Internet QoS and Network Performance

François Fluckiger CERN, Geneva

Outline of Lecture Series

- 1. Internet QoS Options
 - 2. TCP and Congestion Control
 - 3. Multimedia over the Internet

• GRID of systems

- Fast transfers => High Bit rate connections
- Predictable behavior
- Availability
- Grid of people

Internet QoS

New type of traffic for collaborative activities

IP is a connectionless (CL) protocol (stateless)

all packets independently routed

CSC2005

Internet OoS

- packets carry full destination address
- packets may be lost, miss-ordered
- all packets have same priority

Opposite = connection-oriented (CO) (stateful)

no information sent before a hard connection is set up

François Fluckiger

Stateful / Stateless Networks

Stateful	Stateless
Telephone	Post office
	Road Network
"λ on-demand"	Ethernet
ISDN	■ IP
ATM	
Frame Relay	
SNA	DECnet
■ X.25	
Internet QoS	François Fluckiger 14

CONS vs CLNS			
∔ Stateful Stateless			
Traffic more predictable	No call set-up delay before sending a packet		
 Easier for network to reserve resources 	Routing possibly more dynamic		
QoS easier to guarantee	Resilience		
Internet QoS	François Fluckiger 15		

Types of Applications

- Constant Bit Rate (CBR)
 Traditional real-time applications e.g. PABXs
- Available Bit Rate (ABR)
 - Traditional bulk data applications e.g. file transfer
- Variable Bit Rate (VBR)
 Modern real-time applications e.g. compressed audio, video

François Fluckiger

IP, HTTP Stateless Regular Behavior

IP switch

- take a packet, forward it, forget it ...
- take a packet, forward it, forget it ...

HTTP server

- take a request, serve it, forget it
- take a request, serve it, forget it

Predicting Load?

CSC2005 **Internet Base IP service** Objective Initial Internet single class of service: "<u>best-effort</u> service" packet forwarding completely egalitarian Consequence No service guarantee rest How to better guarantee end-to-end throughput, delays? "How to have packets more equal than others?" François Fluckiger 23 Internet QoS nternet Oos

On service discrimination ...

Give better service to some traffic

... at the expense of giving **worse** service to the

François Fluckiger

24

(hopefully in times of congestion only)

- Resource reservation is necessary
 - Reservations on a per-flow basis
- Routers have to maintain flow-specific <u>states</u>

François Fluckige

Protocol: <u>NSIS</u> (recent), <u>RSVP</u> (older)

(NSIS/RSVP) - Diffserv - MPLS merits			
	Capacity Admission	Scalability	Route Stability
NSIS/RSVP	Yes	No	No
Diffserv			
MPLS			
Internet QoS			François Fluckiger 34

Implementing Packet Marking • No need to change IP packet header, just refine meaning of existing fields • IPv4 • Provided with a mechanism for packet priority marking, the <u>Type of Service (ToS)</u> octet • IPv6 • Provided with <u>Traffic Class</u> octet

François Fluckiger

39

CSC2005

Internet QoS

(NSIS/RS	SVP) - Diff	serv - MPI	LS merits
	Capacity Admission	Scalability	Route Stability
NSIS/RSVP	Yes	No	No
Diffserv	No	Yes	No
MPLS			
Internet QoS	1	1	François Fluckiger 40

(NSIS/RS	SVP) - Diff	serv - MP	LS merits
	Capacity Admission	Scalability	Route Stability (*)
NSIS/RSVP	Yes	No	No
Diffserv	No	Yes	No
MPLS	No	No	Yes
(*) + Traffic Eng	ineering	1	François Fluckiger 44

- Some LAN-WAN boundaries
- Wireless Internet Telephony

- 1. Internet QoS Options
- 2. TCP and Congestion Control
- 3. Multimedia over the Internet

Why is QoS Important in GRID Environments?

- GRID of systems
 - Fast transfers => High Bit rate connections
 - Predictable behavior
 - Availability
- Grid of people
 - New type of traffic for collaborative activities

Audio bit rate requirements			
Quality	Technique or standard	Kbps	Compr.
Telephone quality	,		
 Standard Standard Lower Lower Standard- Lower+ 	G.711 PCM G.721 ADPCM G.728 LD-CELP GSM G.729 LD-CELP CELP	64 32 16 13 8 5-7	Y Y Y Y
CD Quality Consumer CD-audio Consumer CD-audio Sound studio quality Consumer CD-audio (MP3)	CD-DA MPEG with FFT MPEG with FFT MPEG2.5 Layer III	1441 (stereo) 192-256 384 128 (stereo)	Y Y Y
Internet QoS		Franço	is Fluckiger 89

Quality	Technique or standard	Mbps	Compr.
 Video conf. quality 	H.261	0.1	Y
 VCR quality 	MPEG-1	1.2.	Y
 Broadcast quality Compressed Compressed 	MPEG-2 MPEG-4	2-4 2	Y Y
 Studio-quality digital TV Uncompressed Compressed 	ITU-R 601 MPEG-2	166 3 to 6	Y
 HDTV Uncompressed Compressed 	CD-DA MPEG-2	2000 25 to 34	Y

Further reading ...

- Internetworking with TCP/IP, vol 1 Douglas E. Commer, Prentice Hall, ISBN 0-130-183806
- Computer Networks, Ed. 4
 Andrew Tannenbaum, Prentice Hall, ISBN 0-130-661023
- Understanding Networked Multimedia Francois Fluckiger, Prentice Hall, ISBN 0-131-90992-4
- Understanding Media Marshal Mac Luhan, The MIT Press, ISBN 0-262-631159