

The Grid Data Management Challenge Overview of Data Management services File Storage Systems File and Replica Catalogs File I/O File Movement Disclaimer: data can be stored in files or as structured data in databases – in the following we deal only with files as this is the most common usecase in the HEP community

CSC 2005, Data Management, St. Malo, France 2

INFSO-RI-508833

The Grid DM Challenge

- Heterogeneity
 - Data is stored on different storage systems using different access technologies
- **Distribution**
 - Data is stored in different locations in most cases there is no shared file system or common namespace
 - Data needs to be moved between different locations
- **Different Administrative Domains**
 - Data is stored at places you would normally have no access to
 - Security and auditing implications

- Need common interface to storage resources
 - Storage Resource Manager (SRM)
- Need to keep track where data is stored
 - File and Replica Catalogs
- Need scheduled, reliable file transfer
 - File transfer and placement services
- Need a common security
 - ACLs enforcement based on Grid identities - DNs

CSC 2005, Data Management, St. Malo, France

NFSO-RI-508833

GGGG

Data Management Services

gsiftp, https, rfio, ...

Castor, dCache, DPM, ...

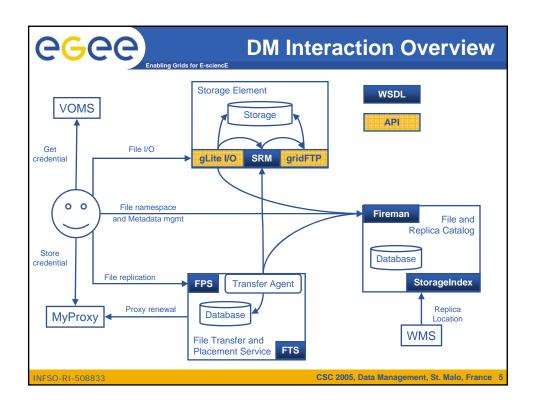
gLite-I/O, rfio, dcap, xrootd

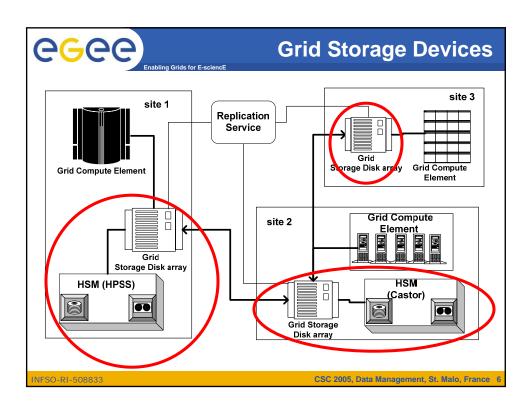
- Storage Element common interface to storage
 - Storage Resource Manager
 - POSIX-I/O
 - Access protocols
- Catalogs keep track where data is stored
 - File Catalog
 - Replica Catalog
 - File Authorization Service
 - Metadata Catalog
- File Transfer scheduled reliable file transfer
 - Data Scheduler
 - File Transfer Service (manages physical transfer)
 - File Placement Service

(FTS and catalog interaction in a transactional way)

Globus RLS

gLite File and Replica Catalog

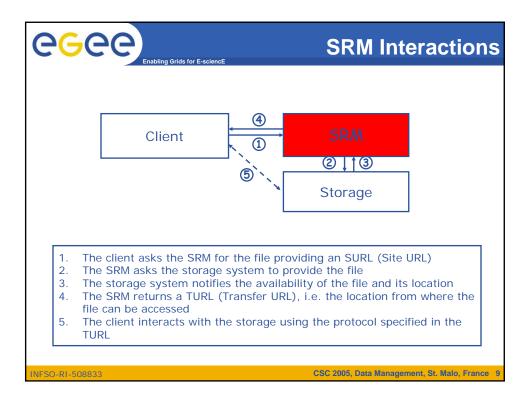

Application specific catalogs


(only designs exist so far)

gLite FTS and glite-url-copy; Globus RFT, Stork

aLite FPS

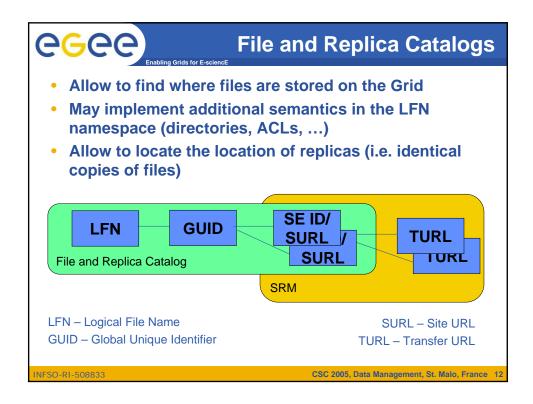
We do not cover security in this lecture Malo, France

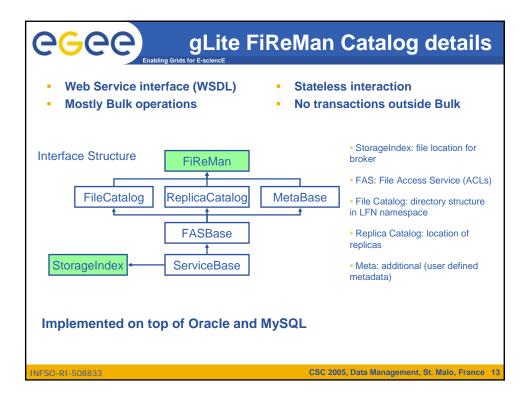

- Manage local storage and interface to Mass Storage Systems like
 - HPSS, CASTOR, DiskeXtender (UNITREE), ...
- Provide a unique interface
- Support basic file transfer and access protocols
 - GridFTP, FTP, POSIX-like...

CSC 2005, Data Management, St. Malo, France

- Data are stored on disk pool servers or Mass Storage Systems
- storage resource management needs to take into account
 - Transparent access to files (migration to/from disk pool)
 - File pinning
 - Space reservation
 - File status notification
 - Life time management
- SRM (Storage Resource Manager) takes care of all these details
 - SRM is a Grid Service that takes care of local storage interaction and provides a Grid interaface to outside world
- Interactions with the SRM is typically hidden by higher level services – will not be exercised

INFSO-RI-508833

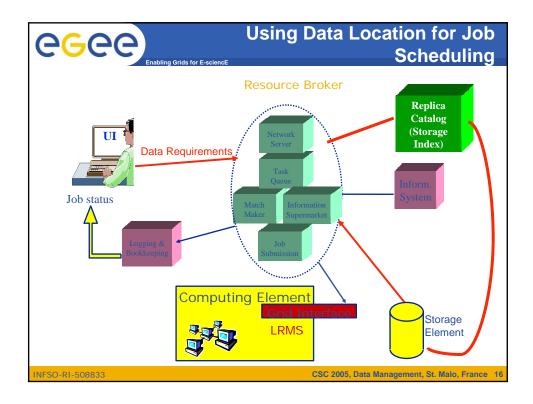



- File names typically have only a local meaning
 - /home/csc/csc05/students.dat (Unix)
 - srm://castorgrid.cern.ch:8443/srm/managerv1?SFN
 =/castor/cern.ch/file1 (SRM Site URL SURL)
- The local storage system may transform filenames e.g. an SURL cannot be accessed directly, it needs to be transformed into a Transfer URL (TURL) by an SRM:
 - gsiftp://se05.cern.ch/scratch/file05
- In order to locate files on the Grid we need mechanisms to abstract from local file naming and provide a grid-wide view on files

The File Naming Problem II

- Logical File Names (LFN)
 - Provide a human readable identifier for files on the Grid level
 - Can be arbitrary URIs
 - Need to be unique
 - lfn:///glite/myVO.org/production/run/07/123456/
 calibration/cal/cal-table100
- Global Unique Identifiers (GUID)
 - LFNs may be created in a distributed fashion hard to guarantee uniqueness
 - Assigning a GUID to each file when it is created allows to always uniquely identify it and thus conflict resolution in LFNs
 - Drawback: not human readable
 - 004c3326-0daf-126d-87f9-898a04b4beef

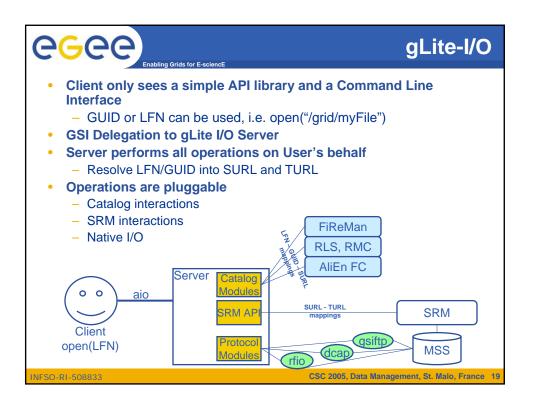
INFSO-RI-508833

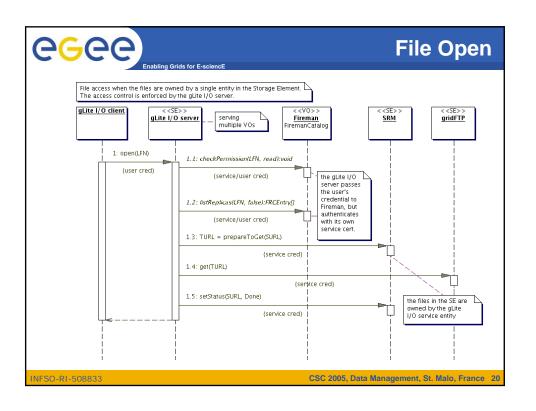


Main FiReMan Commands II

- Create an LFN
 - glite-catalog-create <lfn>
- Create a replica
 - glite-catalog-setreplica -a <surl> <lfn>
 - First replica needs to be a *master*.
 - glite-catalog-setreplica -m <surl> <lfn>
- List replicas
 - glite-catalog-getreplica <lfn>
- Remove a replica
 - glite-catalog-setreplica -d <surl> <lfn>
- Remove an LFN
 - glite-catalog-rm <lfn>

INFSO-RI-508833


```
Using Data Location for Job
                                                  Scheduling
                                          Endpoint of the Catalog
                                          (StorageIndex interface)
 Executable = "helloCSC.sh";
 StdOutput = "Message.txt";
 StdError = "stderr.log";
 StorageIndex = "http://lxb2028.cern.ch:8080/EGEE/glite-data-
 catalog-service-fr/services/SEIndex";
                                          LFN of the file needed
 InputData = "lfn:///tmp/testCSC";
 DataAccessProtocol = "gridftp,gliteio";
 OutputSandbox = {"Message.txt", "stdexr.log", "testfile.txt"};
                                         Access protocol used
                                      CSC 2005, Data Management, St. Malo, France 17
INFSO-RI-508833
```


CGCC Enabling Grids for E-scie

Remote File Access

- How can we access files stored on an SRM?
- The Catalogs allow to find the SURL of a file
- The SRM will translate the SURL into a TURL
 - Not all SRMs support the same protocols for direct file access
 - E.g.: Castor rfio, dCache dcap
- Need a common abstraction that hides these differences and also interacts with the catalogs

INFSO-RI-508833

Basic gLite-I/O commands

Copy a local file to Storage Element

• glite-put <local-file> <lfn:///lfn-name>

Copy a file from Storage element

• glite-get <lfn:///lfn-name> <local-file>

Remove a file from Storage element

• glite-rm <lfn:///lfn-name>

if the Ifn is the last replica, file entry is removed from the catalog

C API provides POSIX-like interactions:

• glite-open(...), glite-read(...), glite-write(...), glite-close(...)

INFSO-RI-508833

CSC 2005, Data Management, St. Malo, France 21

Enabling Gride for E-ecioneE

File Movement

The need for file movement

- Data is produced at one place but needs to be analyzed at many places
 - E.g. LHC experiments
- Data is produced at many places needs to be combined for analysis
 - E.g. Astronomy, weather forecast, ...
- Not all computation can take place where data is originally stored
 - Better exploit available computational and storage resources
- Having multiple copies of a file increases the availability of data and reduces the risk of data loss
 - In case of unavailability of one storage resource others may hold the data as well

INFSO-RI-508833

Replication vs. Copy

- Replication is well known in distributed systems and important for Grids
- Replicas are identical and can be identified and located
- Replica location information can be regarded meta-data management
- Potentially, millions of files need to be registered and located
 - This is done in Replica Catalogs, e.g. the Globus RLS system, the LCG LFC, the gLite FiReMan (as discussed before)
- Replicas are managed copies of data

INFSO-RI-508833

CSC 2005, Data Management, St. Malo, France 23

Data Transfer Requirements

Enabling Gride for E ecioneE

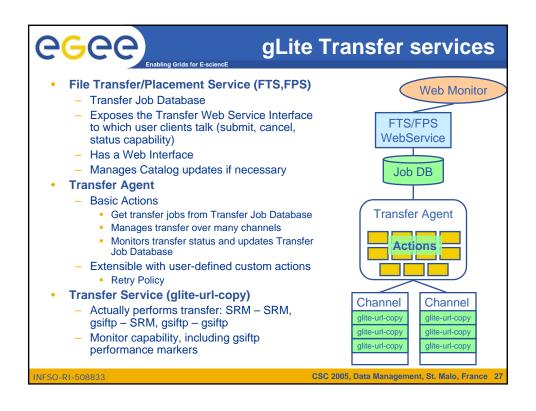
- Here we consider only file level granularity
 - No object streaming etc.
- Secure and efficient point-to-point file transfer over Wide Area Network links
- Needs to interact with existing Grid Security Infrastructure (GSI)
- Utilize network bandwidth
 - "Optimal" file transfer in close connection with network optimization

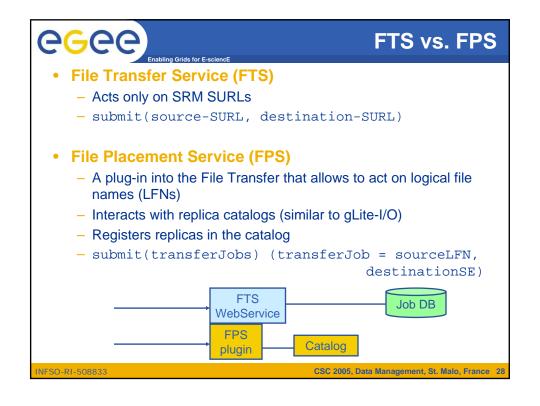
INFSO-RI-508833

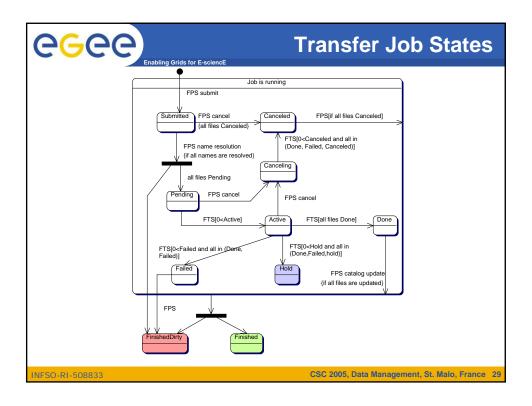
GridFTP

- Data transfer and access protocol for secure and efficient data movement
- Standardized in the Global Grid Forum
- extends the standard FTP protocol
 - Public-key-based Grid Security Infrastructure (GSI) or Kerberos support (both accessible via GSS-API
 - Third-party control of data transfer
 - Parallel data transfer
 - Striped data transfer Partial file transfer
 - Automatic negotiation of TCP buffer/window sizes
 - Support for reliable and restartable data transfer
 - Integrated instrumentation, for monitoring ongoing transfer performance

INFSO-RI-508833


CSC 2005, Data Management, St. Malo, France 25




Reliable File Transfer

- GridFTP is the basis of most transfer systems
- Retry functionality is limited
 - Only retries in case of network problems; no possibility to recover from GridFTP a server crash
- GridFTP handles one transfer at a time
 - No possibility to do bulk optimization
 - No possibility to schedule parallel transfers
- Need a layer on top of GridFTP that provides reliable scheduled file transfer
 - E.g. Globus RFT, SRMCopy, gLite File Transfer & File Placement Services (FTS/FPS) and Data Scheduler (not yet available)

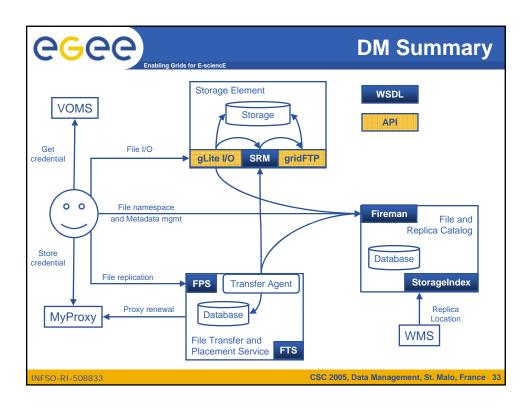
INFSO-RI-508833

- Submit a transfer job
 - glite-transfer-submit <source-surl> <dest-surl>
 - This returns a < job-id>
- Cancel a transfer job
 - glite-transfer-cancel <job-id>
- Status of a transfer job
 - glite-transfer-status <job-id>
- List transfer jobs
 - glite-transfer-list

How to Replicate?

- Using the File Transfer Service (FTS)
 - Lookup source SURL in replica catalog
 - Initiate and monitor transfer
 - After successful transfer register new replica in the catalog
- Using the File Placement Service (FPS)
 - Initiate and monitor transfer
 - Plugin takes care of catalog interactions
- FTS and FPS offer the same interface
 - Difference only in input parameters
 - SURLs vs. LFNs
 - Different configuration
 - FPS requires catalog endpoint

INFSO-RI-508833


CSC 2005, Data Management, St. Malo, France 31

Main File Placement Service commands

- Basically the same as for the File Transfer Service:
- Submit a placement job
 - glite-placement-submit <dest_SE> <sourceLFN>
 - This returns a < job-id>
- Cancel a placement job
 - glite-placement-cancel <job-id>
- Status of a placement job
 - glite-placement-status <job-id>
- List placement jobs
 - glite-placement-list

INFSO-RI-508833

- File Access
 - glite-get, glite-put, glite-rm on LFN and GUID
 - glite-IO API C
- Logical Namespace Management
 - glite-catalog-* commands (like ls, create, rename, ..)
 - Fireman API C, C++, Java, Perl
 - POOL File Catalog API (GliteCatalog implementation) not exercised
- Transfer and Replication
 - glite-transfer-* commands (submit, status, cancel, ..)
 - FPS API C, C++, Java, Perl

More Information

- gLite homepage
 - http://www.glite.org
- DM subsystem documentation
 - http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/doc.htm
- FiReMan catalog user guide
 - https://edms.cern.ch/file/570780/1/EGEE-TECH-570780-v1.0.pdf
- gLite-I/O user guide
 - https://edms.cern.ch/file/570771/1.1/EGEE-TECH-570771-v1.1.pdf
- FTS/FPS user guide
 - https://edms.cern.ch/file/591792/1/EGEE-TECH-591792-Transfer-CLIv1.0.pdf

INFSO-RI-508833