUMBER (precision, scale) any numeric
• DATE date and time with seconds precision
• TIMESTAMP data and time with nano-seconds precision
• CLOB char large object
• BLOB binary large object
• BINARY_FLOAT 32 bit floating point
• BINARY_DOUBLE 64 bit floating point
• … + some others

additional slidesA8

