
1

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

1

Avoiding memory problems - memprof

Avoiding performance problems - perfanal

The larger picture

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

2

Memory-related problems
Read/write incorrectly

• Read from uninitialized memory
• Read via uninitialized pointer/reference
• Read/write past the valid range
• Read/write via a stale pointer/reference

E.g. after deallocating memory

Memory management mistakes
• Deallocation of (currently) unowned memory

Freeing something twice results in later overwrites
• Memory leaks

Forgetting to free something results in unusable memory

Often cause “really hard to find” bugs
• Crashes, incorrect results - traceback, dump don’t show cause
• Occur far from the real cause - breakpoints don’t help
• Often intermittent

Note: Java reduces these, but doesn’t make them go away!

2

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

3

A better allocator (malloc) can find some of these
Standard GNU malloc has a run-time checking option:

$ a.out

Segmentation fault (core dumped)

$ setenv MALLOC_CHECK_ yes

$ a.out

malloc: using debugging hooks

free(): invalid pointer 0x8049840!

Why not always leave it set?
• Checking slows program significantly
• Too many errors?

3rd party tools exist to do an even better job

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

4

Specialized tools - leak checking
Automated, unambiguous identification of leaks is difficult

• “forgot to free” vs “haven’t freed yet” vs “program’s ending, don’t
bother”

• “can no longer reference any part” vs “no references to the beginning”

But reading the code is not a reliable method either
• A leak is a mistake of omission, not commission
• Often requires cooperation to leak memory:

Creator of allocated item may have no idea where it goes
Consumer may not realize responsible for deallocation

Doesn’t need to be deallocated
Expects some third party to deallocate

Several approaches:
• “Print it all, and let the human sort it out”
• Provide a browser, let human reason about status of remaining memory
• Provide a suite of heuristics that can be tuned to the code’s structure

3

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

5

Example: memprof
memprof replaces the allocation library at runtime, provides simple GUI

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

6

How do these actually work?
Replacement libraries

• E.g. a more careful malloc, perhaps automatically linked
• Can’t check individual load/store instructions

Source code manipulation
• Preprocessor inserts instrumentation before compilation

Can know about scope, variable accesses, control flow
But requires source code, is language specific

Object code insertion
• Process object code to recognize & instrument load/store instructions

Can efficiently check every use of memory
Specific to both architecture and compiler, hard to port

Yes, you can write your own code to do some of this
But do you really want to spend the time to do it well?

4

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

7

A small catalog of available memory tools
Free validity tests

• GNU C library - enable checking via MALLOC_CHECK_
• DMalloc - replacement library with instrumentation
• ElectricFence - checks for write outside proper boundaries
• valgrind - instruction-by-instruction checking

Free leak checkers
• Boehm GC
• Debauch
• Memprof
• LeakTracer
• ccmalloc

Commercial code-check suites
• Purify (Rational Software)
• Insure (Parasoft)

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

8

How do you use these?
Big-bang approach is incredibly depressing

• Familiar products have thousands of memory errors
• These swamp your own tiny efforts

Better: isolate your own code for initial checks
• Ties in with a test framework: “Does it work as expected?”
• Check often, fix incrementally

You still have to test “in the wild”
• Many errors are due to poor interfaces
• Learn from these and fix them!

5

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

9

Performance
More computing sins are committed in the name of efficiency (without
necessarily achieving it) than for any other single reason - including blind
stupidity - W.A. Wulf

Perceived performance is what really matters
• Is the system getting the job done or not?
• Function of resources, efficiency, scope, etc.

Most people can only effect efficiency
• That’s why people like to tune their programs to make them more
efficient

• But it might not be the best way to get improvement
People are expensive, often overloaded

But if you’re going to tune a program, you might as well do a good job

Reminder: Performance assumes correctness!
• You have to make sure the program still works after you tune it

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

10

Start by understanding the problem
“Show me what part is taking all the time!”

Need tools to get reliable performance info

Several ways to acquire data
• Your OS probably has high-level tools for checking machine status

top, lsof, vmstat
Tools available vary with OS type

Sun Solaris: pmon, pstat, pstack
Linux tools: free, memalloc

• C/C++ have tools like gprof for internal program performance
• Java virtual machines can capture data at runtime

Several approaches:
• Periodic samples

Use the procedure stack in each sample to figure out what’s being done
Use statistical arguments to provide profiles
Fast, simple

• Tracking call/return control flow
Captures entire behavior, even for fast programs
Requires instrumenting the code
Accurate

6

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

11

The data you get looks like this:
CPU SAMPLES BEGIN (total = 909) Sat Feb 12 13:45:46 2000

rank self accum count trace method

1 28.60% 28.60% 260 31 java/lang/StringBuffer.<init>

2 26.51% 55.12% 241 18 java/lang/StringBuffer.<init>

3 24.42% 79.54% 222 48 java/lang/StringBuffer.<init>

4 4.62% 84.16% 42 21 java/lang/System.arraycopy

5 3.96% 88.12% 36 49 java/lang/System.arraycopy

6 3.85% 91.97% 35 36 java/lang/System.arraycopy

7 0.66% 92.63% 6 33 com/develop/demos/TestHprof.makeStringInline

8 0.44% 93.07% 4 47 java/lang/String.getChars

9 0.33% 93.40% 3 23 java/lang/StringBuffer.toString

10 0.22% 93.62% 2 25 java/lang/StringBuffer.append

11 0.22% 93.84% 2 59 com/develop/demos/TestHprof.makeStringWithBuffer

12 0.22% 94.06% 2 50 com/develop/demos/TestHprof.makeStringWithLocal

13 0.22% 94.28% 2 40 java/lang/StringBuffer.toString

14 0.22% 94.50% 2 17 com/develop/demos/TestHprof.addToCat

15 0.22% 94.72% 2 41 java/lang/String.<init>

16 0.22% 94.94% 2 30 java/lang/StringBuffer.append

17 0.22% 95.16% 2 7 sun/misc/URLClassPath$2.run

Now what?

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

12

Now what?
What you have: How often some function was running
What you want: “Improve this place first”

Is this a poor algorithm?

Is this asking for too much work?

7

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

13

Now what?
What you have: How often some function was running
What you want: “Improve this place first”

Who’s responsible for all
this work?

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

14

Tools to help understand performance info
Commercial performance tools tend to have powerful analysis features

• This is why people are willing to pay so much for them...

PerfAnal as an low-end example
http://developer.java.sun.com/developer/technicalArticles/Programming/perfanal/index.html

Four views of the behavior
• Top down look

How is each routine spending its time

• Bottom up look
Who is asking this routine to spend time?

• Detail within each function by line number
How is time spent in each function, with/without calls to others?
Is there just some bad code in there?

8

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

15

Top-down view of the program
How is the routine spending its time?

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

16

Bottom-up view
Who is asking this routine to spend time?

9

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

17

Even more detail…
Within a member function

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

18

How do you use this?
Two approaches:

• Make often-used routines faster
• Call slow routines less often

But it has to stay correct!
• Start by working in small steps

10

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

19

Sometimes you have to drop back 10 yards and punt

Not all problems will be solved with an incremental approach
• “Do we have to do this?”
• “Is there a better way to do this?”

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

20

Traditional example: Sorting a new deck of cards
Method 1: Pattern recognition

• There are a finite number of possible arrangements
• Find which one you have, and then reorder
• 52! = 4x1066 so will need about 52*4x1066/2 comparisons

Method 2: Bubble sort
• Scan through, finding the smallest number
• Then repeat, scanning through the N-1 that’s left
• Cost is O(N2) “sum of numbers from 1 to N” = 52*(52+1)/2 = 1.4x103

Method 3: Better sorts - Shell sort, syncsort, split sort, ...
• Even for arbitrary data, better sort algorithms exist
• O(N logN) = k * 52 * 5.7 = k * 300, where “k” is time per operation
• For N large, important gain regardless of k
• As ideas improve, k has come down from 5 to about 1.2

Method 4: Bin sort (“Solitaire sort”)
• Use knowledge that there are 52 specific items
• Throw each card into the right bin with 52 calculations

Method 5: Just look at each card in turn!

11

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

21

Telling pions from kaons via Cherenkov light
Pions & Kaons have similar interactions in matter, differ in mass

Particles moving faster than light in a
medium (glass, water) emit light

• Angle is related to velocity
• Light forms a cone

Focus it onto a plane, and you get a circle:

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

22

Radius of the reconstructed circle give particle type:

12

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

23

How to make this fit?
Space inside a detector is very tight, and the ring needs space to form
BaBar uses novel “DIRC” geometry:

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

24

Good news: It fits!

Bad news: Rings get messy due to ambiguities in bouncing

13

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

25

Simple event with five charged particles:

“I don’t want to do this”

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

26

Why is this hard?
Brute-force circle-finding is an O(N4) problem

• Basic algorithm: Are these four points consistent with a ‘circle’?

We catalog algorithms by how their cost grows with input size: O(N)

14

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

27

Realistic solution for DIRC? (Avoiding O(N4))
Use what you know:

• Have track trajectories, know position and angle in DIRC bars
• All photons from a single track will have the same angle w.r.t. track

No reason to expect that for photons from other tracks

For each track, plot angle between track and every photon - O(N)
• Don’t do pattern recognition with individual photons
• Instead, look for overall pattern

Not perfect, but optimal?

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

28

“But each operation is so much slower…”
How do I compare a “fast” O(N4) algorithm with a slow O(N)?

Many realistic problems deal with lots of data items
• Sharp coding is unlikely to save you a factor of 502 per calculation

15

Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 2

29

Summary 2 - “An informed way of experimental working”

Find a way of doing good work

Use tools wisely

Think about what you’re doing

