
1

Enabling Grids for E-sciencE

www.eu-egee.org

EGEE-II INFSO-RI-031688 EGEE and gLite are registered trademarks

Grid Optimisation

Heinz Stockinger
Swiss Institute of Bioinformatics

CSC 2007, Grid Track, Dubrovnik, Croatia 2

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Overview

• Motivation & terminology
• Performance of Grid job submission
• How to speed up applications
• Performance example
• Message Passing Interface and the Grid
• Data and protocol related issues

2

CSC 2007, Grid Track, Dubrovnik, Croatia 3

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Motivation: Performance

• Why are Grid job so “slow”?

• Performance does not necessarily mean that one gets
immediate response

A simple HelloWorld job
might take 5 minutes!

CSC 2007, Grid Track, Dubrovnik, Croatia 4

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Terminology

• High performance computing:

• High throughput computing:

Optimise a single application.
Execute it as quickly as possible.

Optimise a set of concurrent applications.
Give certain time to each application.

3

CSC 2007, Grid Track, Dubrovnik, Croatia 5

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Overview

• Motivation & Terminology
• Performance of Grid job submission
• How to speed up applications
• Performance example
• Message Passing Interface and the Grid
• Data and protocol related issues

CSC 2007, Grid Track, Dubrovnik, Croatia 6

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Complex Interactions

UI

Match
Maker

Replica
Catalog

Inform.
System

Storage
Element

Resource Broker Node
(Workload Manager, WM)

Logging &
Bookkeeping

Job status

Task
Queue

Information
Supermarket

Grid Interface
Computing Element

LRMS

WMProxy

Job
Submission

4

CSC 2007, Grid Track, Dubrovnik, Croatia 7

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Overall WMS Performance

• Sum of
– Connection of client to broker over WAN

RTT is between 30 and 150 ms
– Resource selection and matchmaking at broker

Contacting Information System
– Sending job wrapper to Computing Element

Includes secure interaction via GSI
– Computing Element passes job to LRMS

Includes secure interaction via SSH
– LRMS selects a worker node

Job is sent to worker node
– Logging and bookkeeping needs to be updated
– Store output at Resource Broker node

CSC 2007, Grid Track, Dubrovnik, Croatia 8

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Pipelining

S
ub

m
is

si
on

M
at

ch
m

ak
in

g

C
on

ta
ct

 C
E

sc
he

du
lin

g

Jo
b

Ex
ec

ut
io

n

G
et

 re
su

lts

time

S
ub

m
is

si
on

M
at

ch
m

ak
in

g

C
on

ta
ct

 C
E

sc
he

du
lin

g

Jo
b

Ex
ec

ut
io

n

G
et

 re
su

lts

S
ub

m
is

si
on

M
at

ch
m

ak
in

g

C
on

ta
ct

 C
E

sc
he

du
lin

g

Jo
b

Ex
ec

ut
io

n

G
et

 re
su

lts

H
ig

h
th

ro
ug

hp
ut

5

CSC 2007, Grid Track, Dubrovnik, Croatia 9

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

More on Grid Job Performance

• The Grid is not optimised for small jobs
– Every job will have this additional latency of about 3-5

min
– Interesting for “long” running jobs (e.g. more than 30

min)
• Sometimes scheduling at the LRMS takes long

– LRMS is a batch system (not interactive!)
– Many jobs might be already in the waiting queue
– Some systems (queues) are set up in a way that they

only allow 1 or 2 job(s) per processor
Performance for “single” users

– In EGEE: “short deadline jobs”
• A Grid has heterogeneous hardware resources

– Some clusters have faster processors than others

Submission

Matchmaking

Contact CE

scheduling

Job
Execution

Get results

CSC 2007, Grid Track, Dubrovnik, Croatia 10

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

The Grid and Processor Speed

• Faster processor = better performance?
• By default, the WMS does not select “fastest”

processors but sites with many processors and short
queues
– Try it out!
– One can give hints to the system by specifying job requirements

for certain processor speed
– However, one might need to “wait” for fast processors to become

free and the job might be done by “slower” processors in the
meantime

6

CSC 2007, Grid Track, Dubrovnik, Croatia 11

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Overview

• Motivation & Terminology
• Performance of Grid job submission
• How to speed up applications
• Performance example
• Message Passing Interface and the Grid
• Data and protocol related issues

CSC 2007, Grid Track, Dubrovnik, Croatia 12

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Grid: High Throughput Computing

• Grids are often not very good at running a small task
very fast

• However, due to lots of computing power and storage,
it can speed up computing intensive, big task:
– By parallelising the workload
– Or by simply offering more computing power

• Automatic parallelisation not really achieved

Choose you application carefully that you want to run on the Grid.
Check for potential parallelism.

7

CSC 2007, Grid Track, Dubrovnik, Croatia 13

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Which Type of Application?

Any ideas?

CSC 2007, Grid Track, Dubrovnik, Croatia 14

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

How to make things faster?

• When you design a program newly, think about work
flow scenarios that can be executed concurrently
– Overlapping computation and I/O is only a small step

• Check if input data set can be divided into smaller
chunks
– If yes, branch off, run in parallel and merge in the end

• Legacy applications:
– We often cannot change existing code

Detector simulation code should not be touched by non-experts
– If possible, write job wrappers

8

CSC 2007, Grid Track, Dubrovnik, Croatia 15

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

How about that?

CSC 2007, Grid Track, Dubrovnik, Croatia 16

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Overview

• Motivation & Terminology
• Performance of Grid job submission
• How to speed up applications
• Performance example
• Message Passing Interface and the Grid
• Data and protocol related issues

9

CSC 2007, Grid Track, Dubrovnik, Croatia 17

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Bioinformatics Example

• Biological sequence analysis

• CPU intensive, embarrassingly parallel problem
– Takes to databases as input
– Input data is split into chunks which can be processed in parallel
– Ideal for the Grid
The EMBRACE project is funded by the European Commission within its FP6 Programme, under the thematic area "Life sciences,

genomics and biotechnology for health,"contract number LHSG-CT-2004-512092.

CSC 2007, Grid Track, Dubrovnik, Croatia 18

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

hmmsearch profile sequence

Profiles
1..nnn

Seqs
1..zzzzz

Input Files

Profiles 1..100

Chunks

Profiles 101..200

Profiles kkk..nnn

Seqs 1..10’000

Seqs 10’001..20’000

Seqs yyyyy..zzzzz

…

…

Grid
Storage

Element (SE)

Profiles 1..100 Seqs 1..10’000Profile 1

Profile 2

Profile 3

Profile 100

…

wg on Remote Site

wg on Local Site

Store files on SE

Get files from SE

hmmsearch

10

CSC 2007, Grid Track, Dubrovnik, Croatia 19

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Sequence Analysis (cont.)

• A-priory algorithm (AP-algorithm)
– Decide the task to be computed a-priory based on the number of

input data chunks
– Push model

• Run time sensitive algorithm (RTS-algorithm)
– Decide for a certain number of CPUs
– Introduce a Task Server that assigns tasks to CPUs
– Run time based task assignment
– Pull model

Task Server
Storage Element

task 1, task 2, ... , task n

Worker Node

1. Get Task 2. return
task URL

3. retrieve task

4.Task
done

CSC 2007, Grid Track, Dubrovnik, Croatia 20

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Running a Biological Benchmark

hmmsearch is a standard bioinformatics package for sequence analysis

64 128 256 512
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

LSF
AP
RTS

Number of parallel processors/jobs

W
al

l c
lo

ck
 ti

m
e

in
 h

ou
rs

1.8 1.7

7,868 profile-HMMs against 10,923 sequences

11

CSC 2007, Grid Track, Dubrovnik, Croatia 21

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

RTS Algorithm

100 parallel jobs

CSC 2007, Grid Track, Dubrovnik, Croatia 22

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Execution Time of RTS-Algo.

10 100 500 1000 5000 10K 50K 100K 500K 1000K 5000K
0.1

1

10

100

1000

Number of sequences (against 256 prof ile-hmms)

W
al

l c
lo

ck
 t

im
e

in
 m

in
ut

es

Grid (EGEE, 80 sites)

single
CPU

64 node
LSF cluster

12

CSC 2007, Grid Track, Dubrovnik, Croatia 23

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

How can this be applied to HEP?

• What we learned in the biology application can also be
applied to HEP

• Often called “Pilot jobs”

(based on slide by Igor Sfiligoi)

CSC 2007, Grid Track, Dubrovnik, Croatia 24

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Overview

• Motivation & Terminology
• Performance of Grid job submission
• How to speed up applications
• Performance example
• Message Passing Interface and the Grid
• Data and protocol related issues

13

CSC 2007, Grid Track, Dubrovnik, Croatia 25

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

High Performance Computing

• Massive parallelism
– One single application runs on several processors that have a high-

speed interconnect (network)
– Traditionally done on massive parallel machines (Cray X, IBM SPx,

etc.)
Now clusters are used more and more

– Standards such as MPI (Message Passing Interface) are used
Inter-process communication is required

– Classical domain: High Performance Computing (HPC)
• Embarrassing parallelism

– Typically, one process initiates the computation and potentially also
assigns the workload

See bioinformatics example
Monte Carlo simulation in HEP

– No communication between processors

CSC 2007, Grid Track, Dubrovnik, Croatia 26

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Message Passing Interface

• De facto standard for HPC requiring message passing
• Allows for writing different kinds of (massively) parallel

applications
– Singe Program Multiple Data (SPMD) approach
– Execute the same executable on all processors involved in the

computation
• Used in computational sciences

– “No” usage in High Energy Physics
– Commonly used in bioinformatics,

engineering etc.

14

CSC 2007, Grid Track, Dubrovnik, Croatia 27

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

MPI Example
#include <stdio.h>
#include <mpi.h>

void main(int argc, char **argv)
{

int node;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &node);
printf("Hello World from Node %d¥n",node);
MPI_Finalize();

}

Output:

Hello World from Node 2

Hello World from Node 0

Hello World from Node 4

Hello World from Node 9

Hello World from Node 3

Hello World from Node 8

Hello World from Node 7

Hello World from Node 1

Hello World from Node 6

Hello World from Node 5

CSC 2007, Grid Track, Dubrovnik, Croatia 28

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

MPI send-recv Example
int nprocs, myrank, dest, source, merror, tag=1, itag=2;
char inmsg[128], outmsg[128] ="Hello from root to ";
char newmsg[128];
static char strd[128];
MPI_Status Status;
int i, m;
size_t msglen;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {
for (i = 1; i < nprocs; i++) {

dest = i;
m = sprintf(strd, "%d", dest);
strcpy(newmsg, outmsg);
strcat(newmsg,strd);
msglen = strlen(newmsg);
merror = MPI_Send(&msglen, 1, MPI_INT, dest, itag, MPI_COMM_WORLD);
merror = MPI_Send(&newmsg, msglen, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}
}
else {

source = 0;
merror = MPI_Recv(&msglen, 1, MPI_INT, source, itag, MPI_COMM_WORLD,&Status);

merror = MPI_Recv(&inmsg, msglen, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Status);
printf("Processor %d received \"%s\" from Processor 0\n", myrank, inmsg);

}

Source: http://www.ats.ucla.edu/rct/hpc/parallel_computing/mpi-intro.htm

15

CSC 2007, Grid Track, Dubrovnik, Croatia 29

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Example With Broadcast
int count, pool_size, my_rank, my_name_length, i_am_the_master = FALSE;
char my_name[BUFSIZ], master_name[BUFSIZ], send_buffer[BUFSIZ], recv_buffer[BUFSIZ];
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &pool_size);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Get_processor_name(my_name, &my_name_length);

if (my_rank == MASTER_RANK) {
i_am_the_master = TRUE; strcpy (master_name, my_name);

}

MPI_Bcast(master_name, BUFSIZ, MPI_CHAR, MASTER_RANK, MPI_COMM_WORLD);

if (i_am_the_master)
for (count = 1; count < pool_size; count++) {
MPI_Recv (recv_buffer, BUFSIZ, MPI_CHAR, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
printf ("%s\n", recv_buffer);

}
else {
sprintf(send_buffer, "hello %s, greetings from %s, rank = %d",

master_name, my_name, my_rank);
MPI_Send (send_buffer, strlen(send_buffer) + 1, MPI_CHAR,

MASTER_RANK, 0, MPI_COMM_WORLD);
}
MPI_Finalize(); Source http://beige.ucs.indiana.edu/I590/node62.html

CSC 2007, Grid Track, Dubrovnik, Croatia 30

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

MPI and the Grid

• Massive parallel applications typically require fast
networks with similar latencies between the processors

• Grids and wide-area networks are very heterogeneous
• MPI is supported by EGEE

– On single clusters only
• Often, it makes no sense to

run MPI code across sites
– Latency issue
– Worker node might sit

behind firewall

Site 1

Site 2

Site 3

16

CSC 2007, Grid Track, Dubrovnik, Croatia 31

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Overview

• Motivation & Terminology
• Performance of Grid job submission
• How to speed up applications
• Performance example
• Message Passing Interface and the Grid
• Data and protocol related issues

CSC 2007, Grid Track, Dubrovnik, Croatia 32

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Data Access Optimisation

• A Data Grid typically provides large volumes of
replicated data

• Some data items are more frequently accessed
• Goal: access to “close” data

– With smallest network latency
• EGEE currently does not have a “data access” monitor

which automatically creates/deletes data items
– There is a well studied theory about that in database research
– Similar to the caching mechanisms

17

CSC 2007, Grid Track, Dubrovnik, Croatia 33

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Data Transfer

• An important part of a Data Grid is to deliver files
efficiently and securely
– Easy, we learned about GridFTP and parallel streams
– However, for whom do we optimise?

For a single user?
For a user community (experiment?)

CSC 2007, Grid Track, Dubrovnik, Croatia 34

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Data Transfer Tuning

• Using parallel streams is only one way to optimise
network bandwidth utilisation
– However, 8-16 streams are often good enough

• Need to optimise TCP buffer size

TCP buffer size = RTT x speed of bottleneck link

18

CSC 2007, Grid Track, Dubrovnik, Croatia 35

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Protocol Issues

• Services in a Grid need to interact with each other
• Grid or Web services typically use SOAP
• However, SOAP is not the “fastest protocol”

– Good for simple client-server interactions
– Bad for applications with lot’s of communication and/or many

large data types to be passed on
• Other high performance protocols:

– xrootd protocol for accessing data in ROOT
– LFC’s protocol to deliver replica locations

Web services using SOAP are great for interoperability.
For mission critical applications they can be performance killers.

CSC 2007, Grid Track, Dubrovnik, Croatia 36

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Conclusion

• Grid systems are typically very
complex

• Making things “work” is hard
• Makings things “run fast” is

even harder
– However, important to keep in!

• Try to extract parallelism of
your application

