
1

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

1

Tools and Methods

Track introduction

Tools you can use individually (part 1): Test Frameworks

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

2

What do you need to do the job?

I need to calculate the sum of primes less than 100:

This is quick, throw-away code
• Not well structured, efficient, general or robust
• I understand what I intended, because I wrote it just now

Already, I need an editor, compiler, linker, and probably a debugger

int sumPrimes() {
int sum = 0;
for (int i=1; i < 100; i++) { // loop over possible primes

bool prime = true;
for (int j=1; j < 10; j++) { // loop over possible factors
if (i % j == 0) prime = false;

}
if (prime) sum += i;

}
return sum;

}

2

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

3

“Don’t worry, I’ll remember what
I changed.”

“The answer looks OK, lets move
on.”

“Does anybody know where this
value came from?”

“Your #%@!& code broke again!”

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

4

My sample program is a pretty small project!

Projects come in different sizes

Size (arbitrary units)

3

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

5

Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

Size (arbitrary units)

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

6

Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

4

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

7

Projects come in different sizes

A larger project may need a different approach
• Those tend to require more effort up front

What do you do when your project grows?

Size (arbitrary units)

Method 1
Method 2

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

8

Projects come in different sizes

If you’re trying to solve a really large problem:

Size (arbitrary units)

Method 1
Method 2
Method 3

5

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

9

What has all this to do with us?

Our systems tend to be complex systems
• HEP tends to work at the limit of what we know how to do

“If you only have a hammer, wood screws look a lot like nails” - ??
“If you only have a screwdriver, nails are pretty useless” - Don Briggs

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

10

Larger projects have standard ways of doing things

To make it possible to communicate, you need a shared vocabulary
• Standards for languages, data storage, etc.

For people to work together, you have to control integrity of source code
• E.g. CVS to provide versioning and control of source code

Just building a large system can be difficult
• Need tools for creating releases, tracking problems, etc.

6

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

11

But individual effort is still important!

You can’t build a great system from
crummy parts

You want your efforts to make a
difference

Good tools & methods can help you do
a better job

“Whatever you do may seem
insignificant, but it is most important
that you do it.” - Gandhi

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

12

The Tools & Method Track

A spectrum of places to improve:
• What you do in the next minutes
• What you do over the next years

Three basic themes:
• Individual tools & methods
• Working with existing code
• Building new systems

int sumPrimes() {
int sum = 0;
for (int i=1; i < 100; i++) { // loop over possible primes

bool prime = true;
for (int j=1; j < 10; j++) { // loop over possible factors
if (i % j == 0) prime = false;

}
if (prime) sum += i;

}
return sum;

}

7

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

13

Plan for
this week:

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

14

Design
System architecture

Individual project

Specific task

“Design” is how you think about what you’re doing

8

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

15

Design Levels: an analogy

Architectural design

Mechanistic design

Detailed design

The Greasy
Spoon

Bill Watterson

Imagine the project is not to build software but to go on an
inter-planetary journey...

decide which planet to fly to

select the flight path

choose where to have lunch

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

16

Architectural design

Goals
• Capture major interfaces between subsystems
and packages early

• Be able to visualize and reason about the
design in a common notation

• Be able to break work into smaller pieces that
can be developed by different teams
(concurrently)

• Acquire an understanding of non-functional
constraints

programming languages and operating systems
technologies: distribution, concurrency,

database, GUIs
component reuse

9

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

17

Architectural Design Qualities

A well designed architecture has certain qualities:
• layered subsystems

• low inter-subsystem coupling

• robust, resilient and scalable

• high degree of reusable components

• clear interfaces

• driven by the most important and risky use cases

•EASY TO UNDERSTAND

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

18

Mechanistic Design

Specify the details of inter-object collaboration mechanisms

•Determine the structure of classes and their associations
Class diagram

•Determine the behavior of classes
Interaction diagrams

Collaboration
Sequence

•Target: The people working together
Over time & space

You can’t do everything!

10

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

19

Class Diagram
Describes the types of objects in the system
and the various kinds of static relationships
that exist between them

Rational Software Corporation

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

20

Example Class Diagrams
There are many possible designs

Goal: Allow you to reason about the
strengths and weaknesses of a particular
choice

Communicate through time and space

11

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

21

Building software is difficult

It cannot be learned from a book
• You have got to do it and make mistakes
• Only time will tell if the result is “good”

It is a creative activity
• And hence enjoyable
• Not always clear when you should stop

It requires experience
• After a while you will tend to be more cautious and less ambitious
• Try to keep it simple

You will remember past-project horror stories
Or am I just getting old?

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

22

Tools you can use

Knowing whether it works - JUnit

12

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

23

Toward an informed way of experimental working

These techniques remove the cost from small, experimental changes
• Allows you to make quick progress on little updates
• Without risk to the big picture

How do you know those steps are progress?

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

24

Testing

But don’t you see Gerson - if the particle is too small and too short-lived to detect,
we can’t just take it on faith that you’ve discovered it.”

13

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

25

The role of testing tools

Remember our original example:
• Simple routine, written in a few minutes
• “So simple it must be right”

int sumPrimes() {
int sum = 0;
for (int i=1; i < 100; i++) { // loop over possible primes

bool prime = true;
for (int j=1; j < 10; j++) { // loop over possible factors
if (i % j == 0) prime = false;

}
if (prime) sum += i;

}
return sum;

}

But its not right...

"Study it forever and you'll still wonder. Fly it once and you'll know.” - Henry
Spencer

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

26

How to test?

Simplest: Run it and look at the output
• Gets boring fast!
• How often are you willing to do this?

More realistic: Code test routines to provide inputs, check outputs
• Can become ungainly

Most useful: A test framework
• Great feedback
• Better control over testing

14

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

27

Testing Frameworks: CppUnit, Junit, et al

To test a function:
public class FindVals {

// determine whether an number is a square

boolean isSquare(int val) {

double root = Math.floor(Math.pow(val, 0.5));

if (Math.abs(root*root -val) < 1.E-6) return true;

else return false;

}

}

You write a test:
public void testIsSquare() {

FindVals s = new FindVals();

Assert.assertTrue(s.isSquare(4));

}

Plus tests for other cases…

Invoke a function

Check the result

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

28

Embed that in a framework

Gather together all the tests
// define test suite

public static Test suite() {

// all tests from here down in heirarchy

TestSuite suite = new TestSuite(TestFindVals.class);

return suite;

}

Start the testing
• To just run the tests: junit.textui.TestRunner.main(TestFindVals.class.getName());
• Via a GUI: junit.swingui.TestRunner.main(TestFindVals.class.getName());

And that’s it!

Invoke tests for my class

Junit uses class name
to find tests

15

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

29

Running the tests

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

30

Running the tests

16

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

31

How JUnit works - one test:

public void testOneIsPrime() {
SumPrimes s = new SumPrimes();
Assert.assertEquals("check sumPrimes(1)", 1, s.sumPrimes(1));

}

This defines a “method” (procedure) that runs one test (line 1 and 4)
• JUnit treats as a test procedure any method whose name starts with “test”
• The tests will be run in the order they appear in the file

Line 2 creates an object “s” to be tested

Line 3 checks that sumPrimes(1) returns a 1
Assert is a class that checks conditions
assertEquals(“message”, valueExpected, valueToTest) does the check
If the check fails, the message and observed values are displayed

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

32

If the check fails:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

17

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

33

Other views:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

34

Why?

One test isn’t worth very much
• Maybe saves you a couple seconds once or twice

But consistently building the tests as you build the code does have value
• Have you ever broken something while fixing a bug? Adding a feature?

Tests remember what the program is supposed to do
• A set of tests is definitive documentation for what the code does
• Alternating between writing tests and code keeps the work incremental

Keeping the tests running prevents ugly surprises
• And its very satisfying!

“Extreme Programming” advocates
writing the tests before the code

• Not clear for large projects
• But individuals report good results

18

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

35

The art of testing

What makes a good test?
• Not worth testing something that’s too simple to fail
• Some functionality is too complex to test reliably
• Best to test functionality that you understand, but can imagine failing

If you’re not sure, write a test
If you have to debug, write a test
If somebody asks what it does, write a test

How big should a test be?
• A JUnit test is a unit of failure

When a test fails, it stops
The pattern of failures can tell you what you broke

• Make lots of small tests so you know what still works

What about existing code?
• Probably not practical to sit down and write a complete set of tests
• But you can write tests for new code, modifications, when you have a question
about what it does, when you have to debug it, etc

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1

36

Summary 1

The principle of ‘I think, therefore I am’, does not apply to high quality software. - Malcolm
Davis

In art, intentions are not enough. What counts is what one does, not what one intends to do. -
Pablo Picasso

Excellence is not a single act, but a habit. You are what you repeatedly do. - Aristotle, as
quoted by Shaquille O’Neal

