
SEC390SEC390

Introduction to Web ServicesIntroduction to Web Services
Alberto Pace

Information Technology Department
CERN, Geneva, Switzerland

With input from Andreas Pfeiffer, CERN, Geneva, Switzerland

CERN School of Computing 2006CERN School of Computing 20062

AgendaAgenda

HTTP
XML

Syntax, Namespaces, DTD, XSL, XSLT …

Web Services
XMLRPC, SOAP

SEC390SEC390

Introduction to HTTPIntroduction to HTTP

CERN School of Computing 2006CERN School of Computing 20064

The HTTP protocolThe HTTP protocol
The Hyper Text Transfer Protocol (HTTP) is the
client-server network protocol that has been in use
by the World-Wide Web since 1990.
Whenever you surf the web, your browser will be
sending HTTP request messages for HTML pages,
images, scripts and styles sheets. Web servers
handle these requests by returning response
messages that contain the requested resource.
See:
http://www.w3.org/Protocols/rfc2616/rfc2616.html
It is based on TCP and, by default it runs on port 80
(or 443 for its secure version)

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 20065

HTTP request exampleHTTP request example

GET /data/en/catalogue/ HTTP/1.1
Accept:*/*
Accept-Language: en-gb
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0)
Connection: Keep-Alive

HTTP method (or verb)

relative URL version of HTTP

a set of name/value pairs (headers)
header values control how the request is processed by the server.

CERN School of Computing 2006CERN School of Computing 20066

HTTP response exampleHTTP response example

HTTP/1.1 200 OK
Date: Mon, 04 Oct 2004 12:04:43 GMT
Cache-Control: no-cache
Content-Type: text/html; charset=utf-8
Content-Length: 8307

<html>
<head></head>
<body><p>Hello World</p></body >

</html>

version of HTTP

Status Code version of HTTP

name/value pairs
(headers)

HTML document

Blank
line DEMO

DEMO

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 20067

HTTP Request Headers (examples)HTTP Request Headers (examples)

Accept:*/*
types of content accepted by the client

Accept-Language: en-gb
The client prefers British English content

Accept-Encoding: gzip, compress
The client can understand and can decompress the listed formats

Connection Keep-Alive
request to use a persistent TCP connection

Host: www.cern.ch
HTTP/1.1 requires that the host name is supplied with every request
allowing multiple domains can be hosted on a single IP address.

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Version of client software

…

CERN School of Computing 2006CERN School of Computing 20068

HTTP Response Headers (examples)HTTP Response Headers (examples)

Date: Wed, 4 Oct 2004 12:00:00 GMT
Date and time on the server

Content-Length: 2748
Gives the length in bytes of the body that follows the headers.

Content-Type: image/gif
Gives the type of the body

Cache-Control: no-cache
indicates whether the resource may be cached by the client. The value no-
cache disables all caching

Expires: -1
The date when the content is out of date. -1 indicates that the content
expires immediately

X-zzzzzz
Web applications can use custom headers to add comments or
annotations to an HTTP message. The convention is to prefix the header
name with X- to indicate that it is non-standard.

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 20069

HTTP Status CodesHTTP Status Codes
1xx - Informational

intermediate response. For example, the server can reply initially with 100 Continue
when it receives a POST request and then with 200 OK once it has been processed

2xx - Successful
Request successfully processed. For example, the value 200 is used when the
requested resource is being returned to the HTTP client in the body of the
response message.

3xx - Redirection
For example the code 302 returns another URL to which the client should issue
request again.
The code 304 indicates that the resource was not modified and the client should
read from its local cache instead.

4xx - Client Error
In addition to the well known 404 (404 The requested resource does not exist),
worth mentioning the 401 code which is the “access denied” response
(Authentication required)

5xx - Server Error
An error occurred on the server while processing the request. The code 500 is
typically “An internal error occurred on the server” while the code 503 is
“service is currently unavailable”

CERN School of Computing 2006CERN School of Computing 200610

HTTP CookiesHTTP Cookies
A cookie is a piece of data that is issued by a server in an HTTP
response that the client re-supplies in subsequent requests to the
same server.
Setting cookies

Cookies allows the server to store user preferences, identity, application state
information for individual clients.
Cookies have a Name, a Value, an Expires Date/time attribute, a Path and a Domain

Retrieving Cookies
At every requests, the client consults its local cookie store to see if any unexpired
cookies match the path and domain it is about to use.
Any matching cookie values are submitted back to the server using the cookie
header.

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200611

HTTP Caching HTTP Caching

Caching avoids retransmitting the same information multiple times
Client caching is controlled by the use of the Cache-Control, Last-Modified and
Expires response headers.

Servers set the Cache-Control response header to no-cache to indicate
that content should not be cached by the client

The Cache-Control header can be set to one of the following values to allow
caching:

<absent> If the Cache-Control header is not set, then any cache may store
the content.
private The content is intended for use by a single user and should only
be cached locally in the browser.
public The content may be cached in public caches (e.g. shared proxies)
and private browser caches.

To make effective use of cached content, the modification and the expiration
date of the contentmust be supplied in the response header:

Last-Modified: Wed, 15 Sep 2004 12:00:00 GMT
Expires: Sun, 17 Jan 2038 19:14:07 GMT

CERN School of Computing 2006CERN School of Computing 200612

HTTP CacheHTTP Cache
There are at least 4 cache scenarios which you must be aware
of

A resource is never cached and is always downloaded; even with
back/forward buttons.
A resource can be cached but has no expiration or modification date. In
this case it is always downloaded when the page is first visited in a new
browser session or if the user refreshes the page.
A resource can be cached and has a modification date but no expiration
date. Therefore it is always checked but not downloaded when the page is
first visited in a browser session or if the user refreshes the page.
A resource can can be cached and has an expiration date. The browser
can reuse the image in a new browser session without having to send any
request to the server.

For example, the Google logo is set to expire in 2038 and will
only be downloaded on your first visit to google.com or if you
have emptied your browser cache. To change the image they
can use a different image file name or path.

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200613

HTTP Cache ExampleHTTP Cache Example

GET /images/logo.gif HTTP/1.1
Accept: */*
Referer: http://www.google.com/
Accept-Encoding: gzip
If-Modified-Since: Thu, 23 Sep 2004 17:42:04 GMT
Host: www.google.com

HTTP/1.1 304 Not Modified
Content-Type: text/html
Server: GWS/2.1
Content-Length: 0
Date: Thu, 04 Oct 2004 12:00:00 GMT

Request

Response

CERN School of Computing 2006CERN School of Computing 200614

HTTP MethodsHTTP Methods
The HTTP method (sometimes called ‘verb’) is supplied in the
request and specifies the operation that the client has requested.

There are lot of methods defined (GET, POST, HEAD, OPTION,
DELETE, PUT, …) but the most used are GET and POST

The GET method is used to retrieve information from a specified
URI

It is the typical method used to display a web page in a browser
The GET method has only a header. There is no body.
GET requests can only supply data in the form of parameters
encoded in the URI (known as a Query String) or as cookies in
the cookie request header.

The POST method has a body in addition to the header that can be
used to transfer information

The POST content body that is normally used to send
parameters and data. Unlike using the request URI or cookies,
there is no upper limit on the amount of data that can be sent
and POST must be used if files or other variable length data has
to be sent to the server.

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200615

GET / POST ExamplesGET / POST Examples

GET /data/?User=Joe HTTP/1.1
Accept: */*
Accept-Encoding: gzip
Host: www.cern.ch

POST /data/ HTTP/1.1
Accept: */*
Accept-Encoding: gzip
Host: www.cern.ch

User=Joe

GET

POST

CERN School of Computing 2006CERN School of Computing 200616

HTTP Authentication HTTP Authentication
HTTP supports several authentication mechanisms based
around the use of the 401 status code and the WWW-
Authenticate response header
The standardized HTTP authentication mechanisms are Basic
and Digest. Other (NTLM, certificates) are also very common.
Basic Authentication

The client sends the username and password encoded in
base64
It should only be used with HTTPS, as the password can be
easily captured and reused over HTTP.

Digest
The client sends a hashed form of the password to the
server
Although, the password cannot be captured over HTTP, it
is possible to replay requests using the hashed password.

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200617

HTTP Authentication ExampleHTTP Authentication Example

HTTP/1.1 401 Access Denied
WWW-Authenticate: Basic realm="CERN"
Content-Length: 0

GET /protectedfiles/ HTTP/1.1
Host: www.cern.ch
Authorization: Basic <USERNAME>:<PASSWORD>

A server forces authentication by rejecting the request with a 401 code and
setting the WWW-Authenticate response header

Most web clients will then display a login dialog, allowing the user to enter a
username and password. This information is used to retry the request with
an Authorization request header

Note that anyone tapping the network can intercept the HTTP request
(and its username / password)

GET /protectedfiles/
Host: www.cern.ch

CERN School of Computing 2006CERN School of Computing 200618

Secure HTTP (HTTPS)Secure HTTP (HTTPS)
It is the HTTP protocol encrypted over a Secure
Channel (SSL or TLS).

Prevents eavesdropping, tampering or replaying of messages
Uses certificates to authenticate servers and optionally clients

http://www.faqs.org/rfcs/rfc2818.html
Typically runs on TCP port 443 instead of 80

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200619

More on HTTPMore on HTTP

See more on “Encoding”, “Redirection” and
“Compression in the References
Reference:

http://www.w3.org/Protocols/rfc2616/rfc2616.html Introduction to XMLIntroduction to XML
eXtensible Markup Language

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200621

OverviewOverview

XML – what it (not) is
XML syntax
DTD – describing XML documents
Related technologies

CERN School of Computing 2006CERN School of Computing 200622

XML XML –– what it is (not)what it is (not)

XML is a markup language and only a
markup language

Not a programming language !
No “compiler” for XML

Not a network protocol !
Not a database either !

<book ISBN=“0596000588”>
<title> XML in a nutshell </title>
<author> E.R.Harold </author>
<author> W.S.Means </author>
<publisher> O’Reilly </publisher>

</book>

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200623

HTML versus XML ?HTML versus XML ?

HTML is a particular case of XML
All (good) HTML documents are also XML
documents
Only a particular class of XML documents
are HTML

<head>
<title> XML in a nutshell </title>

</head> <body>
<p>XML in a nutshell</p>
<p>by E.R.Harold and W.S.Means</p>

</body>

CERN School of Computing 2006CERN School of Computing 200624

XML XML –– what it iswhat it is

(Meta) Data description language
E.g., config files
Extensible – you can add your own “words”

Simple, well-documented data format
Truly cross-platform
Ideal for long-term storage
Text file

Unicode (ASCII or other) encoding

XML is derived from the Standard
Generalized Markup Language (SGML), an
ISO standard for documents.

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200625

Meta Markup LanguageMeta Markup Language

No fixed set of tags and elements
Just a couple of “special characters” which must be
replaced with escape sequences

Users can define their own specific
“language”

Document Type Definition (DTD), XML Schemas
Huge flexibility, very powerful
Namespaces to avoid conflicts

CERN School of Computing 2006CERN School of Computing 200626

XML syntax: TagsXML syntax: Tags

Start tags begin with “<”
End tags begin with “</”
Tags are closed by “>”

Empty elements are closed by “/>”

<book ISBN=“0596000588”></book>

<book ISBN=“0596000588” />

<title> XML in a nutshell </title>

Equivalent syntax

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200627

XML syntax: TagsXML syntax: Tags

Case sensitive
Unless the application decides to ignore case

Comments like in HTML
<!-- this is a comment -->
The double hyphen -- should not appear anywhere else in
the comment

CERN School of Computing 2006CERN School of Computing 200628

XML syntaxXML syntax

Names of tags reflect the type of content,
not formatting information
Tags, elements, attributes, values

<?xml version=“1.0”?>
<book ISBN=“0596000588”>
<title> XML in a nutshell </title>
<author> E.R.Harold </author>
<author> W.S.Means </author>
<publisher> O’Reilly </publisher>

</book>

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200629

XML syntax: ElementsXML syntax: Elements

Elements consist of
<Tag> content </Tag>

Typically elements contain other elements
XML documents are trees
Parent-child relation for elements in a tree

Each child has exactly one parent (with the exception of the
first element in the doc (‘root’))

CERN School of Computing 2006CERN School of Computing 200630

XML syntax: AttributesXML syntax: Attributes

XML elements can have attributes
In the start tag

Attributes are name/value pairs
name = “value” (or name = ‘value’)

Not sensitive to whitespace

Usually used for meta-data
E.g., ID in a database

<book title=“XML in a nutshell” ISBN=“0596000588” />

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200631

Attributes vs. elementsAttributes vs. elements
In general, any attribute can be expressed as an
element

<book ISBN=“0596000588”>
<title>XML in a nutshell</title>
</book>

<book>
<title>XML in a nutshell</title>
<ISBN>0596000588</ISBN>
</book>

The opposite is not true:
attributes cannot contain multiple values (child elements can)
attributes cannot describe structures (child elements can)
attributes are not easily expandable (for future changes)
attributes are more difficult to manipulate by program code
attribute values are not easy to test against a DTD

<book title=“XML in a nutshell” ISBN=“0596000588” />

CERN School of Computing 2006CERN School of Computing 200632

Attributes vs. elements (II)Attributes vs. elements (II)

The general recommendation is to use
attributes for metadata (data about data,
e.g. an ID)
Avoid using attributes as containers for
data to avoid ending up with documents
that are difficult to read and maintain.

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200633

XML NamesXML Names
Names in XML may contain alphanumeric (also
non-english) characters plus :

_ Underscore,
- Hyphen, and
. Period

All other punctuation chars are not allowed
No whitespace allowed in names
Colon is reserved for namespaces

Names may start with letters, ideograms, or _

CERN School of Computing 2006CERN School of Computing 200634

Discussed later

XML special charactersXML special characters
For normal text (not markup), there are no special characters: just make sure your
document refers to the correct encoding scheme for the language and/or writing system
you want to use, and that your computer correctly stores the file using that encoding
scheme.
In all cases you can use a symbolic notation called ‘entity referencing’. Entity
references can either be numeric, using the decimal or hexadecimal Unicode code point
for the character

Example: if your keyboard has no Euro symbol (€) you can type €
You can also have “short names” which you declare in your DTD (eg <!ENTITY euro "€">) and then use as
€ in your document.
If you are using a Schema, you must use the numeric form for all except the five below because Schemas have no way
to make character entity declarations.

If you use XML with no DTD, then these five character entities are assumed to be
predeclared, and you can use them without declaring them:

< < Less than
> > greater than
& & ampersand
' ‘ apostrophe
" “ quotation

Entity references always start with the "&" character
and end with the ";" character.

Note: Only the characters "<" and "&" are strictly
illegal in XML. Apostrophes, quotation marks and
greater than signs are legal, but it is a good habit to
replace them.

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200635

Escape CharactersEscape Characters

Illegal XML characters have to be replaced
by entity references.

If you place a character like "<" inside an XML element, it
will generate an error because the parser interprets it as
the start of a new element.

You cannot write something like this:
<message>if salary < 1000 then</message>

To avoid this, you have to replace the "<" character with an
entity reference, like this:
<message>if salary < 1000 then</message>

CERN School of Computing 2006CERN School of Computing 200636

Escaping using CDATA sectionsEscaping using CDATA sections

Tells parser to interpret following data literally (“raw”
character data, not interpreting ‘<’ and ‘&’ as special
characters)

E.g., embedded HTML or other XML sources
Section starts with “<![CDATA[”
Section ends with “]]>”

Which is of course forbidden in the data

<message>
<![CDATA[if salary < 1000 then]]>

</message>

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200637

Who Defines the XML Tags?Who Defines the XML Tags?

YOU
XML offers a universal way to describe and work with data.
XML allows developers to create their own XML vocabularies that
are customized for describing their particular data structures.
Once developers harness the power of XML to describe their data,
they can easily interoperate with any other homogenous or
heterogeneous system that also understands XML.
Developers can consume data from any other system as long as it's
also described using XML. A developer who leverages XML no
longer needs to worry about platform, operating system, language,
or data store differences when interoperating with other systems.
XML becomes the least common denominator for system
interoperability.

CERN School of Computing 2006CERN School of Computing 200638

XML NamespacesXML Namespaces
Because XML is truly about interoperability and everyone is
free to create their own XML vocabularies, everything would
start to break down rather quickly if different developers
chose identical element names to represent conceptually
distinct entities.
To safeguard against these potential conflicts, the W3C
introduced namespaces into the XML language.
XML namespaces provide a context for your XML document
elements. XML namespaces allow developers to resolve
elements to a particular implementation semantic.

<Customer>
<Name>John Smith</Name>
<Address>Geneva, Switzerland</Address>

<Customer>

<Computer>
<Name>PCWEB23</Name>
<Address>137.138.12.34</Address>

<Computer>

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200639

XML NamespacesXML Namespaces
Distinguish between elements and attributes from
different domains

“Name” and “Address” can have different meaning
Group all related elements and attributes from a given
domain (or XML application)
Allows to be able to interpret the data
Syntax:

The xmlns keywords define the name space
Using a prefix to refer (bind) to the URI

<MyNS:RDF xmlns:MyNS=http://www.cern.ch/MyNamespace>

Bindings have a scope with the element (and it’s children)

CERN School of Computing 2006CERN School of Computing 200640

Validating XML documentsValidating XML documents
Is this XML Document Valid ?

In term of XML Syntax ? YES
Namespace ? YES
But it may fail at the application level

<Customer>
<Name>Bob White</Name>
<Address>Helsinki, Finland</Address>

<Customer>
<Name>Alice Reading</Name>
<Name>John Smith</Name>
<Address>Geneva, Switzerland</Address>

</Customer>
<Customer>

To catch problems like this, we need a standard
mechanism for validating an XML document
against some set of predefined rules

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200641

Class of XML DocumentsClass of XML Documents
To solve the problem of validating XML documents,
there are two technologies available to define
classes of documents

DTD (Document Type Definitions)
Not written in XML
Can be referecenced from XML

XML-Data schema definitions (XSD)
Less used
written in XML – you can reuse the normal XML technology
more verbose
Can be referenced in the namespace

RelaxNG
Less used
written in XML – you can reuse the normal XML technology

CERN School of Computing 2006CERN School of Computing 200642

XML documents validationXML documents validation

“Well formed”
Correct XML syntax (tags closed, …)

“Valid” documents
Validation against an existing DTD/Schema
No unknown elements/attributes
No invalid values for elements/attributes

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200643

XML Schema definition, RelaxNGXML Schema definition, RelaxNG

Formal syntax to describe exactly what is
allowed in an XML document
Not discussed further.
For XML Schema definition (XSD)

See http://www.w3.org/TR/xmlschema-0/

For RelaxNG
See http://www.relaxng.org/

CERN School of Computing 2006CERN School of Computing 200644

Document Type Definitions (DTDs)Document Type Definitions (DTDs)

Formal syntax to describe exactly what is
allowed in an XML document

HTML: “ul” may only contain “li”s …

Used for validation of XML documents
If required by the user

Declares elements <!ELEMENT … >
Declares attributes <!ATTLIST … >
A DTD is not an XML document !

Different from XML Schema, RelaxNG

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200645

Example of a DTDExample of a DTD

Parsed
Character
DATA

Ordering !

? Zero or one
+ One or more
* Zero or more

<!ELEMENT person (name, profession*)>
<!ELEMENT name (firstName, lastName)>
<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>
<!ELEMENT profession (#PCDATA)>

<!ELEMENT response (data | fault)*>

CERN School of Computing 2006CERN School of Computing 200646

Usage of persons DTDUsage of persons DTD

The example from last slide is in a file
called “person.dtd”

Prologue
<?xml version=“1.0” standalone=“no” ?>
<!DOCTYPE person SYSTEM “person.dtd”>
<person>
<name>
<firstName> Andreas </firstName>
<lastName> Pfeiffer </lastName>
<profession> physicist </profession>

</name>
</person>

Where is the error ?

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200647

<?xml version=“1.0”?>
<!DOCTYPE person [

<!ELEMENT person (name, profession*)>
<!ELEMENT name (firstName, lastName)>
<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>
<!ELEMENT profession (#PCDATA)>

]>
<person>
<name>
<firstName> Andreas </firstName>
<lastName> Pfeiffer </lastName>

</name>
<profession> physicist </profession>

</person>

DTD inside the documentDTD inside the document

Standalone version !

CERN School of Computing 2006CERN School of Computing 200648

<!ATTLIST image source CDATA #REQUIRED
width CDATA #REQUIRED
height CDATA #REQUIRED
alt CDATA #IMPLIED

>

Attribute DeclarationsAttribute Declarations

Syntax
<!ATTLIST elementName attName attType attDefault>

Example

optional

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200649

Attribute typesAttribute types
CDATA – text string

Most generic

NMTOKEN
Same rules as for any XML
name

NMTOKENS
One or more NMTOKEN
separated by whitespace

Enumeration
List of possible choices

ID
Must contain a name unique
within the document

IDREF
Reference to an ID type
attribute of an element in
the doc.

IDREFS
Separated by whitespace

ENTITY
Name of an unparsed
entity

ENTITIES
Separated by whitespace

NOTATION
Rarely used

CERN School of Computing 2006CERN School of Computing 200650

Attribute defaultsAttribute defaults

#IMPLIED
Optional, no default provided

#REQUIRED
Each instance of the element must provide a value for this
attribute, no default.

#FIXED
Attribute value is constant and immutable, cannot be
overwritten

Default values can be provided
<!ATTLIST webPage protocol NMTOKEN “http”>

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200651

Entity referencesEntity references

“Shorthand” notation for DTDs
Five pre-defined

< > & " '
You can define your own

Eases readability and re-use

<!ENTITY coord “((x,y)|(y,x)|(th,r)|(r,th))” >
<!-- a polygon has at least three points -->
<!ELEMENT polygon (&coord;, &coord;, &coord;+) >

CERN School of Computing 2006CERN School of Computing 200653

Parsing XMLParsing XML

Solutions to access programmatically XML
data

Software capable of reading, writing, modifying XML
documents and provide access to their structure

Often referred as an XML processor or an
XML API
Two main API specifications have gained
popularity:

Document Object Model (DOM)
Simple API for XML (SAX).

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200654

Programming models for XML Programming models for XML
“Event driven” (SAX) vs. “object based” (DOM)

SAX (simple API for XML) DOM (Document Object Model)
Doesn’t store data while parsing Constructs an in memory copy of the

document

No support for writing/modifying In-memory tree can be modified

Document data becomes available
as it’s parsed

Entire document must be parsed before tree
is available

Parsers

CERN School of Computing 2006CERN School of Computing 200655

More on DOMMore on DOM
In-memory tree representation of the XML document
When loaded, the processor builds an in-memory tree that
correctly represents the document
DOM exposes programmatic interfaces that allow traversing
the XML tree and manipulate the elements, values, and
attributes

Set xmlDoc = CreateObject("MSXML.DOMDocument")
bSuccess = xmlDoc.load(“customers.xml")
If bSuccess Then

For Each node in xmlDoc.documentElement.childNodes
val = node.text

Next
End If

Example: DOM enumeration of child elements using MSXML

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200656

XML related technologies (I)XML related technologies (I)
XLinks

Attribute-based syntax for hyperlinks between XML and non-XML docs

XPointers
More generic that Xlinks, goes beyond URI
Syntax to identify parts of an XML doc
Used often in conjunction with an XLink
consists of a series of location terms. Each location term has a keyword
(such as id, child, ancestor, and so on) and can have arguments, such as
an instance number, element type, or attribute.
For example, the XPointer:

refers to the second child element whose type is customer

<customer xml:link="simple" href="http://cern.ch/customer.htm"> </customer>

child(2,customer)

CERN School of Computing 2006CERN School of Computing 200657

Transforming XMLTransforming XML
Even when using DOM or SAX API it is tedious to
extract specific pieces of data from large
documents or to transform certain parts of XML
into another format (such as HTML)
These tasks can be accomplished using Extensible
Stylesheet Language (XSL)

Combined with a query language (XSL Patterns) to extract data
And rules to transform XSLT (XSL transformations)

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200658

Extensible Stylesheet Language (XSL)Extensible Stylesheet Language (XSL)

XSL helps transforming nodes from an XML format into
another format

The need is originated on the Web as developers wanted to take their XML
data and transform it into HTML for the user to view

XSL can also define transformations from a given XML format
to another distinct XML format

Ease of interoperability
No need to agree on a universal vocabulary for describing a type of data

An XSL file is a list of declarative templates that define the
transformation rules
Each template defines exactly how you wish to transform a
given node from the source document
You use XSL Patterns within a template to define which
portions of the document the template applies to

CERN School of Computing 2006CERN School of Computing 200659

XSLT ExampleXSLT Example
<?xml version="1.0"?>
<hamburgers>

<hamburger lowfat="dream on">
<name>CowBurger</name>
<description>Greasy and good.</description>
<price>2.99</price>

</hamburger>
</hamburgers>

<html>
<body>
<h1>hamburgers</h1>

CowBurger, $2.99, Greasy and good.

</body>
</html>

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl=" http://www.w3.org/TR/WD-xsl ">
<xsl:template match="/">
<html>
<body>
<h1>hamburgers</h1>
<xsl:for-each select="hamburgers[@lowfat="dream on"]>
<xsl:value-of select="name"/>, <xsl:value-of select="
<xsl:value-of select="description"/>

</xsl:for-each>
</body>
</html>

</xsl:template>
</xsl:stylesheet>

XSLT processorXSLT processor
Internet Explorer, Cocoon (Apache)
Stand-alone: Saxon, Xalan

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200660

SummarySummary

XML
Namespaces, Schemas
DTD, XSD
XLink, XPointer
XML parsers, SAX, DOM, XPath
XML verification
XSL, XSLT, transformation
Formatting Objects (XSL-FO)

CERN School of Computing 2006CERN School of Computing 200661

Other applications of XMLOther applications of XML
More specific to concrete domains

W3C endorsed standards
Scalable Vector Graphics – SVG
Mathematical ML – MathML
Resource Description Framework – RDF
Synchronized Multimedia Integration Language (SMIL)
Vector Markup Language (VML)
XHTML

Other
Chemical ML – CML

One of the first XML applications
Channel Definition Framework – CDF

MS specific (publish web sites to IE)
XML Instant messaging

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200662

XML in HEPXML in HEP

Configuration files
Detector geometry description

“Standard” is evolving

Schema for introspection and persistency
LCG Dictionary through gcc-xml

Data interchange
AIDA XML standards for Data Analysis related items

Histograms (binned and unbinned),
Vectors of data,
Ntuples,
Functions and Fits

CERN School of Computing 2006CERN School of Computing 200663

LinksLinks

WWW consortium
http://www.w3.org/
with lots of further links !

XML – development
http://www.xml.org/

SEC390SEC390

Web ServicesWeb Services
Definition, Architecture, XML-RPC, SOAP, WSDL, …

CERN School of Computing 2006CERN School of Computing 200665

Web servicesWeb services

Will use “Web services” as generic term
Although there is a more specialized definition from W3C

Requires SOAP and WSDL

Allow for cross platform interoperability
“The Internet is the platform”

Although HTTP is the protocol used for web
service, these can be offered on any
transport

SMTP (electronic mail) is a good alternative

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200666

Web ServicesWeb Services
Web/network interface to application

Independent of language of implementation

Using XML for information exchange
For both: methods and data

Kind of “Remote Procedure Call” using XML
Two possibilities:

SOAP needs a rather complex “infrastructure”, offers where,
what and how to find
XML-RPC is more simple, less heavy

CERN School of Computing 2006CERN School of Computing 200667

W3C on Web ServicesW3C on Web Services

“Definition: A Web service is a software
system identified by a URI [RFC 2396],
whose public interfaces and bindings are
defined and described using XML. Its
definition can be discovered by other
software systems. These systems may then
interact with the Web service in a manner
prescribed by its definition, using XML
based messages conveyed by Internet
protocols.”

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200668

Architecture of Web Services (I)Architecture of Web Services (I)

Find Publish

Bind (use)

XML

ConsumerConsumer

RegistryRegistry

ProviderProvider

CERN School of Computing 2006CERN School of Computing 200669

Architecture of Web Services (II)Architecture of Web Services (II)

Web Service Description
(XML document)

Semantics
of service

Requestor Entity Provider Entity
SemSem WSDWSD

Requestor
Human

Requestor
Agent

Provider
Human

Provider
Agent

1. Agree on
semantic and WSD

3. Interact

2. Enter
semantic and WSD

2. Enter
semantic and WSD

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200670

Roles of the agentsRoles of the agents

Service requestor
Service provider
Discovery agency
Are not fixed, a given agent can “play”
several roles

CERN School of Computing 2006CERN School of Computing 200671

Calling a procedure on a Calling a procedure on a
remote systemremote system

Needs
A procedure (with agreed semantics)
Arguments to the procedure
Return values from the procedure
Remote system where the procedure is
implemented/running
An agreement on how to communicate

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200672

ProcedureProcedureMainMain

Remote procedure calls (I)Remote procedure calls (I)
RPC

Since early 1980’s
eXternal Data Representation (XDR) to communicate values
Specific server/client models
CORBA and DCOM

Network compiler, Interface Definition Languages (IDL)

STUBSTUB STUBSTUB

Network transportNetwork transport

Network compilerNetwork compiler
CERN School of Computing 2006CERN School of Computing 200673

Remote procedure calls (II)Remote procedure calls (II)
XML based

XML-RPC
SOAP
Late 1990’s (parallel development)

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200674

XMLXML--RPCRPC

http://www.xmlrpc.org/
“It's remote procedure calling using HTTP
as the transport and XML as the encoding.
XML-RPC is designed to be as simple as
possible, while allowing complex data
structures to be transmitted, processed and
returned.”

CERN School of Computing 2006CERN School of Computing 200675

XMLXML--RPCRPC
Is a Remote Procedure Call protocol

Working over the Internet
Using HTTP as the transport layer

An XML-RPC message is an HTTP-POST request
And XML as the encoding

The body of the request is in XML. A procedure executes on the
server and the value it returns is also formatted in XML.
Procedure parameters can be scalars, numbers, strings, dates,
etc.; and can also be complex record and list structures.

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200676

XMLXML--RPC goalsRPC goals
Discoverability

“We wanted a clean, extensible format that's very simple. It
should be possible for an HTML coder to be able to look at a file
containing an XML-RPC procedure call, understand what it's
doing, and be able to modify it and have it work on the first or
second try. “

Easy to implement
“We also wanted it to be an easy to implement protocol that
could quickly be adapted to run in other environments or on
other operating systems.”

From: http://www.xmlrpc.org/spec

CERN School of Computing 2006CERN School of Computing 200677

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>

<methodName> examples.getStateName </methodName>
<params>
<param> <value> <i4> 41 </i4> </value> </param>

</params>
</methodCall>

XMLXML--RPC exampleRPC example

HTTP POST request

Content-length must be correct

Body of the request

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200678

XMLXML--RPC Basic TypesRPC Basic Types

Tag Type Example
<i4> or <int> Four-byte signed

integer
42

<boolean> 0(false) or
1(true)

1

<string> string Hello world

<double> Double-precision
signed

-3.1415926

<dateTime.iso8601> Date/time 20030716T09:53:42

<base64> Base64-encoded
binary

eW91IGNhbid0IHJlYWQgdGhpcyE=

CERN School of Computing 2006CERN School of Computing 200679

<struct>
<member>
<name> lowerBound </name>
<value> <i4> 18 </i4> </value>

</member>
<member>
<name> upperBound </name>
<value> <i4> 139 </i4> </value>

</member>
</struct>

XMLXML--RPC <struct>RPC <struct>

<struct>s can be recursive, any <value> may
contain a <struct> (or <array>)

structs contain members,
members have name and value

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200680

XMLXML--RPC <array>RPC <array>

<array>s can be recursive, any <value> may
contain an <array> (or <struct>)

<array>
<data>
<value> <i4> 42 </i4> </value>
<value> <string> Egypt </string> </value>
<value> <boolean> 0 </boolean> </value>
<value> <i4> -31 </i4> </value>

</data>
</array>

arrays contain data,
data contains value(s),
array elements have no names

CERN School of Computing 2006CERN School of Computing 200681

Response exampleResponse example

HTTP/1.1 200 OK
Connection: close
Content-Length: 158
Content-Type: text/xml
Date: Fri, 17 Jul 1998 19:55:08 GMT
Server: UserLand Frontier/5.1.2-WinNT

<?xml version="1.0"?>
<methodResponse>
<params>

<param>
<value> <string>South Dakota</string> </value>

</param>
</params>

</methodResponse>

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200682

[HTTP header …]
<?xml version="1.0"?>

<methodResponse>
<fault>

<value>
<struct>

<member>
<name>faultCode</name>
<value> <int>4</int></value>

</member>
<member>

<name>faultString</name>
<value><string>Too many parameters.</string></value>

</member>
</struct>

</value>
</fault>

</methodResponse>

FaultFault--Response exampleResponse example

fault contains a value, which is a struct
with two elements:
- one int member named faultCode and
- one string member named faultString

CERN School of Computing 2006CERN School of Computing 200683

XMLXML--RPC extensionsRPC extensions

Multicall
Problem with HTTP round-trip times (latency)
Solution: group requests/responses in arrays and use only
one call (“boxcarring”)

Server side introspection
system.listMethods
system.methodSignature
system.methodHelp

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200684

SOAPSOAP

Simple Object Access Protocol
Developed in parallel to XML-RPC

Started by UserLand and Microsoft developers (1998)
Now mainly Microsoft and IBM, endorsed by w3c
Specifications: http://www.w3.org/TR/soap/

SOAP vs. XML-RPC
User defined data types
Able to specify the recipient
Message specific processing control

CERN School of Computing 2006CERN School of Computing 200685

Soap namespacesSoap namespaces
Extensive use of namespaces and attribute
specification tags in almost every element of a
message
env (Envelope)

http://www.w3.org/2003/05/soap-envelope
enc (Encoding)

http://www.w3.org/2003/05/soap-encoding
rpc (Remote Procedure Call)

http://www.w3.org/2003/05/soap-rp
xs (XML Schema specifications)

http://www.w3.org/2001/XMLSchema
xsi (XML Schema instances specifications)

http://www.w3.org/2001/XMLSchema-instance

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200686

SOAP envelopeSOAP envelope
Header

Optional
Information on how the message
is to be processed

Body
Required
Contains actual message to be
delivered / processed

SOAP Envelope

SOAP Header

SOAP Body

Header data

Body data

CERN School of Computing 2006CERN School of Computing 200687

SOAP message exampleSOAP message example

<env:Envelope xmlns:env=“http://www.w3.org/2003/05/soap-envelope”>
<env:Header>
<n:alertcontrol xmlns:n=“http://example.org/alertcontrol”>
<n:priority>1</n:priority>
<n:expires>2001-06-22T14:00:00-05:00</n:expires>

</n:alertcontrol>
</env:Header>
<env:Body>
<m:alert xmlns:m=“http://example.org/alert”>

<m:msg>Pick up Mary at school at 2pm</m:msg>
</m:alert>

</env:Body>
</env:Envelope>

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200688

SOAP message detailsSOAP message details
Header

a way to pass information that is not application payload
directives or contextual information related to the processing of
the message

Control of routing
if multiple nodes or intermediaries process the message)
“role”s in headers, “mustUnderstand” attributes

Nodes may modify the header blocks (or add new ones)
Body

is mandatory and is where the main end-to-end information
must be carried
Only the ultimate SOAP receiver should alter the body

The choice of what goes in the header or the body
are decisions taken at application design time

CERN School of Computing 2006CERN School of Computing 200689

SOAP conversation Example (I)SOAP conversation Example (I)
<?xml version='1.0' ?><?xml version='1.0' ?>
<env:<env:Envelope Envelope xmlns:env="http://www.w3.org/2003/05/soapxmlns:env="http://www.w3.org/2003/05/soap--envelope"> envelope">
<env:<env:HeaderHeader>>
<m:reservation xmlns:m="http://travelcompany.org/reservation" <m:reservation xmlns:m="http://travelcompany.org/reservation" >>
<m:reference>uuid:093a2da1<m:reference>uuid:093a2da1--q345q345--739r739r--ba5dba5d--pqff98fe8j7d</m:reference>pqff98fe8j7d</m:reference>
<m:dateAndTime>2001<m:dateAndTime>2001--1111--29T13:20:00.00029T13:20:00.000--05:00</m:dateAndTime>05:00</m:dateAndTime>
</m:reservation></m:reservation>
<n:passenger xmlns:n="http://mycompany.com/employees"<n:passenger xmlns:n="http://mycompany.com/employees"

env:mustUnderstand="true">env:mustUnderstand="true">
<n:name><n:name>ÅÅke Jke Jóógvan gvan ØØyvind</n:name>yvind</n:name>

</n:passenger></n:passenger>
</env:</env:HeaderHeader>>
<env:<env:BodyBody>>
<p:itinerary<p:itinerary

xmlns:p="http://travelcompany.org/reservation/travel">xmlns:p="http://travelcompany.org/reservation/travel">
<p:departure><p:departure>

<p:departing>New York</p:departing><p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving><p:arriving>Los Angeles</p:arriving>
<p:departureDate>2001<p:departureDate>2001--1212--14</p:departureDate>14</p:departureDate>
<p:departureTime>late afternoon</p:departureTime><p:departureTime>late afternoon</p:departureTime>
<p:seatPreference>aisle</p:seatPreference><p:seatPreference>aisle</p:seatPreference>

</p:departure></p:departure>
<p:return><p:return>

<p:departing>Los Angeles</p:departing><p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving><p:arriving>New York</p:arriving>
<p:departureDate>2001<p:departureDate>2001--1212--20</p:departureDate>20</p:departureDate>
<p:departureTime>mid<p:departureTime>mid--morning</p:departureTime>morning</p:departureTime>
<p:seatPreference/><p:seatPreference/>

</p:return></p:return>
</p:itinerary></p:itinerary>
<q:lodging<q:lodging
xmlns:q="http://travelcompany.org/reservation/hotels">xmlns:q="http://travelcompany.org/reservation/hotels">
<q:preference>none</q:preference><q:preference>none</q:preference>
</q:lodging></q:lodging>
</env:</env:BodyBody>>

</env:</env:EnvelopeEnvelope>>

Envelope
Header

Body

reservation

passenger

itinerary

lodging

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200690

SOAP conversation Example (II)SOAP conversation Example (II)
<?xml version='1.0' ?><?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap--envelope"> envelope">
<env:Header><env:Header>
<m:reservation xmlns:m="http://travelcompany.org/reservation"><m:reservation xmlns:m="http://travelcompany.org/reservation">
<m:reference>uuid:093a2da1<m:reference>uuid:093a2da1--q345q345--739r739r--ba5dba5d--pqff98fe8j7d</m:reference>pqff98fe8j7d</m:reference>
<m:dateAndTime>2001<m:dateAndTime>2001--1111--29T13:35:00.00029T13:35:00.000--05:00</m:dateAndTime>05:00</m:dateAndTime>
</m:reservation></m:reservation>
<n:passenger xmlns:n="http://mycompany.com/employees"<n:passenger xmlns:n="http://mycompany.com/employees"

env:mustUnderstand="true">env:mustUnderstand="true">
<n:name><n:name>ÅÅke Jke Jóógvan gvan ØØyvind</n:name>yvind</n:name>

</n:passenger></n:passenger>
</env:Header></env:Header>
<env:Body><env:Body>
<p:itineraryClarification <p:itineraryClarification

xmlns:p="http://travel.org/reservation/travel">xmlns:p="http://travel.org/reservation/travel">
<p:departure><p:departure>

<p:departing><p:departing>
<p:airportChoices><p:airportChoices>

JFK LGA EWR JFK LGA EWR
</p:airportChoices></p:airportChoices>

</p:departing></p:departing>
</p:departure></p:departure>
<p:return><p:return>

<p:arriving><p:arriving>
<p:airportChoices><p:airportChoices>

JFK LGA EWR JFK LGA EWR
</p:airportChoices></p:airportChoices>

</p:arriving></p:arriving>
</p:return> </p:return>
</p:itineraryClarification></p:itineraryClarification>
</env:Body></env:Body>
</env:Envelope></env:Envelope>

Envelope
Header

Body

reservation

passenger

itineraryClarification

CERN School of Computing 2006CERN School of Computing 200691

SOAP conversation Example (III)SOAP conversation Example (III)
<?xml version='1.0' ?><?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap--envelope"> envelope">
<env:Header><env:Header>
<m:reservation xmlns:m="http://travelcompany.org/reservation"><m:reservation xmlns:m="http://travelcompany.org/reservation">
<m:reference>uuid:093a2da1<m:reference>uuid:093a2da1--q345q345--739r739r--ba5dba5d--pqff98fe8j7d</m:reference>pqff98fe8j7d</m:reference>
<m:dateAndTime>2001<m:dateAndTime>2001--1111--29T13:36:50.00029T13:36:50.000--05:00</m:dateAndTime>05:00</m:dateAndTime>
</m:reservation></m:reservation>
<n:passenger xmlns:n="http://mycompany.com/employees"<n:passenger xmlns:n="http://mycompany.com/employees"

env:mustUnderstand="true">env:mustUnderstand="true">
<n:name><n:name>ÅÅke Jke Jóógvan gvan ØØyvind</n:name>yvind</n:name>

</n:passenger></n:passenger>
</env:Header></env:Header>
<env:Body><env:Body>
<p:itinerary <p:itinerary

xmlns:p="http://travelcompany.org/reservation/travel">xmlns:p="http://travelcompany.org/reservation/travel">
<p:departure><p:departure>

<p:departing>LGA</p:departing><p:departing>LGA</p:departing>
</p:departure></p:departure>
<p:return><p:return>

<p:arriving>EWR</p:arriving><p:arriving>EWR</p:arriving>
</p:return></p:return>
</p:itinerary></p:itinerary>
</env:Body></env:Body>
</env:Envelope></env:Envelope>

Envelope
Header

Body

reservation

passenger

itinerary

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200692

SOAP protocol bindingSOAP protocol binding
HTTP GET method

SOAP Response message exchange pattern
Used when an application is assured that the message
exchange is for the purposes of information retrieval, where the
information resource is "untouched" as a result of the
interaction.
Interactions are referred to as safe and idempotent in the HTTP
specification

HTTP POST method
SOAP Request / Response message exchange pattern
HTTP Content-type header “application/soap+xml”

E-mail
Identical to HTTP POST method
Asynchronous
SMTP protocol RFC2822

CERN School of Computing 2006CERN School of Computing 200693

Using SOAP for RPCUsing SOAP for RPC

SOAP defines a representation for RPC
invocations
Detailed definition of

Target Node, Procedure and method names
identities, types and argument values
Data / context / status to be carried in header blocks

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200694

SOAP data types (I)SOAP data types (I)

Same basic types as for XML-RPC
int, boolean, double, string, date/time, base64

References (to the same object in memory)

Structs
SOAP structs define a set of name value pairs. Structs can
be named.

<value xsi:type=“xsd:int” id=“v1”> 42 </value>
<value href=“#v1” />

CERN School of Computing 2006CERN School of Computing 200695

SOAP ArraysSOAP Arrays

SOAP arrays define a grouping of elements
with no limitation mixing data types like
integers and strings within the same array.
Arrays can be named.

Access by ordinal position in the group (structs by name)
ArrayType attribute to specify which types occur where in
the array
Multidimensional arrays possible
Handling of sparse arrays

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200696

SOAP Array ExamplesSOAP Array Examples
1-dim, 3 entries

2-dim, sparse: 2 entries

<someArray xsi:type=“SOAP-ENC:Array”
SOAP-ENC:arrayType=“se:string[3]”>

<se:string> Joe </se:string>
<se:string> John </se:string>
<se:string> Louis </se:string>

</someArray>

<names xsi:type=“SOAP-ENC:Array”
SOAP-ENC:arrayType=“xsd:string[10,10]”>

<name SOAP-ENC:position=“[2,5]”> Guido </name>
<name SOAP-ENC:position=“[4,2]”> Jim </name>

</names>

CERN School of Computing 2006CERN School of Computing 200697

SOAP data types (II)SOAP data types (II)

Array of Bytes
Rules for an array of bytes are similar to those for a string.
Containing element of the array of bytes value MAY have
an "id" attribute. Additional accessor elements MAY then
have matching "href" attributes."

Enumerations
A list of distinct values appropriate to the base type
All simple types except boolean.
XML Schema Part 2: Datatypes
http://www.w3.org/TR/xmlschema-2/

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 200698

SOAP data types (III)SOAP data types (III)
Polymorphic Accessors

An accessor "...that can polymorphically access values of
several types, each type being available at run time. A
polymorphic accessor instance MUST contain an "xsi:type"
attribute that describes the type of the actual value."

Similar to COM/DCOM “Variant”

User Defined Data-Types
Developers can define their own simple, or complex, data types.

<cost xsi:type="xsd:float">29.95</cost>

CERN School of Computing 2006CERN School of Computing 200699

SOAP FaultsSOAP Faults

model for handling faults in the processing
of a message

<?xml version='1.0' ?><?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap--envelope"envelope"

xmlns:rpc='http://www.w3.org/2003/05/soapxmlns:rpc='http://www.w3.org/2003/05/soap--rpc'>rpc'>
<env:Body><env:Body>
<env:Fault><env:Fault>
<env:Code><env:Code>
<env:Value>env:Sender</env:Value><env:Value>env:Sender</env:Value>
<env:Subcode><env:Value>rpc:BadArguments</env:Value></env<env:Subcode><env:Value>rpc:BadArguments</env:Value></env:Subcode>:Subcode>

</env:Code></env:Code>
<env:Reason><env:Reason>
<env:Text xml:lang="en<env:Text xml:lang="en--US">Processing error</env:Text>US">Processing error</env:Text>
</env:Reason></env:Reason>
<env:Detail><env:Detail>
<e:myFaultDetails xmlns:e="http://travelcompany.org/faults<e:myFaultDetails xmlns:e="http://travelcompany.org/faults">">
<e:message>Name does not match card number</e:message><e:message>Name does not match card number</e:message>
<e:errorcode>999</e:errorcode><e:errorcode>999</e:errorcode>

</e:myFaultDetails></e:myFaultDetails>
</env:Detail></env:Detail>

</env:Fault></env:Fault>
</env:Body></env:Body>

</env:Envelope></env:Envelope>

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 2006100

Web Service Description LanguageWeb Service Description Language

WSDL specification
http://www.w3.org/TR/wsdl

Describes the abstract interface of a web
service and the details how a specific web
service has implemented it

“WSDL defines an XML grammar for describing network
services as collections of communication endpoints
capable of exchanging messages. WSDL service
definitions provide documentation for distributed systems
and serve as a recipe for automating the details involved in
applications communication.”

CERN School of Computing 2006CERN School of Computing 2006101

WSDL Service (I)WSDL Service (I)

Services are defined using six elements:
Service: used to aggregate a set of related ports
Binding: specifies protocol and data format specifications
for the operations and messages defined by a particular
portType
Port: specifies an address for a binding, thus defining a
single communication endpoint.
PortType: set of abstract operations. Each operation refers
to an input message and output messages.
Message: definition of the data being transmitted. A
message consists of logical parts, each of which is
associated with a definition within some type system.
Types: which provides data type definitions used to
describe the messages exchanged.

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 2006102

WSDL ExampleWSDL Example
One function

Published at

Gives

int SumNumbers (int a, int b);int SumNumbers (int a, int b);

http://myserver.org/myservice http://myserver.org/myservice

<?xml version="1.0" encoding="utf<?xml version="1.0" encoding="utf--8" ?> 8" ?>
<wsdl:definitions><wsdl:definitions>

<wsdl:types> ... </wsdl:types><wsdl:types> ... </wsdl:types>
<wsdl:message name="SumNumbersSoapIn"> ... </wsdl:message><wsdl:message name="SumNumbersSoapIn"> ... </wsdl:message>
<wsdl:message name="SumNumbersSoapOut"> ... </wsdl:message><wsdl:message name="SumNumbersSoapOut"> ... </wsdl:message>
<wsdl:portType name="ServiceSoap"> <wsdl:portType name="ServiceSoap"> list of messageslist of messages </wsdl:portType></wsdl:portType>
<wsdl:binding name="ServiceSoap"> <wsdl:binding name="ServiceSoap"> protocol protocol </wsdl:binding></wsdl:binding>

......
<wsdl:service name="Service"><wsdl:service name="Service">

<wsdl:port name="ServiceSoap"><wsdl:port name="ServiceSoap">
<soap:address location="http://myserver.org/myservice<soap:address location="http://myserver.org/myservice" /> " />

</wsdl:port></wsdl:port>
</wsdl:service></wsdl:service>

/ dl d fi i i/ dl d fi iti
CERN School of Computing 2006CERN School of Computing 2006103

WSDL Type informationWSDL Type information

Defines exact parameters for the call
<wsdl:types><wsdl:types>
<s:element name="SumNumbers"><s:element name="SumNumbers">

<s:complexType><s:complexType>
<s:sequence><s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="<s:element minOccurs="1" maxOccurs="1" name="aa““ type="type="s:longs:long" /> " />
<s:element minOccurs="1" maxOccurs="1" name="<s:element minOccurs="1" maxOccurs="1" name="bb" type="" type="s:longs:long" /> " />

</s:sequence></s:sequence>
</s:complexType></s:complexType>

</s:element></s:element>
<s:element name="SumNumbersResponse"><s:element name="SumNumbersResponse">

<s:complexType><s:complexType>
<s:sequence><s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="<s:element minOccurs="1" maxOccurs="1" name="SumNumbersResultSumNumbersResult" "
type="type="s:longs:long" /> " />

</s:sequence></s:sequence>
</s:complexType></s:complexType>

</s:element></s:element>
</wsdl:types></wsdl:types>

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 2006104

Using a Web ServiceUsing a Web Service

Create a proxy and connect to service

List the methods available
from this service

Start Python

Get the weather for Geneva airport (GVA)

CERN School of Computing 2006CERN School of Computing 2006105

Limits of WSDLLimits of WSDL

WSDL provides all the info on how to
interact with a service to the consumer
How to find what services are there ?

UDDI, Universal Description, Discovery and Integration
project

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 2006106

UDDIUDDI
Universal Description, Discovery and Integration

http://www.uddi.org/

Global network of linked registries
List of provider of web services

<businessEntity>

Information on the company
List of services provided

List of web services provided by <businessEntity>
<businessService>

Info and templates on how to bind to the service

Info provided using WSDL

CERN School of Computing 2006CERN School of Computing 2006107

Web services in HEPWeb services in HEP

Distributed analysis (reconstruction)
E.g. Clarens http://clarens.sourceforge.net/

CMS distributed data server for remote analysis
Python with XML-RPC (and SOAP)
Interfacing to Grid services

Similar activities at SLAC
Using Java and Agents

Just starting …
Web services is the “standard” technology retained for all
grid development

SEC390SEC390

CERN School of Computing 2006CERN School of Computing 2006108

SummarySummary
Web/network interface to application

Independent of language of implementation
“The Internet is the platform”

Using XML for information exchange
Methods and data

SOAP needs a rather complex “infrastructure”
WDSL, UDDI

XML-RPC is more simple, less heavy
But follows development of SOAP

CERN School of Computing 2006CERN School of Computing 2006109

LinksLinks

WWW consortium
http://www.w3.org/

XML-RPC
http://www.xmlrpc.org/

SOAP
http://www.w3.org/TR/soap/

