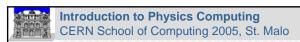


# **Introduction to Physics Computing**


Rudi Frühwirth Institute of High Energy Physics Austrian Academy of Sciences

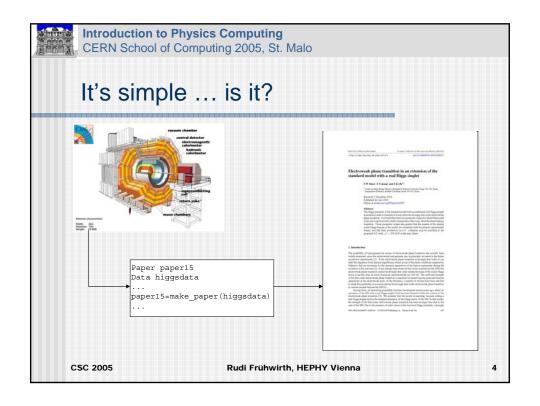
CSC 2005, St. Malo

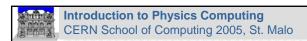
CSC 2005

Rudi Frühwirth, HEPHY Vienna

1




### Outline of the lectures


- Introduction
- Filtering
- Calibration and alignment
- Event Reconstruction
- Event Simulation
- Physics Analysis and Event Viewing
- Data Flow and Computing Resources

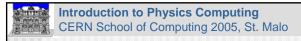
CSC 2005

Rudi Frühwirth, HEPHY Vienna

# Introduction to Physics Computing CERN School of Computing 2005, St. Malo What is Physics Computing? Input: A few Petabytes of data Output: A few hundred physics papers Data reduction factor of 10<sup>7</sup> to 10<sup>8</sup>!! How is it done?






### We need...

- > Millions of lines of code (C++,Java)
- Hundreds of neural networks (BNNs, not ANNs)
- > Large infrastructure
  - PC farms
  - Database and storage systems
  - Distributed analysis facilities
  - · The grid

CSC 2005

Rudi Frühwirth, HEPHY Vienna

5



# What happens to the data?

- > Data filtering, tagging and storage
- > Calibration, alignment
- > Event reconstruction
- Event simulation
- Physics analysis

CSC 2005

Rudi Frühwirth, HEPHY Vienna

•



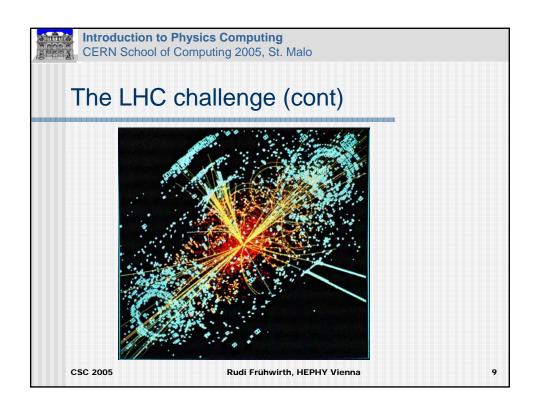

# Step by step

- > Each step involves some data reduction
  - data are compressed
  - data are discarded or ignored
- In each step the data get closer to be interpretable in physical terms
- Some steps are repeated many times until the output is satisfactory

CSC 2005

Rudi Frühwirth, HEPHY Vienna

7




# The LHC challenge

- > Very high event rate
- Large event size
- Large background of uninteresting events
- Large background in each event
  - many interactions in each BX
  - many low-momentum particles
- Large number of physicists doing analysis

CSC 2005

Rudi Frühwirth, HEPHY Vienna



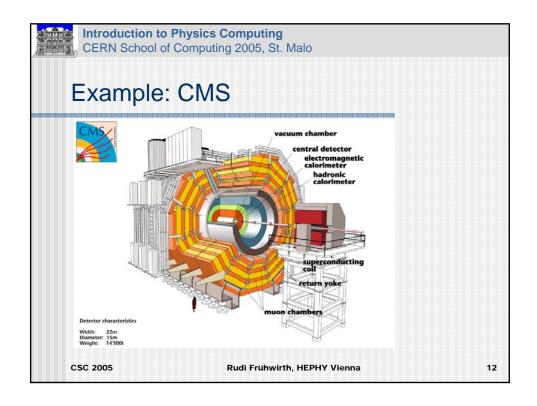


# Data filtering

- > Primary collision rate: 40 Megahertz
- > Recording rate: 100 Hertz
- > How is this achieved?
  - Multilevel trigger chain of yes/no decisions
  - Very fast first level: (Programmable) hardware
  - Slower second level: Software on fast processors
- > Reliable: Rejected data are lost forever
- Cautious: Do not lose new physics

CSC 2005

Rudi Frühwirth, HEPHY Vienna



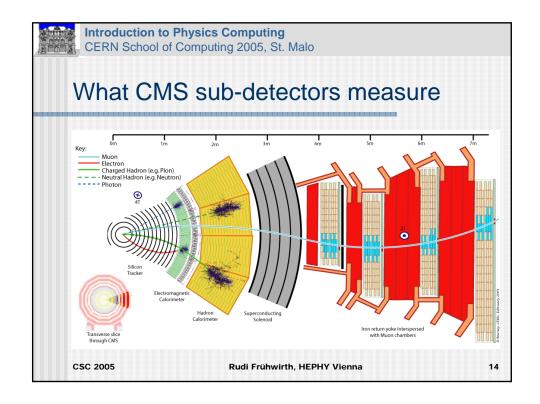

# Multilevel trigger

- > Dead-time has to be minimized
- Many collisions can be discarded very quickly – Level 1
- Only the surviving ones are scrutinized more carefully – High Level Trigger(s)
- Triggers are tailored to specific physics channels (Higgs, top, WW, ZZ, ...)

CSC 2005

Rudi Frühwirth, HEPHY Vienna






### What CMS subdetectors measure

- Inner tracker (pixels+strips)
  - Momentum and position of charged tracks
- > Electromagnetic calorimeter
  - Energy of photons, electrons and positrons
- > Hadronic calorimeter
  - Energy of charged and neutral hadrons
- Muon system
  - Momentum and position of muons

CSC 2005

Rudi Frühwirth, HEPHY Vienna





### CMS L1 trigger

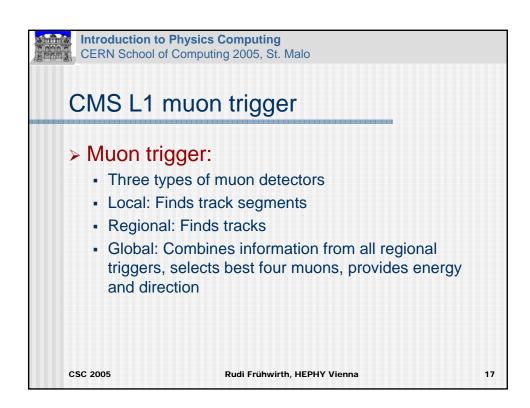
- > Input rate: 40 megahertz
- ➤ Output rate: 30 100 kilohertz
- Latency: 3.2 μs (128 BX)
- Pipelined, dead-time < 1%</p>
- > Available time for calculations: 1.25 μs
- > 2 detector systems: muons/calorimeters
- > 3 main steps: local/regional/global

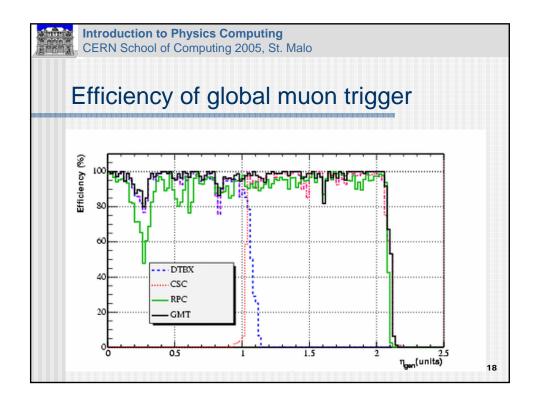
CSC 2005

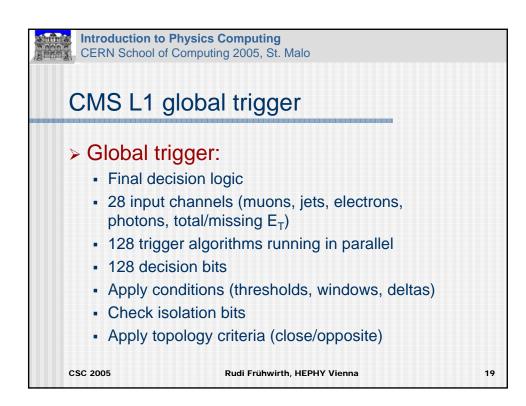
Rudi Frühwirth, HEPHY Vienna

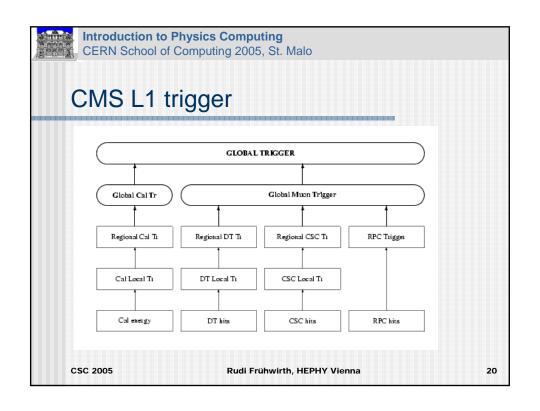
15




# CMS L1 calorimeter trigger


### > Calorimeter trigger:


- Two types of calorimeters
- Local: Computes energy deposits
- Regional: Finds candidates for electrons, photons, jets, isolated hadrons; computes transverse energy sums
- Global: Sorts candidates in all categories, does total and missing transverse energy sums, computes jet multiplicities for different thresholds


CSC 2005

Rudi Frühwirth, HEPHY Vienna











# CMS L1 trigger software

- > Algorithms are developed in C++
- ➤ They are tested by extensive simulation studies (→ Event Simulation)
- Manual translation into VHDL (Very high speed integrated circuit Hardware
   Description Language)
- Comparison with C++ implementation

CSC 2005

Rudi Frühwirth, HEPHY Vienna

21



# High level trigger

- > Further data filtering:
  - 30 100 kilohertz input rate
  - 100-150 Hertz output rate
- Event tagging:
  - Reconstruct physics objects
  - Mark events having interesting features

CSC 2005

Rudi Frühwirth, HEPHY Vienna



# High level trigger (cont)

- More detailed analysis of event and underlying physics
- Runs on standard processors (commodity PCs)
- ➤ Algorithms are similar to the ones used in event reconstruction (→ Event Reconstruction), but optimized for speed.

CSC 2005

Rudi Frühwirth, HEPHY Vienna

23

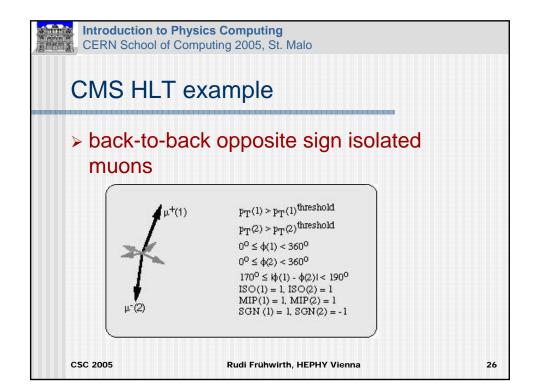


# High level trigger (cont)

- > Regional reconstruction
  - Concentrates on region(s) found by Level 1
  - Muons, electrons, jets, ...
- > Partial reconstruction
  - Abandon goal of optimal precision
  - Stop as soon specific questions are answered

CSC 2005

Rudi Frühwirth, HEPHY Vienna




### CMS High level trigger

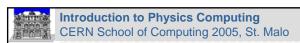
- Has to keep pace with the L1 Output
- > Filter farm with about 1M SpecInt95
  - About 25000 Pentium III @ 1 GHz
  - About 2000 CPUs at startup (2007)
- Organized in subfarms
- Same software framework as in "offline" reconstruction
- Transparent exchange of algorithms

CSC 2005

Rudi Frühwirth, HEPHY Vienna






### After the high level trigger

- Raw data are sent to Tier-0 farm
  - Detector data
  - Trigger information + some physics objects
  - Various primary datasets
- 1.5 MByte @ 150 Hertz = 225 MByte/sec
- ➤ LHC runs for ~ 10<sup>7</sup> sec/year
- >>2 PByte per year

CSC 2005

Rudi Frühwirth, HEPHY Vienna

27



### **Tier-0 Processing**

- > Archive raw data on mass storage
- First event reconstruction without or with a small delay
- Archive reconstructed data on mass storage
  - 0.25 MByte/event
  - Reconstructed objects (hits/clusters, tracks, vertices, jets, electrons, muons)

CSC 2005

Rudi Frühwirth, HEPHY Vienna



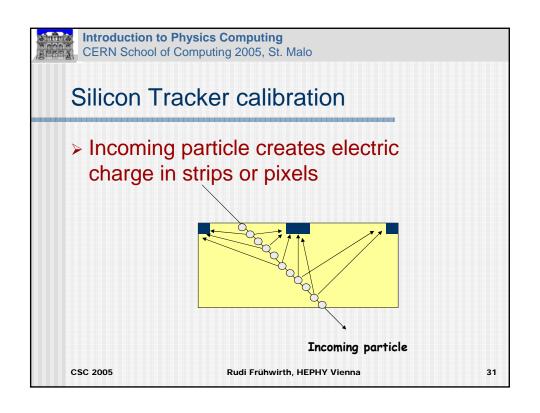

### From bits to GeV and cm

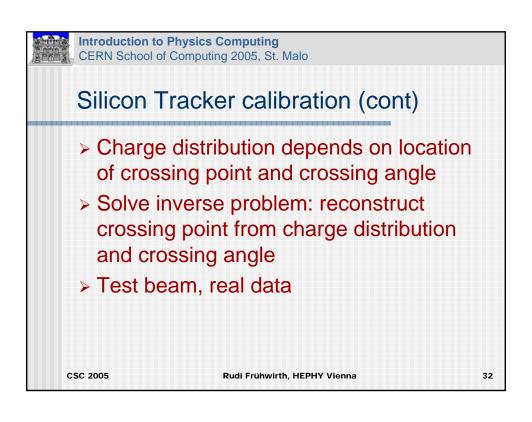
- Raw data are mostly ADC or TDC counts
- They have to be converted to physical quantities like energy or position
- Very detector dependent
- > Every detector needs calibration
- Calibration constants need to be stored and updated

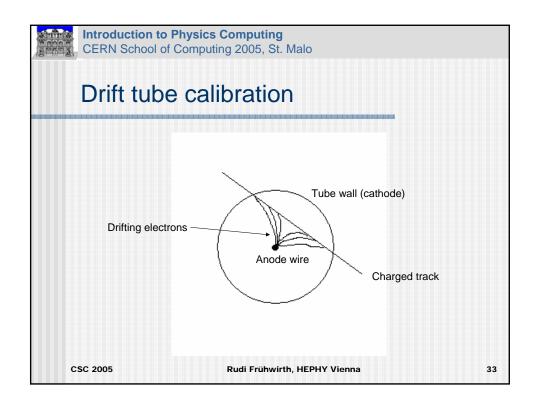
CSC 2005

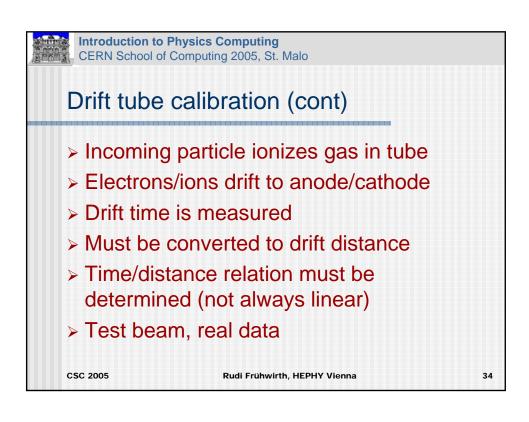
Rudi Frühwirth, HEPHY Vienna

29





### Calorimeter calibration


- Kinetic energy of incoming particle is converted into light or electric charge
- > Destructive measurement
- Relation between deposited charge and energy needs to be known
- > Long term drifts need to be monitored
- Huge amounts of data are accumulated


CSC 2005

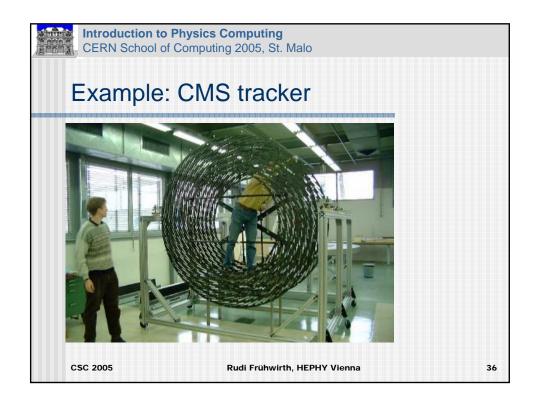
Rudi Frühwirth, HEPHY Vienna












### Where are the detectors?

- Tracking detectors are very precise instruments
- > Silicon strip detector: ~ 50 μm
- > Pixel detector: ~ 10 μm
- > Drift tube: ~ 100 μm
- Position needs to be known to a similar or better precision

CSC 2005

Rudi Frühwirth, HEPHY Vienna





# Alignment

- > Mechanical alignment
- > Measurements taken before assembly
- Switching on the magnetic field
- Laser alignment
- Alignment with charged tracks from collisions, beam halo and cosmic rays
- > Continuous process

CSC 2005

Rudi Frühwirth, HEPHY Vienna

37



### **Environmental data**

- > Calibration data
- > Alignment data
- > Temperatures, gas pressures, ...
- Machine parameters
- Need to be made persistent

CSC 2005

Rudi Frühwirth, HEPHY Vienna



### Detector related software

### Configuration

 Load trigger files, set thresholds, set HV, set amplifier gains, ...

### > Slow control

 Measure and adjust temperature, gas pressure, dark currents, ...

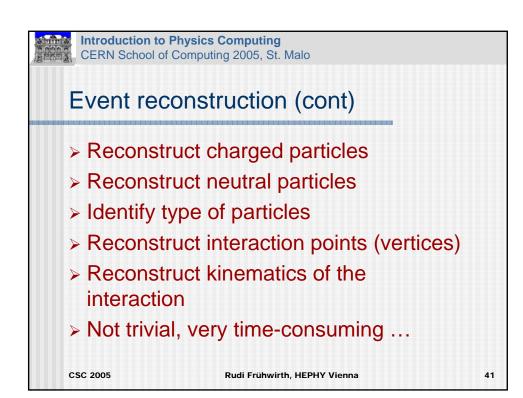
### Monitoring

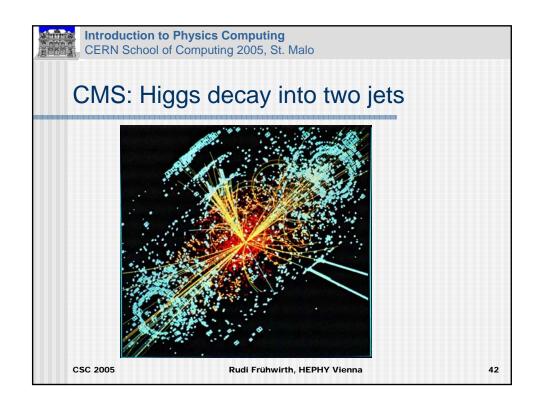
 Check trigger rates, detector efficiency, cluster sizes, wire maps, ...

CSC 2005

Rudi Frühwirth, HEPHY Vienna

39





### **Event reconstruction**

- Find out which particles have been created where and with which momentum
- Some of them are short-lived and have to be reconstructed from their decay products
- Some of them (neutrinos) escape without leaving any trace

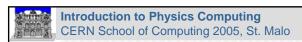
CSC 2005

Rudi Frühwirth, HEPHY Vienna








### Charged particles

- Charged particles are detected by tracker and calorimeters
- > Muons also reach the muon system
- Very high number of low-momentum charged particles
- Select by threshold on transverse momentum

CSC 2005

Rudi Frühwirth, HEPHY Vienna

43



### **Neutral particles**

- Neutral particles are detected mainly by calorimeters (e.g. photons, neutrons)
- ➤ Some of them decay into two (or more) charged tracks which are detected by the tracker (e.g. K<sup>0</sup>)
- Some of them escape without leaving a trace (neutrinos)

CSC 2005

Rudi Frühwirth, HEPHY Vienna



# Reconstruction of charged particles

- Trajectory is curved because of the magnetic field
- Position is measured in a number of places –"hits"
- Determine track parameters (location, direction, momentum) from the position measurements
- Data compression

CSC 2005

Rudi Frühwirth, HEPHY Vienna

45

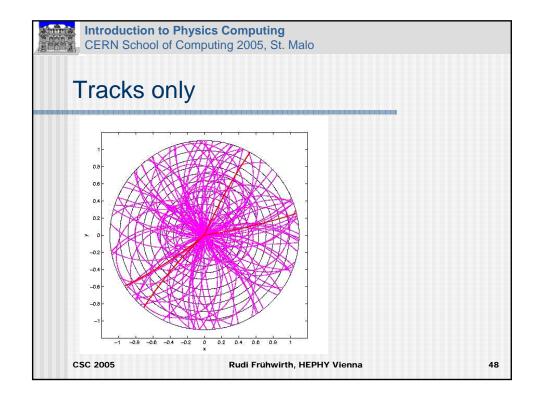


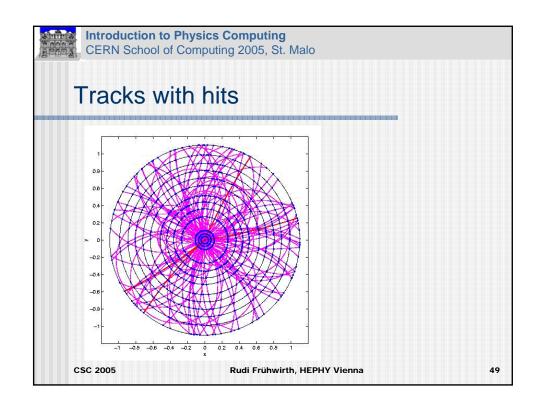
### The difficulties

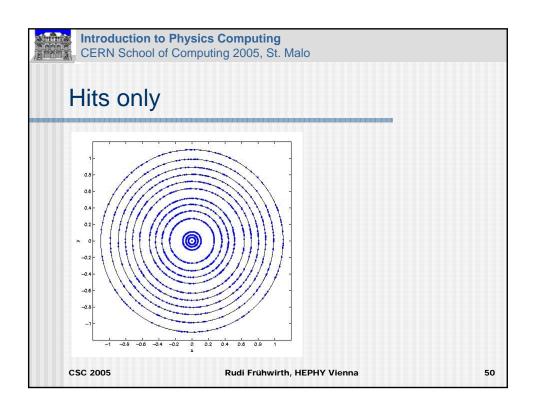
- Charged particles interact with all the material, not only the sensitive parts
- > Multiple Coulomb scattering
  - Changes direction, but not momentum
- Energy loss by ionization
  - Changes momentum, but not energy
- Energy loss by bremsstrahlung
  - Only for electrons

CSC 2005

Rudi Frühwirth, HEPHY Vienna


# Introduction to Physics Computing CERN School of Computing 2005, St. Malo


### More difficulties


- Assignment of hits to particles is unknown
- > Huge background from low-momentum tracks
- Additional background from other interactions in the same beam crossing and from adjacent beam crossings

CSC 2005

Rudi Frühwirth, HEPHY Vienna









### Decomposition of the problem

- Pattern Recognition or Track Finding
  - Assign hits to track candidates
- > Parameter estimation or Track Fit
  - Determine track parameters + covariance matrix
- > Test of the track hypothesis
  - Check chi-square, residuals, remove outliers

CSC 2005

Rudi Frühwirth, HEPHY Vienna

51



# Track finding

- Depends a lot on the properties of the detector:
  - · Geometry, configuration
  - Magnetic field
  - Precision
  - Occupancy
- > Many solutions available
- > No general recipe

CSC 2005

Rudi Frühwirth, HEPHY Vienna



# A few track finding algorithms

- > Track following
- > Simple Kalman filter
- > Combinatorial Kalman filter
- > Track road
- > Hough transform
- > Hopfield network

CSC 2005

Rudi Frühwirth, HEPHY Vienna

53



### Track fit

- > Determine track parameters
- > Determine covariance matrix
- > Test track hypothesis
- > Reject outliers
  - Distorted hits (cluster fusion,  $\delta$  electron)
  - Extraneous hits
  - Electronic noise

CSC 2005

Rudi Frühwirth, HEPHY Vienna



# Ingredients

- Magnetic field
  - Constant or variable
- > Track model
  - Solution of the equation of motion
  - Analytic (explicit) or numerical
- > Error model
  - Observations errors
  - Process noise

CSC 2005

Rudi Frühwirth, HEPHY Vienna

55



# Magnetic field

- > Fast computation required
- > Interpolation in a large table
- Global approximation by harmonic functions
- Local approximation by low-order polynomials
- Constant field plus correction terms

CSC 2005

Rudi Frühwirth, HEPHY Vienna



**Introduction to Physics Computing**CERN School of Computing 2005, St. Malo

### Track model

> Propagate track parameters from A to B:

$$p_B = f_{A \to B}(p_A)$$

> Provide Jacobian:

$$F_{A\to B} = \partial f_{A\to B} / \partial p$$

- Careful choice of track parameters important for linear approximation
- $\succ$   $f_{A\rightarrow B}$  is analytic only in very simple cases

CSC 2005

Rudi Frühwirth, HEPHY Vienna

57



Introduction to Physics Computing
CERN School of Computing 2005, St. Malo

# Track model (cont)

- > No field: straight line
- > Constant field: helix
- Even in these cases, track model is analytic only for simple detector surfaces (plane, cylinder)
- > In all other cases,  $f_{A\to B}$  and  $F_{A\to B}$  have to be computed numerically

CSC 2005

Rudi Frühwirth, HEPHY Vienna



### Error model

- Observation error
  - Covariance matrix usually comes along with the hit
- > Process noise
  - Mainly multiple Coulomb scattering, treated in Gaussian approximation
  - Bremsstrahlung (for electrons), treated in Gaussian or Gaussian mixture approximation
  - Energy loss by ionization, mostly mean only, no spread

CSC 2005

Rudi Frühwirth, HEPHY Vienna

59



# Estimation of track parameters

- Most estimators minimize a least-squares objective function
- > Least-squares estimation
  - Linear regression
  - Kalman filter
- > Robust estimation
  - Adaptive filter

CSC 2005

Rudi Frühwirth, HEPHY Vienna



# Reconstruction of neutral particles

- Neutral particles are only seen by the calorimeters
- Photons are absorbed in the electromagnetic calorimeter
- Neutral (and charged) hadrons are absorbed in the hadron calorimeter
- Neutrinos are not detected directly

CSC 2005

Rudi Frühwirth, HEPHY Vienna

61



### Shower finding

- An incident particle produces a shower in the calorimeter
- A shower is a cluster of cells with energy deposit above threshold
- Various clustering techniques are used to find showers
- > Overlapping clusters must be separated

CSC 2005

Rudi Frühwirth, HEPHY Vienna



# Shower finding (cont)

- The algorithms depend on various characteristics of the calorimeter
  - Type (electromagnetic or hadronic)
  - Technology (homogeneous or sampling)
  - Cell geometry
  - Granularity
  - Noise and background level

CSC 2005

Rudi Frühwirth, HEPHY Vienna

63



### Particle identification

- > Determining the type of a particle
- > Dedicated detectors
  - Threshold Cherenkov
  - Ring imaging Cherenkov (RICH)
  - Transition radiation detector
  - Ionization measurements in gas or silicon

CSC 2005

Rudi Frühwirth, HEPHY Vienna



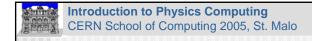
### Particle identification

- Combining information from several detectors
  - Shower in elmag calorimeter + no matching track in tracker → photon
  - Shower in elmag calorimeter + matching track in tracker → electron
  - Track in muon system + matching track in tracker
     → muon

CSC 2005

Rudi Frühwirth, HEPHY Vienna

65

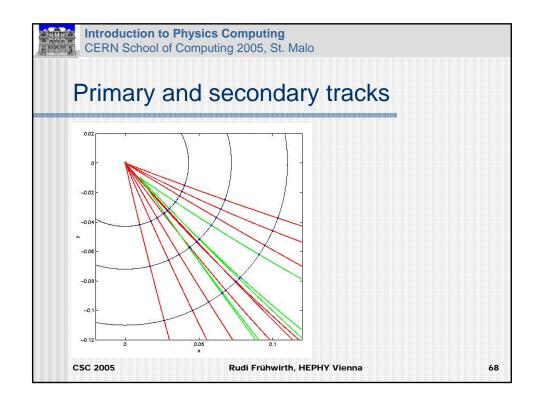



### Vertex reconstruction

- Primary vertex: interaction of the two beam particles – easy
- Secondary vertices: decay vertices of unstable particles – difficult
- Emphasis on short-lived unstable particles which decay before reaching the tracker
- Data compression

CSC 2005

Rudi Frühwirth, HEPHY Vienna




### The difficulties

- Association of tracks to vertices is unknown
- Secondary tracks may pass very close to the primary vertex
  - Especially if decay length is small
- Track reconstruction may be less than perfect

CSC 2005

Rudi Frühwirth, HEPHY Vienna





### Decomposition of the problem

- Pattern Recognition or Vertex Finding
  - Assign tracks to vertex candidates
- > Parameter estimation or Vertex Fit
  - Determine vertex location + covariance matrix, update track parameters
- > Test of the vertex hypothesis
  - · Check chi-square, residuals, remove outliers

CSC 2005

Rudi Frühwirth, HEPHY Vienna

69



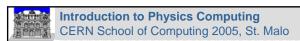
# Vertex finding

- Almost independent of the detector geometry
- Secondary vertex finding may depend on the physic channel under investigation
- > Essentially a clustering problem
- Many solutions available

CSC 2005

Rudi Frühwirth, HEPHY Vienna




# A few vertex finding algorithms

- Hierarchical clustering
  - Single linkage, complete linkage,...
- Non-hierarchical clustering
  - k-means, robust location (mode) estimation, iterated vertex fit
- Neural network/physics inspired
  - Competitive learning, deterministic annealing, superparamagnetic clustering, quantum clustering,...

CSC 2005

Rudi Frühwirth, HEPHY Vienna

71



# Estimation of vertex parameters

- Most estimators minimize a least-squares objective function
- Least-squares estimation
  - Linear regression
  - Kalman filter
- > Robust estimation
  - Adaptive filter

CSC 2005

Rudi Frühwirth, HEPHY Vienna



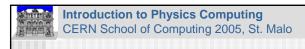

#### Kinematic fit

- Impose constraints on a reconstructed vertex
  - Momentum conservation
  - Energy conservation (if masses are known)
  - Invariant mass of mother particle
- Put constraints into a Lagrange multiplier
- Construct least-squares objective function

CSC 2005

Rudi Frühwirth, HEPHY Vienna

73



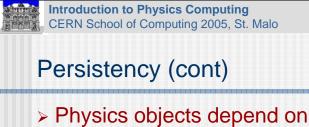

### Kinematic fit (cont)

- Taylor-expand objective function with respect to all momentum vectors
- Minimize objective function
- Neutral particles have to be included (calorimeter information)

CSC 2005

Rudi Frühwirth, HEPHY Vienna

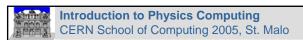



## Persistency

- > Event reconstruction produces physics objects
  - Tracks
  - Vertices
  - Identified particles
  - Jets
  - Tags
- > Need to be made persistent

CSC 2005

Rudi Frühwirth, HEPHY Vienna


75



- - Alignment
  - Calibration
  - Version of the reconstruction program
  - Algorithm parameters
- Must be made persistent as well
- > Tools: ROOT, POOL

CSC 2005

Rudi Frühwirth, HEPHY Vienna



#### Simulation

- > Why do we need simulation?
- Optimization of detector in design phase
- Testing, validation and optimization of reconstruction algorithms
- Computation of reconstruction efficiency
- Computation of acceptance corrections
- Background studies

CSC 2005

Rudi Frühwirth, HEPHY Vienna

77



#### Simulation steps

- Event generation
- Tracking through the detector, using detector geometry and magnetic field
- Interaction of particles with matter
- > Signal generation in sensitive volumes
- Digitization (simulate ADC or TDC)
- Digitized data and truth information are made persistent

CSC 2005

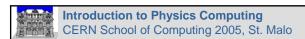
Rudi Frühwirth, HEPHY Vienna



#### Event generation packages

#### General purpose event generators

- Hadron-hadron, hadron-lepton, lepton-lepton collisions
- PYTHIA/JETSET, also known as "Lund Monte Carlo"
- Herwig++, Hadron Emission Reactions With Interfering Gluons


#### > PANDORA

- Physics event generator for linear collider studies
- Collisions of electrons, positrons and photons

CSC 2005

Rudi Frühwirth, HEPHY Vienna

79



# Event generation packages (cont)

#### Lots of specialized generators for

- Electroweak physics
- QCD
- Higgs
- Supersymmetry
- Exotic physics

CSC 2005

Rudi Frühwirth, HEPHY Vienna



#### **Detector simulation**

- Was frequently (and still sometimes is) experiment-specific
- Nowadays there is a widely used standard: GEANT
  - GEANT3: FORTRAN
  - GEANT4: C++
- You will hear a LOT about GEANT4 later!

CSC 2005

Rudi Frühwirth, HEPHY Vienna

81



### **GEANT4** functionality

- Description of geometry and materials
- Particle tracking and interactions with matter
- Generation of the detector response
- > Bookkeeping, metadata management
- Visualization of geometry, tracks and hits

CSC 2005

Rudi Frühwirth, HEPHY Vienna



## **GEANT 4 User responsibility**

- Link to the event generator
- > Description of the detector
- Setting of physics processes and cuts
- Code for digitization of the detector response and generation of noise
- Tuning simulated data should resemble real ones as closely as possible

CSC 2005

Rudi Frühwirth, HEPHY Vienna

83



### **Detector description**

#### > Geometry

- Shape
- Placement relative to mother volume
- Symmetries

#### Material

- Composition
- Density
- Radiation length, interaction length, ...

CSC 2005

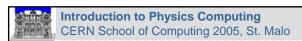
Rudi Frühwirth, HEPHY Vienna



#### **DD** examples

#### > CMS

- XML Schema detector description database
- Derive detector descriptions for simulation (GEANT4), reconstruction and visualization


#### > ATLAS

- Primary Numbers stored in relational database
- GeoModel C++ library
- Derive detector descriptions for simulation (GEANT4), reconstruction and visualization

CSC 2005

Rudi Frühwirth, HEPHY Vienna

85



### **DD** examples

#### > Alice

- ROOT classes
- Used for simulation and reconstruction
- Invoke physics processes from GEANT and FLUKA

#### > LHCb

- XML DTD (Document Type Definition)
- Interpreted by GAUDI plug-ins to build detector representations for simulation and reconstructions

CSC 2005

Rudi Frühwirth, HEPHY Vienna



### Physics analysis

- > Event selection
  - Multidimensional criteria
- Signal extraction
  - Study background
  - Determine significance of signal
- > Corrections
  - Detector acceptance, reconstruction efficiency, ...
  - From simulated data

CSC 2005

Rudi Frühwirth, HEPHY Vienna

87



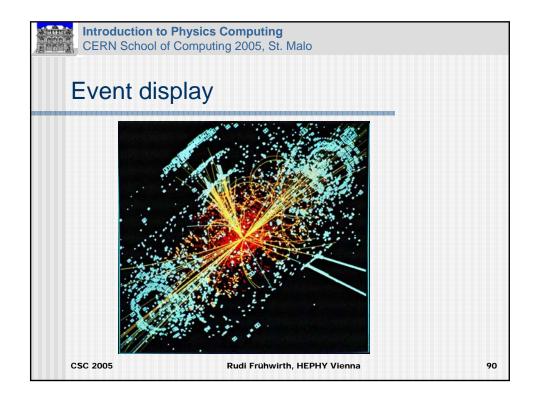
### Physics analysis (cont)

- Computation of physical quantities
  - Cross sections, masses, lifetimes, decay widths, ...
- ... and of their errors
  - Statistical errors: uncertainty because of limited number of observations
  - Systematic errors: uncertainty because of limited knowledge of key assumptions (beam energy, calibration, alignment, magnetic field, theoretical values, background channels, ...)

CSC 2005

Rudi Frühwirth, HEPHY Vienna




# Analysis tools

#### > Need versatile tools for

- Multidimensional selection
- Event display and interactive reprocessing
- Histogramming
- Plotting
- Fitting of curves and models
- · Point estimation, confidence intervals, limits
- ....

CSC 2005

Rudi Frühwirth, HEPHY Vienna





#### Analysis tools (cont)

- > ROOT
  - Builds on HBOOK and PAW (CERN)
- OpenScientist
  - "Open, modular, free, portable, efficient and collaborative" (LAL Orsay)
- > JAS
  - Java Analysis Studio (SLAC)
- > WIRED
  - Platform independent event display (Java, SLAC)

CSC 2005

Rudi Frühwirth, HEPHY Vienna

91



### Distributed analysis

- Physics analysis will take place in many labs all over the world
- Physicists need access to event data and corresponding calibration, alignment and bookkeeping data ... and to simulated data
- > We need the grid!
- You will hear a LOT about the grid next week!

CSC 2005

Rudi Frühwirth, HEPHY Vienna



#### Metadata challenge

- Metadata are data describing other data
- Distributed analysis needs lots of metadata to track the location and validity of alignment constants, calibration constants, reconstructed objects, ...
- > Frequent updates
- > Frequent access

CSC 2005

Rudi Frühwirth, HEPHY Vienna

93

# Introduction to Physics Computing CERN School of Computing 2005, St. Malo

#### **Datasets in CMS**

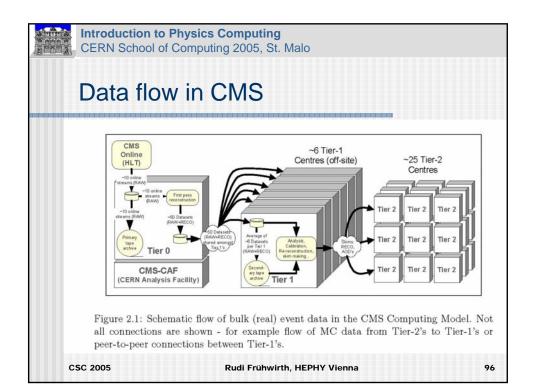
- > RAW: Raw data (1-1.5 MByte)
  - Detector data, L1 trigger results, HLT results, reconstructed HLT objects
- RECO: Reconstructed data (1.5 MByte)
  - Reconstructed objects (hits, clusters, tracks, vertices, muons, electrons, jets)
- > AOD: Analysis object data (50 kByte)
  - High-level reconstructed objects (tracks, vertices, muons, electrons, jets)

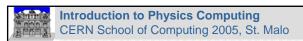
CSC 2005

Rudi Frühwirth, HEPHY Vienna

# Introduction to Physics Computing CERN School of Computing 2005, St. Malo

### Datasets in CMS (cont)


- > TAG: Tagging data (10 kByte)
  - Run/event number, some high-level physics objects


#### > Non-event data

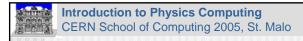
- Construction data (information on sub-detectors)
- Equipment management data (detector geometry, electronics)
- Configuration data (front-end electronics)
- Conditions data (run conditions, calibration, alignment)

CSC 2005

Rudi Frühwirth, HEPHY Vienna





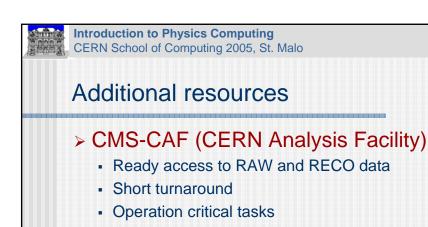

#### Tiered resources

- > Tier-0 (CERN)
  - First pass of reconstruction
  - Primary archive on mass storage
- > Tier-1 (<10 centres)
  - Global and local services
  - (Only) copies of certain samples
  - Reconstruction
  - Monte Carlo production

CSC 2005

Rudi Frühwirth, HEPHY Vienna

97




### Tiered resources (cont)

- > Tier-2 (~25 centres)
  - Associated to a particular Tier-1 centre
  - Local use
  - CMS controlled use
  - Opportunistic use
- > Tier-3 (~100 centres)
  - Coordination with a specific Tier-2 centre
  - Local use
  - No guaranteed support, no guaranteed availability

CSC 2005

Rudi Frühwirth, HEPHY Vienna



CSC 2005

Rudi Frühwirth, HEPHY Vienna

99



### **Summary**

#### > Physics computing involves:

- Event filtering with multilevel trigger
- Persistency of raw data
- Calibration and alignment
- Persistency of calibration, alignment and environmental data
- Event reconstruction
- Persistency of reconstruction objects and metadata

CSC 2005

Rudi Frühwirth, HEPHY Vienna



# Summary (cont)

### > Physics computing involves:

- Event simulation
- Persistency of simulated raw data and truth information
- Reconstruction of simulated events
- Persistency of reconstruction object and truth information
- Distributed physics analysis and event viewing
- Persistency of high-level physics objects

CSC 2005

Rudi Frühwirth, HEPHY Vienna

101



#### Outlook on the track

- > Experiment simulation
  - 4 hours of lectures
- > Data analysis and visualization
  - 3 hours of lectures
- > Combined exercises
  - 5 hours of exercises

CSC 2005

Rudi Frühwirth, HEPHY Vienna