
ROOT

Bertrand Bellenot, Axel Naumann
CERN

CSC07 • ROOT 2

ROOT Application Domains

Data Storage: Local, Network

Data Analysis & Visualization

General Fram
ew

ork

CSC07 • ROOT 3

ROOT in a Nutshell
Object Oriented framework for large scale data handling

applications, written in C++
Provides, among others,

– an efficient data storage, access and query system
(PetaBytes)

– a C++ interpreter
– advanced statistical analysis algorithms (multi

dimensional histogramming, fitting, minimization and
cluster finding)

– scientific visualization: 2D and 3D graphics, Postscript,
PDF, LateX

– geometrical modeller
– PROOF parallel query engine

CSC07 • ROOT 4

ROOT Library Structure
ROOT libraries are a layered structure
• CORE classes always required: support for RTTI, basic

I/O and interpreter
• Optional libraries loaded when needed. Separation

between data objects and the high level classes acting
on these objects. Example: a batch job uses only the
histogram library, no need to link histogram painter
library

• Shared libraries reduce the application size and link time
• Mix and match, build your own application
• Reduce dependencies via plug-in mechanism

CSC07 • ROOT 5

Three User Interfaces

• GUI
windows, buttons, menus

• Command line
CINT (C++ interpreter),
Python, Ruby,…

• Macros, applications,
libraries (C++ compiler
and interpreter)

{
// example
// macro

...
}

CSC07 • ROOT 6

Graphics

CSC07 • ROOT 7

Graphics (2D-3D)

“SURF”

TF3

TH3

“LEGO”

TGLParametric

CSC07 • ROOT 8

I/O
Object in
Memory

Object in
Memory

Streamer:
No need for

transient / persistent
classes

http

sockets

File on
disk

Net File

Web File

XML XML File

SQL DataBase

Local
B

uf
fe

r

CSC07 • ROOT 9

GUI (Graphical User Interface)

CSC07 • ROOT 10

Geometry

CSC07 • ROOT 11

OpenGL

CSC07 • ROOT 12

ASImage

CSC07 • ROOT 1313

HTML

CSC07 • ROOT 14

Math TMVA

SPlot

CSC07 • ROOT 15

PROOF
Storage

PROOF farm

MASTER

farm perceived as extension of local PC
same syntax as in local session

more dynamic use of resources
real time feedback
automated splitting and merging

commands,commands,
scriptsscripts

list of outputlist of output
objectsobjects

(histograms, (histograms, ……))

CSC07 • ROOT 16

ROOT: An Open Source Project
• Started in 1995
• 11 full time developers at CERN, plus Fermilab,

Agilent Tech, Japan, MIT (one each)
• Large number of part-time developers: let users

participate
• Available (incl. source) under GNU LGPL

CSC07 • ROOT 17

Let's fire up ROOT!

CSC07 • ROOT 18

Setting Up ROOT
Before starting ROOT:

setup environment variables $ROOTSYS, $PATH,
$LD_LIBRARY_PATH

Go to where ROOT is:

(ba)sh:
(t)csh:

$ cd /path-to/root

$ source bin/thisroot.csh

$. bin/thisroot.sh

CSC07 • ROOT 19

Starting Up ROOT
ROOT is prompt-based.

Prompt speaks C++

$ root
root [0] _

root [0] gROOT->GetVersion()↵
(const char* 0x5ef7e8)"5.16/00"

CSC07 • ROOT 20

ROOT As Pocket Calculator
Calculations:

root [0] sqrt(42)
(const double)6.48074069840786038e+00
root [1] double val = 0.17;
root [2] sin(val)
(const double)1.69182349066996029e-01

CSC07 • ROOT 21

Running Code
To run function mycode() in file mycode.C:

Equivalent: load file and run function:

All of CINT's commands (help):

root [0] .x mycode.C

root [0] .L mycode.C
root [1] mycode()

root [0] .h

CSC07 • ROOT 22

CINT Interface
Highlights
• Debugger examples

– show execution: .T

– show TObject: .class TObject

– next statement: .s

• Optimizer, to turn off optimization, needed for
some loops: .O0 (dot-oh-zero)

• Redirect output to file: .> output.txt
• Quit: .q

CSC07 • ROOT 23

ROOT Prompt
? Why C++ and not a scripting language?!
! You'll write your code in C++, too. Support for

python, ruby,… exists.

? Why a prompt instead of a GUI?
! ROOT is a programming framework, not an office

suite. Use GUIs where needed.

Compiler, libraries, what's known at the prompt:
Still to come!

CSC07 • ROOT 24

Running Code
Macro: file that is interpreted by CINT (.x)

Execute with .x mymacro.C(42)

int mymacro(int value)
{
int ret = 42;
ret += value;
return ret;

}

CSC07 • ROOT 25

Unnamed Macros
No functions, just statements

Execute with .x mymacro.C
No functions thus no arguments

Recommend named macros!
Compiler prefers it, too…

{
float ret = 0.42;
return sin(ret);

}

CSC07 • ROOT 26

Named Vs. Unnamed
Named: function scope unnamed: global
mymacro.C: unnamed.C:

Back at the prompt:

void mymacro()
{ int val = 42; }

{ int val = 42; }

root [] val
Error: Symbol val
is not defined

root [] val
(int)42

CSC07 • ROOT 27

Real Survivors: Heap Objects
obj local to function, inaccessible from outside:

Instead: create on heap, pass to outside:

pObj gone – but MyClass still where pObj pointed
to! Returned by mymacro()

void mymacro()
{ MyClass obj; }

MyClass* mymacro()
{ MyClass* pObj = new MyClass();
return pObj; }

CSC07 • ROOT 28

Running Code – Libraries
"Library": compiled code, shared library
CINT can call its functions!

Build a library: ACLiC! "+" instead of Makefile
(Automatic Compiler of Libraries for CINT)

CINT knows all its functions / types:
something(42)

.x something.C++(42)

CSC07 • ROOT 29

Compiled versus Interpreted
? Why compile?
! Faster execution, CINT has limitations…

? Why interpret?
! Faster Edit → Run → Check result → Edit cycles

("rapid prototyping").
Scripting is sometimes just easier.

? Are Makefiles dead?
! Yes! ACLiC is even platform independent!

CSC07 • ROOT 30

Summary
We know:
• why and how to start ROOT
• that you run your code with ".x"
• can call functions in libraries
• can (mis-) use ROOT as a pocket calculator!

Lots for you to discover during next three lectures
and especially the exercises!

CSC07 • ROOT 31

Saving Data

Streaming, Reflection, TFile,
Schema Evolution

CSC07 • ROOT 32

Saving Objects – the Issues

Storing aLong:
• How many bytes? Valid:

0x0000002a
0x000000000000002a
0x0000000000000000000000000000002a

• which byte contains 42, which 0? Valid:
char[] {42, 0, 0, 0}: little endian, e.g. Intel
char[] {0, 0, 0, 42}: big endian, e.g. PowerPC

WARNING:
platform
dependent!

long aLong = 42;

CSC07 • ROOT 33

Platform Data Types
Fundamental data types:

size is platform dependent
Store "int" on platform A

0x000000000000002a
Read back on platform B – incompatible!

Data loss, size differences, etc:
0x000000000000002a

CSC07 • ROOT 34

ROOT Basic Data Types
Solution: ROOT typedefs

Signed Unsigned sizeof [bytes]
Char_t UChar_t 1
Short_t UShort_t 2
Int_t UInt_t 4
Long64_t ULong64_t 8
Double32_t float on disk,

double in RAM

CSC07 • ROOT 3535

Object Oriented Concepts

• Members: a “has a”
relationship to the class.

• Inheritance: an “is a”
relationship to the class.

Class: the description of a “thing” in the system
Object: instance of a class
Methods: functions for a class

TObject

Jets Tracks EvNum

Momentum

Segments

Charge

Event

IsA

HasA
HasA

HasA

HasAHasAHasA

CSC07 • ROOT 36

Saving Objects – the Issues

Storing anObject:
• need to know its members + base classes
• need to know "where they are"

WARNING:
platform
dependent!

class TMyClass {
float fFloat;
Long64_t fLong;

};
TMyClass anObject;

CSC07 • ROOT 37

Reflection
Need type description (aka reflection)
1. types, sizes, members

TMyClass is a class.

Members:
– "fFloat", type float, size 4 bytes
– "fLong", type Long64_t, size 8 bytes

class TMyClass {
float fFloat;
Long64_t fLong;

};

CSC07 • ROOT 38

Reflection
Need type description
1. types, sizes, members
2. offsets in memory class TMyClass {

float fFloat;
Long64_t fLong;

};

T
M
y
C
l
a
s
s

M
em

or
y

A
dd

re
ss

fLong

fFloat

– 16
– 14
– 12
– 10
– 8
– 6
– 4
– 2
– 0

PADDING "fFloat" is at offset 0
"fLong" is at offset 8

CSC07 • ROOT 39

I/O Using Reflection
members memory re-order

T
M
y
C
l
a
s
s

M
em

or
y

A
dd

re
ss

fLong

fFloat

– 16
– 14
– 12
– 10
– 8
– 6
– 4
– 2
– 0

PADDING

2a 00 00 00...

...00 00 00 2a

CSC07 • ROOT 40

C++ Is Not Java
Lesson: need reflection!
Where from?

Java: get data members with

C++: get data members with
– oops. Not part of C++. THIS LANGUAGE

HAS NO BRAIN
USE YOUR OWN

BE CAREFUL

Class.forName("MyClass").getFields()

CSC07 • ROOT 41

Reflection For C++
Program parses header files, e.g. Funky.h:

Collects reflection data for types requested in
Linkdef.h

Stores it in Dict.cxx (dictionary file)

Compile Dict.cxx, link, load:
C++ with reflection!

rootcint –f Dict.cxx –c Funky.h LinkDef.h

CSC07 • ROOT 42

Reflection By Selection
LinkDef.h syntax:

#pragma link C++ class MyClass+;
#pragma link C++ typedef MyType_t;
#pragma link C++ function MyFunc(int);
#pragma link C++ enum MyEnum;

CSC07 • ROOT 43

Why So Complicated?
Simply use ACLiC:

Will create library with dictionary
of all types, namespaces, functions
declared in MyCode.cxx, MyCode.h/.hpp,…
automatically!

.L MyCode.cxx+

CSC07 • ROOT 44

Back To Saving Objects: TFile
ROOT stores objects in TFiles:

TFile behaves like file system:

TFile has a current directory:

TFile* f = new TFile("afile.root", "NEW");

f->mkdir("dir");

f->cd("dir");

CSC07 • ROOT 45

Interlude: HELP!
What is a TFile?
What functions does it have?
Documentation!

User's Guide (it has your answers!):

http://root.cern.ch
Reference Guide (class documentation):

http://root.cern.ch/root/html

CSC07 • ROOT 46

Saving Objects, Really
Given a TFile:

Write an object deriving from TObject:

"optionalName" or TObject::GetName()

Write any object (with dictionary):

TFile* f = new TFile("afile.root", "RECREATE");

object->Write("optionalName")

f->WriteObject(object, "name");

CSC07 • ROOT 47

"Where Is My Histogram?"
TFile owns histograms, graphs, trees

(due to historical reasons):

h automatically deleted: owned by file.
c still there.

TFile* f = new TFile("myfile.root");
TH1F* h = new TH1F("h","h",10,0.,1.);
h->Write();
Canvas* c = new TCanvas();
c->Write();
delete f;

CSC07 • ROOT 48

TFile as Directory: TKeys
One TKey per object:

named directory entry
knows what it points to
like inodes in file system

Each TFile directory is collection of TKeys

TKey: "hist1", TH1F
TFile "myfile.root"

TKey: "list", TList
TKey: "hist2", TH2F
TDirectory: "subdir"

TKey: "hist1", TH2D

CSC07 • ROOT 49

TKeys Usage
Efficient for hundreds of objects
Inefficient for millions:

lookup ≥ log(n)
sizeof(TKey) on 64 bit machine: 160 bytes

Better storage / access methods available,
see next lecture

CSC07 • ROOT 50

Risks With I/O
Physicists can loop a lot:
For each particle collision

For each particle created
For each detector module

Do something.
Physicists can loose a lot:
Run for hours…

Crash.
Everything lost.

CSC07 • ROOT 51

Name Cycles
Create snapshots regularly:

MyObject;1
MyObject;2
MyObject;3
…
MyObject

Write() does not replace but append!
but see documentation TObject::Write()

CSC07 • ROOT 52

The "I" Of I/O
Reading is simple:

Remember:
TFile owns histograms!
file gone, histogram gone!

TFile* f = new TFile("myfile.root");
TH1F* h = 0;
f->GetObject("h", h);
h->Draw();
delete f;

CSC07 • ROOT 53

Ownership And TFiles
Separate TFile and histograms:

… and h will stay around.

TFile* f = new TFile("myfile.root");
TH1F* h = 0;
TH1::AddDirectory(kFALSE);
f->GetObject("h", h);
h->Draw();
delete f;

CSC07 • ROOT 54

Changing Class – The Problem
Things change:

class TMyClass {
float fFloat;
Long64_t fLong;

};

CSC07 • ROOT 55

Changing Class – The Problem
Things change:

Inconsistent reflection data!
Objects written with old version cannot be read!

class TMyClass {
double fFloat;
Long64_t fLong;

};

CSC07 • ROOT 56

Solution: Schema Evolution
Support changes:
1. removed members: just skip data

2. added members: just default-initialize them
(whatever the default constructor does)

Long64_t fLong;
float fFloat;

file.root

float fFloat;

RAM
ignore

float fFloat;
file.root Long64_t fLong;

float fFloat;

RAMTMyClass(): fLong(0)

CSC07 • ROOT 57

Solution: Schema Evolution
Support changes:
3. members change types

Long64_t fLong;
float fFloat;

file.root
Long64_t fLong;
double fFloat;

RAM

float DUMMY;
RAM (temporary)

convert

CSC07 • ROOT 58

Supported Type Changes
Schema Evolution supports:
• float ↔ double ↔ int ↔ long, etc.
• float* ↔ double* ↔ int* ↔ long*, etc.
• TYPE* ↔ std::vector<TYPE>
• CLASS* ↔ TClonesArray

Adding / removing base class equivalent to adding /
removing data member

CSC07 • ROOT 59

Storing Reflection
Big Question: file == memory class layout?
Need to store reflection to file,

see TFile::ShowStreamerInfo():
StreamerInfo for class: TH1F, version=1

TH1 BASE offset= 0 type= 0
TArrayF BASE offset= 0 type= 0

StreamerInfo for class: TH1, version=5
TNamed BASE offset= 0 type=67

...
Int_t fNcells offset= 0 type= 3
TAxis fXaxis offset= 0 type=61

CSC07 • ROOT 60

Class Version
One TStreamerInfo for all objects of the same class

layout in a file
Can have multiple versions in same file
Use version number to identify layout:
class TMyClass: public TObject {
public:

TMyClass(): fLong(0), fFloat(0.) {}
virtual ~TMyClass() {}
...
ClassDef(TMyClass,1); // example class

};

CSC07 • ROOT 61

Random Facts On ROOT I/O
• We know exactly what's in a TFile – need no

library to look at data! (Examples tomorrow.)
• ROOT files are zipped
• Combine contents of TFiles with
$ROOTSYS/bin/hadd

• Can even open
TFile("http://myserver.com/afile.root")
including read-what-you-need!

• Nice viewer for TFile: new TBrowser

CSC07 • ROOT 62

Summary
Big picture:
• you know ROOT files – for petabytes of data
• you learned what schema evolution is
• you learned that reflection is key for I/O

Small picture:
• you can write your own data to files
• you can read it back
• you can change the definition of your classes

ROOT Collection Classes

Or when one million TKeys are not
enough…

CSC07 • ROOT 64

Collection Classes
The ROOT collections are polymorphic
containers that hold pointers to TObjects, so:
• They can only hold objects that inherit from

TObject
• They return pointers to TObjects, that have to be

cast back to the correct subclass

CSC07 • ROOT 65

Types Of Collections

The inheritance hierarchy of the primary collection classes

TCollection

TSeqCollection THashTable TMap

TList TOrdCollection TObjArray TBtree

TSortedList THashList TClonesArray

CSC07 • ROOT 66

Collections (cont)
Here is a subset of collections supported by ROOT:
• TObjArray
• TClonesArray
• THashTable
• THashList
• TMap
• Templated containers, e.g. STL (std::list etc)

CSC07 • ROOT 67

TObjArray
• A TObjArray is a collection which supports

traditional array semantics via the overloading of
operator[].

• Objects can be directly accessed via an index.
• The array expands automatically when objects are

added.

CSC07 • ROOT 68

TClonesArray
Array of identical classes

(“clones”).
Designed for repetitive data

analysis tasks: same type
of objects created and
deleted many times.

No comparable class in STL!

The internal data structure of a
TClonesArray

CSC07 • ROOT 69

Traditional Arrays
Very large number of new and delete calls in large loops

like this (N(100000) x N(10000) times new/delete):

TObjArray a(10000);
while (TEvent *ev = (TEvent *)next()) {

for (int i = 0; i < ev->Ntracks; ++i) {
a[i] = new TTrack(x,y,z,...);
...

}
...
a.Delete();

}

N(100000)

N(10000)

CSC07 • ROOT 70

You better use a TClonesArray which reduces the number
of new/delete calls to only N(10000):

TClonesArray a("TTrack", 10000);
while (TEvent *ev = (TEvent *)next()) {

for (int i = 0; i < ev->Ntracks; ++i) {
new(a[i]) TTrack(x,y,z,...);
...

}
...
a.Delete();

}

Pair of new/delete calls cost about 4 μs
NN(109) new/deletes will save about 1 hour.

N(100000)

N(10000)

CSC07 • ROOT 71

THashTable - THashList
THashTable puts objects in one of several of its

short lists. Which list to pick is defined by
TObject::Hash(). Access much faster than map or
list, but no order defined. Nothing similar in STL.

THashList consists of a THashTable for fast access
plus a TList to define an order of the objects.

CSC07 • ROOT 72

TMap
TMap implements an associative array of

(key,value) pairs using a THashTable for efficient
retrieval (therefore TMap does not conserve the
order of the entries).

ROOT Trees

CSC07 • ROOT 74

Why Trees ?
• As seen previously, any object deriving from

TObject can be written to a file with an associated
key with object.Write()

• However each key has an overhead in the
directory structure in memory (up to 160 bytes).
Thus, Object.Write() is very convenient for simple
objects like histograms, but not for saving one
object per event.

• Using TTrees, the overhead in memory is in
general less than 4 bytes per entry!

CSC07 • ROOT 75

Why Trees ?
• Extremely efficient write once, read many

("WORM")
• Designed to store >109 (HEP events) with same

data structure
• Load just a subset of the objects to optimize

memory usage
• Trees allow fast direct and random access to any

entry (sequential access is the best)

CSC07 • ROOT 76

Building ROOT Trees
Overview of

– Trees
– Branches

5 steps to build a TTree

CSC07 • ROOT 77

Tree structure

CSC07 • ROOT 78

Tree structure
• Branches: directories
• Leaves: data containers
• Can read a subset of all branches – speeds up

considerably the data analysis processes
• Tree layout can be optimized for data analysis
• The class for a branch is called TBranch
• Variables on TBranch are called leaf (yes - TLeaf)
• Branches of the same TTree can be written to separate

files

CSC07 • ROOT 79

Memory ↔ Tree

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
T.Fill()

T.GetEntry(6)

T

Memory

Each Node is a branch in the Tree

CSC07 • ROOT 80

Five Steps to Build a Tree
Steps:

1. Create a TFile
2. Create a TTree
3. Add TBranch to the TTree
4. Fill the tree
5. Write the file

CSC07 • ROOT 81

Step 1: Create a TFile Object

Trees can be huge need file for
swapping filled entries

TFile *hfile = new TFile("AFile.root");

CSC07 • ROOT 82

Step 2: Create a TTree Object

The TTree constructor:
– Tree name (e.g. "myTree")
– Tree title

TTree *tree = new TTree("myTree","A Tree");

CSC07 • ROOT 83

Step 3: Adding a Branch

• Branch name
• Address of the pointer to

the object

Event *event = new Event();
myTree->Branch("EventBranch", &event);

CSC07 • ROOT 84

Splitting a Branch
Setting the split level (default = 99)

Split level = 0 Split level = 99

tree->Branch("EvBr", &event, 64000, 0);

CSC07 • ROOT 85

Splitting (real example)

Split level = 0 Split level = 99

CSC07 • ROOT 86

Splitting
• Creates one branch per member – recursively
• Allows to browse objects that are stored in trees,

even without their library
• Makes same members consecutive, e.g. for object

with position in X, Y, Z, and energy E, all X are
consecutive, then come Y, then Z, then E. A lot
higher zip efficiency!

• Fine grained branches allow fain-grained I/O -
read only members that are needed, instead of full
object

• Supports STL containers, too!

CSC07 • ROOT 87

Performance Considerations
A split branch is:
• Faster to read - the type does not have to be read

each time
• Slower to write due to the large number of buffers

CSC07 • ROOT 88

Step 4: Fill the Tree
• Create a for loop
• Assign values to the object

contained in each branch
• TTree::Fill() creates a new entry

in the tree: snapshot of values of
branches’ objects

for (int e=0;e<100000;++e) {
event->Generate(e); // fill event
myTree->Fill(); // fill the tree

}

CSC07 • ROOT 89

Step 5: Write Tree To File

myTree->Write();

CSC07 • ROOT 90

Example macro
{

Event *myEvent = new Event();
TFile f("mytree.root");
TTree *t = new TTree("myTree","A Tree");
t->Branch("SplitEvent", &myEvent);
for (int e=0;e<100000;++e) {

myEvent->Generate();
t->Fill();

}
t->Write();

}

CSC07 • ROOT 91

Reading a TTree
• Looking at a tree
• How to read a tree
• Trees, friends and chains

CSC07 • ROOT 92

Looking at the Tree
TTree::Print() shows the data layout

root [] TFile f("AFile.root")
root [] myTree->Print();
**
*Tree :myTree : A ROOT tree *
*Entries : 10 : Total = 867935 bytes File Size = 390138 *
* : : Tree compression factor = 2.72 *
**
*Branch :EventBranch *
*Entries : 10 : BranchElement (see below) *
..
*Br 0 :fUniqueID : *
*Entries : 10 : Total Size= 698 bytes One basket in memory *
*Baskets : 0 : Basket Size= 64000 bytes Compression= 1.00 *
..
…
…

CSC07 • ROOT 93

Looking at the Tree
TTree::Scan("leaf:leaf:….") shows the values
root [] myTree->Scan("fNseg:fNtrack"); > scan.txt

root [] myTree->Scan("fEvtHdr.fDate:fNtrack:fPx:fPy","",
"colsize=13 precision=3 col=13:7::15.10");

**
* Row * Instance * fEvtHdr.fDate * fNtrack * fPx * fPy *
**
* 0 * 0 * 960312 * 594 * 2.07 * 1.459911346 *
* 0 * 1 * 960312 * 594 * 0.903 * -0.4093382061 *
* 0 * 2 * 960312 * 594 * 0.696 * 0.3913401663 *
* 0 * 3 * 960312 * 594 * -0.638 * 1.244356871 *
* 0 * 4 * 960312 * 594 * -0.556 * -0.7361358404 *
* 0 * 5 * 960312 * 594 * -1.57 * -0.3049036264 *
* 0 * 6 * 960312 * 594 * 0.0425 * -1.006743073 *
* 0 * 7 * 960312 * 594 * -0.6 * -1.895804524 *

CSC07 • ROOT 94

TTree Selection Syntax

Prints the first 8 variables of the tree.

Prints all the variables of the tree.
Select specific variables:

Prints the values of var1, var2 and var3.
A selection can be applied in the second argument:

Prints the values of var1, var2 and var3 for the entries
where var1 is exactly 0.

MyTree->Scan();

MyTree->Scan("*");

MyTree->Scan("var1:var2:var3");

MyTree->Scan("var1:var2:var3", "var1==0");

CSC07 • ROOT 95

Looking at the Tree
TTree::Show(entry_number) shows the values for

one entry

root [] myTree->Show(0);
======> EVENT:0
EventBranch = NULL
fUniqueID = 0
fBits = 50331648
[...]
fNtrack = 594
fNseg = 5964
[...]
fEvtHdr.fRun = 200
[...]
fTracks.fPx = 2.066806, 0.903484, 0.695610, -0.637773,...
fTracks.fPy = 1.459911, -0.409338, 0.391340, 1.244357,...

CSC07 • ROOT 96

How To Read a TTree

Example:

1. Open the Tfile

2. Get the TTree
TFile f("tree4.root")

TTree *t4=0;
f.GetObject("t4",t4)

OR

CSC07 • ROOT 97

How to Read a TTree
3. Create a variable pointing to the data
root [] Event *event = 0;

4. Associate a branch with the variable:
root [] t4->SetBranchAddress("event_split", &event);

5. Read one entry in the TTree
root [] t4->GetEntry(0)
root [] event->GetTracks()->First()->Dump()
==> Dumping object at: 0x0763aad0, name=Track, class=Track
fPx 0.651241 X component of the momentum
fPy 1.02466 Y component of the momentum
fPz 1.2141 Z component of the momentum
[...]

CSC07 • ROOT 98

Selecting Branches For Reading
By default, TTree::GetEntry() reads all branches

Can select subset by disabling all:

and the re-enabling the branches to be read:
MyTree->SetBranchStatus("*", 0);

MyTree->SetBranchStatus("branch1", 1);
MyTree->SetBranchStatus("branch2.subbranch*", 1);

CSC07 • ROOT 99

Example macro
{
Event *ev = 0;
TFile f("mytree.root");
TTree *myTree = (TTree*)f->Get("myTree");
myTree->SetBranchAddress("SplitEvent", &ev);
for (int e=0;e<100000;++e) {

myTree->GetEntry(e);
ev->Analyse();

}
}

CSC07 • ROOT 100

TChain: the Forest
• Collection of TTrees: list of ROOT files containing the

same tree
• Same semantics as TTree
As an example, assume we have three files called

file1.root, file2.root, file3.root. Each contains tree called
"T". Create a chain:

TChain chain("T"); // argument: tree name
chain.Add("file1.root");
chain.Add("file2.root");
chain.Add("file3.root");

Now we can use the TChain like a TTree!

CSC07 • ROOT 101

Data Volume & Organisation
100MB 1GB 10GB 1TB100GB 100TB 1PB10TB

1 1 500005000500505

TTree

TChain

• A TFile typically contains 1 TTree
• A TChain is a collection of TTrees or/and TChains
• A TChain is typically the result of a query to a file catalog

CSC07 • ROOT 102

Friends of Trees

- Adding new branches to existing tree without
touching it, i.e.:

- Unrestricted access to the friend's data via
virtual branch of original tree

myTree->AddFriend("ft1", "friend.root")

CSC07 • ROOT 103

Tree Friends
0123456789101112131415161718

0123456789101112131415161718

0123456789101112131415161718

Public

read

Public

read

User

Write

Entry # 8

CSC07 • ROOT 104

Tree Friends

TFile f1("tree1.root");
tree.AddFriend("tree2", "tree2.root")
tree.AddFriend("tree3", "tree3.root");
tree.Draw("x:a", "k<c");
tree.Draw("x:tree2.x", "sqrt(p)<b");

x

Processing time
independent of the
number of friends
unlike table joins

in RDBMS

Collaboration-wide
public read

Analysis group
protected

user
private

CSC07 • ROOT 105

Summary: Reading Trees
• TTree is one of the most powerful collections

available for HEP
• Extremely efficient for huge number of data sets

with identical layout
• Very easy to look at TTree - use TBrowser!
• Write once, read many (WORM) ideal for

experiments' data
• Still: extensible, users can add their own tree as

friend

CSC07 • ROOT 106

Analyzing Trees

Selectors, Proxies, PROOF

CSC07 • ROOT 107

Recap
TTree efficient storage and access for huge

amounts of structured data
Allows selective access of data
TTree knows its layout

Almost all HEP analyses based on TTree

CSC07 • ROOT 108

TTree Data Access
Data access via TTree / TBranch is complex
Lots of code identical for all TTrees:

getting tree from file, setting up branches, entry
loop

Lots of code completely defined by TTree:
branch names, variable types, branch ↔ variable
mapping

Need to enable / disable branches "by hand"
Want common interface to allow generic "TTree

based analysis infrastructure"

CSC07 • ROOT 109

TTree Proxy
The solution:
• write analysis code using branch names as

variables
• auto-declare variables from branch structure
• read branches on-demand

CSC07 • ROOT 110

Branch vs. Proxy
Take a simple branch:

Access via proxy in pia.C:

class ABranch {
int a;

};
ABranch* b;
tree->Branch("abranch", &b);

double pia() {
return sqrt(abranch.a * TMath::Pi());

}

CSC07 • ROOT 111

Proxy Details

Analysis script somename.C must contain
somename()

Put #includes into somename.h

Return type must convert to double

double pia() {
return sqrt(abranch.a * TMath::Pi());

}

CSC07 • ROOT 112

Proxy Advantages

Very efficient: only reads leaf "a"
Can use arbitrary C++
Leaf behaves like a variable
Uses meta-information stored with TTree:

branch names
types contained in branches / leaves
and their members (unrolling)

double pia() {
return sqrt(abranch.a * TMath::Pi());

}

CSC07 • ROOT 113

Simple Proxy Analysis
TTree::Draw() runs simple analysis:

Compiles pia.C
Calls it for each event
Fills histogram named "htemp" with return value

TFile* f = new TFile("tree.root");
TTree* tree = 0;
f->GetObject("MyTree", tree);
tree->Draw("pia.C+");

CSC07 • ROOT 114

Behind The Proxy Scene
TTree::Draw("pia.C+") creates helper class

pia.C gets #included inside generatedSel!
Its data members are named like leaves,

wrap access to Tree data
Can also generate Proxy via

generatedSel: public TSelector {
#include "pia.C"
...

};

tree->MakeProxy("MyProxy", "pia.C")

CSC07 • ROOT 115

TSelector

TSelector is base for event-based analysis:
1. setup

2. analyze an entry

3. draw / save histograms

generatedSel: public TSelector

TSelector::Begin()

TSelector::Process(Long64_t entry)

TSelector::Terminate()

CSC07 • ROOT 116

Extending The Proxy
Given Proxy generated for script.C (like pia.C):
looks for and calls

Correspond to TSelector's functions

Can be used to set up complete analysis:
• fill several histograms,
• control event loop

void script_Begin(TTree* tree)
Bool_t script_Process(Long64_t entry)
void script_Terminate()

CSC07 • ROOT 117

Proxy And TClonesArray
TClonesArray as branch:

Cannot loop over entries and return each:

class TGap { float ore; };
TClonesArray* b = new TClonesArray("TGap");
tree->Branch("gap", &b);

double singapore() {
return sin(gap.ore[???]);

}

CSC07 • ROOT 118

Proxy And TClonesArray
TClonesArray as branch:

Implement it as part of pia_Process() instead:

class TGap { float ore; };
TClonesArray* b = new TClonesArray("TGap");
tree->Branch("gap", &b);

Bool_t pia_Process(Long64_t entry) {
Long_t nGaps = gap.GetEntries()
for (int i=0; i < nGaps; ++i)
hSingapore->Fill(sin(gap.ore[i]));

return kTRUE; }

CSC07 • ROOT 119

Extending The Proxy, Example
Need to declare hSingapore somewhere!
But pia.C is #included inside generatedSel, so:
TH1* hSingapore;
void pia_Begin() {

hSingapore = new TH1F(...);
}
Bool_t pia_Process(Long64_t entry) {
hSingapore->Fill(...);

}
void pia_Terminate() {

hSingapore->Draw();
}

CSC07 • ROOT 120

Histograms
Analysis result: often a histogram
Value (x)

vs. count (y)

Menu:
View / Editor

CSC07 • ROOT 121

Fitting
Analysis result:

often a fit
based on a
histogram

CSC07 • ROOT 122

Fit
Fit = optimization in parameters,

e.g. Gaussian

Objective: choose parameters [0], [1], [2] to get
function as close as possible to histogram

For Gaussian: [0] = "Constant"
[1] = "Mean"
[2] = "Sigma" / "Width"

2

2

]2[2
])1[(

]0[)(⋅
−

−

⋅=
x

exf

CSC07 • ROOT 123

Fit Panel
To fit a histogram:
right click histogram,
"Fit Panel"

Straightforward interface
for fitting!

CSC07 • ROOT 124

Parallel Analysis: PROOF
Huge amounts of events, hundreds of CPUs
Split the job into N events / CPU!
PROOF for TSelector based analysis:
• start analysis locally ("client"),
• PROOF distributes data and code,
• lets CPUs ("nodes") run the analysis,
• collects and combines (merges) data,
• shows analysis results locally
Including on-the-fly status reports!

CSC07 • ROOT 125

A PROOF Session – Start
Starting a PROOF session is trivial:

Opens GUI:

TProof::Open()

CSC07 • ROOT 126

A PROOF Session – Results
Results accessible via TSessionViewer, too:

CSC07 • ROOT 127

PROOF Documentation
Full sample session at

root.cern.ch/twiki/bin/view/ROOT/ProofGUI
But of course you need a little cluster of CPUs

Like your multicore laptop!

CSC07 • ROOT 128

Summary
You've learned:
• analyzing a TTree can be easy and efficient
• integral part of physics is counting
• ROOT provides histogramming and fitting
• > 1 CPU: use PROOF!

Looking forward to hearing from you:
• as a user (help! bug! suggestion!)
• and as a developer!

	ROOT
	ROOT Application Domains
	ROOT in a Nutshell
	ROOT Library Structure
	Three User Interfaces
	Graphics
	Graphics (2D-3D)
	I/O
	GUI (Graphical User Interface)
	Geometry
	OpenGL
	ASImage
	HTML
	Math
	PROOF
	ROOT: An Open Source Project
	Let's fire up ROOT!
	Setting Up ROOT
	Starting Up ROOT
	ROOT As Pocket Calculator
	Running Code
	CINT Interface
	ROOT Prompt
	Running Code
	Unnamed Macros
	Named Vs. Unnamed
	Real Survivors: Heap Objects
	Running Code – Libraries
	Compiled versus Interpreted
	Summary
	Saving Data
	Saving Objects – the Issues
	Platform Data Types
	ROOT Basic Data Types
	Object Oriented Concepts
	Saving Objects – the Issues
	Reflection
	Reflection
	I/O Using Reflection
	C++ Is Not Java
	Reflection For C++
	Reflection By Selection
	Why So Complicated?
	Back To Saving Objects: TFile
	Interlude: HELP!
	Saving Objects, Really
	"Where Is My Histogram?"
	TFile as Directory: TKeys
	TKeys Usage
	Risks With I/O
	Name Cycles
	The "I" Of I/O
	Ownership And TFiles
	Changing Class – The Problem
	Changing Class – The Problem
	Solution: Schema Evolution
	Solution: Schema Evolution
	Supported Type Changes
	Storing Reflection
	Class Version
	Random Facts On ROOT I/O
	Summary
	ROOT Collection Classes
	Collection Classes
	Types Of Collections
	Collections (cont)
	TObjArray
	TClonesArray
	Traditional Arrays
	THashTable - THashList
	TMap
	ROOT Trees
	Why Trees ?
	Why Trees ?
	Building ROOT Trees
	Tree structure
	Tree structure
	Memory ↔ Tree
	Five Steps to Build a Tree
	Step 1: Create a TFile Object
	Step 2: Create a TTree Object
	Step 3: Adding a Branch
	Splitting a Branch
	Splitting (real example)
	Splitting
	Performance Considerations
	Step 4: Fill the Tree
	Step 5: Write Tree To File
	Example macro
	Reading a TTree
	Looking at the Tree
	Looking at the Tree
	TTree Selection Syntax
	Looking at the Tree
	How To Read a TTree
	How to Read a TTree
	Selecting Branches For Reading
	Example macro
	TChain: the Forest
	Data Volume & Organisation
	Friends of Trees
	Tree Friends
	Tree Friends
	Summary: Reading Trees
	Analyzing Trees
	Recap
	TTree Data Access
	TTree Proxy
	Branch vs. Proxy
	Proxy Details
	Proxy Advantages
	Simple Proxy Analysis
	Behind The Proxy Scene
	TSelector
	Extending The Proxy
	Proxy And TClonesArray
	Proxy And TClonesArray
	Extending The Proxy, Example
	Histograms
	Fitting
	Fit
	Fit Panel
	Parallel Analysis: PROOF
	A PROOF Session – Start
	A PROOF Session – Results
	PROOF Documentation
	Summary

