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Overview

• Motivation & terminology
• Performance of Grid job submission
• How to speed up applications
• Performance example
• Message Passing Interface and the Grid
• Data and protocol related issues
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Motivation: Performance

• Why are Grid job so “slow”?

• Performance does not necessarily mean that one gets 
immediate response

A simple HelloWorld job
might take 5 minutes!
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Terminology

• High performance computing:

• High throughput computing:

Optimise a single application.
Execute it as quickly as possible.    

Optimise a set of concurrent applications.
Give certain time to each application.    
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Overall WMS Performance

• Sum of
– Connection of client to broker over WAN

RTT is between 30 and 150 ms
– Resource selection and matchmaking at broker

Contacting Information System
– Sending job wrapper to Computing Element

Includes secure interaction via GSI
– Computing Element passes job  to LRMS

Includes secure interaction via SSH
– LRMS selects a worker node

Job is sent to worker node
– Logging and bookkeeping needs to be updated
– Store output at Resource Broker node
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Pipelining
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More on Grid Job Performance

• The Grid is not optimised for small jobs
– Every job will have this additional latency of about 3-5 

min
– Interesting for “long” running jobs (e.g. more than 30 

min)
• Sometimes scheduling at the LRMS takes long

– LRMS is a batch system (not interactive!)
– Many jobs might be already in the waiting queue
– Some systems (queues) are set up in a way that they 

only allow 1 or 2 job(s) per processor
Performance for “single” users

– In EGEE: “short deadline jobs”
• A Grid has heterogeneous hardware resources

– Some clusters have faster processors than others

Submission

Matchmaking

Contact CE

scheduling

Job
Execution

Get results
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The Grid and Processor Speed

• Faster processor = better performance?
• By default, the WMS does not select “fastest”

processors but sites with many processors and short 
queues
– Try it out!
– One can give hints to the system by specifying job requirements 

for certain processor speed
– However, one might need to “wait” for fast processors to become 

free and the job might be done by “slower” processors in the 
meantime
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Grid: High Throughput Computing

• Grids are often not very good at running a small task 
very fast

• However, due to lots of computing power and storage, 
it can speed up computing intensive, big task:
– By parallelising the workload
– Or by simply offering more computing power

• Automatic parallelisation not really achieved

Choose you application carefully that you want to run on the Grid. 
Check for potential parallelism.
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Which Type of Application?

Any ideas?
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How to make things faster?

• When you design a program newly, think about work 
flow scenarios that can be executed concurrently
– Overlapping computation and I/O is only a small step

• Check if input data set can be divided into smaller 
chunks
– If yes, branch off, run in parallel and merge in the end

• Legacy applications:
– We often cannot change existing code

Detector simulation code should not be touched by non-experts
– If possible, write job wrappers
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How about that? 
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Bioinformatics Example

• Biological sequence analysis

• CPU intensive, embarrassingly parallel problem
– Takes to databases as input
– Input data is split into chunks which can be processed in parallel
– Ideal for the Grid
The EMBRACE project is funded by the European Commission within its FP6 Programme, under the thematic area "Life sciences, 

genomics and biotechnology for health,"contract number LHSG-CT-2004-512092.
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Sequence Analysis (cont.)

• A-priory algorithm (AP-algorithm)
– Decide the task to be computed a-priory based on the number of 

input data chunks
– Push model

• Run time sensitive algorithm (RTS-algorithm)
– Decide for a certain number of CPUs
– Introduce a Task Server that assigns tasks to CPUs
– Run time based task assignment
– Pull model

Task Server
Storage Element

task 1, task 2, ... , task n

Worker Node 

1. Get Task 2. return
task URL

3. retrieve task

4.Task
done
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Running a Biological Benchmark

hmmsearch is a standard bioinformatics package for sequence analysis
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RTS Algorithm

100 parallel jobs
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Execution Time of RTS-Algo.
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How can this be applied to HEP?

• What we learned in the biology application can also be 
applied to HEP

• Often called “Pilot jobs”

(based on slide by Igor Sfiligoi)
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High Performance Computing

• Massive parallelism
– One single application runs on several processors that have a high-

speed interconnect (network)
– Traditionally done on massive parallel machines (Cray X, IBM SPx, 

etc.)
Now clusters are used more and more 

– Standards such as MPI (Message Passing Interface) are used
Inter-process communication is required

– Classical domain: High Performance Computing (HPC)
• Embarrassing parallelism

– Typically, one process initiates the computation and potentially also 
assigns the workload

See bioinformatics example
Monte Carlo simulation in HEP

– No communication between processors
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Message Passing Interface

• De facto standard for HPC requiring message passing
• Allows for writing different kinds of (massively) parallel 

applications
– Singe Program Multiple Data (SPMD) approach
– Execute the same executable on all processors involved in the 

computation
• Used in computational sciences

– “No” usage in High Energy Physics
– Commonly used in bioinformatics, 

engineering etc.
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MPI Example
#include <stdio.h>
#include <mpi.h>

void main(int argc, char **argv)
{   

int node;      
MPI_Init(&argc,&argv);   
MPI_Comm_rank(MPI_COMM_WORLD, &node);        
printf("Hello World from Node %d¥n",node);               
MPI_Finalize();

}

Output:

Hello World from Node 2

Hello World from Node 0

Hello World from Node 4

Hello World from Node 9

Hello World from Node 3

Hello World from Node 8

Hello World from Node 7

Hello World from Node 1

Hello World from Node 6

Hello World from Node 5
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MPI send-recv Example
int nprocs, myrank, dest, source,  merror, tag=1, itag=2;
char inmsg[128], outmsg[128]  ="Hello from root to ";
char newmsg[128];
static char strd[128];
MPI_Status Status;
int i, m;
size_t msglen;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {
for  (i = 1; i < nprocs; i++) {

dest  = i;
m  = sprintf(strd, "%d", dest);
strcpy(newmsg,  outmsg);
strcat(newmsg,strd);
msglen  = strlen(newmsg);
merror  = MPI_Send(&msglen, 1, MPI_INT, dest, itag, MPI_COMM_WORLD);
merror  = MPI_Send(&newmsg, msglen, MPI_CHAR, dest,  tag, MPI_COMM_WORLD);

}
}
else {

source  = 0;
merror  = MPI_Recv(&msglen, 1, MPI_INT, source, itag, MPI_COMM_WORLD,&Status);

merror  = MPI_Recv(&inmsg, msglen, MPI_CHAR, source,  tag, MPI_COMM_WORLD, &Status);
printf("Processor  %d received \"%s\" from Processor 0\n",  myrank, inmsg);

}

Source: http://www.ats.ucla.edu/rct/hpc/parallel_computing/mpi-intro.htm
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Example With Broadcast
int count, pool_size, my_rank, my_name_length, i_am_the_master = FALSE;
char my_name[BUFSIZ], master_name[BUFSIZ], send_buffer[BUFSIZ], recv_buffer[BUFSIZ];
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &pool_size);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Get_processor_name(my_name, &my_name_length);

if (my_rank == MASTER_RANK) {
i_am_the_master = TRUE; strcpy (master_name, my_name);

}

MPI_Bcast(master_name, BUFSIZ, MPI_CHAR, MASTER_RANK, MPI_COMM_WORLD);

if (i_am_the_master) 
for (count = 1; count < pool_size; count++) {
MPI_Recv (recv_buffer, BUFSIZ, MPI_CHAR, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
printf ("%s\n", recv_buffer);

}
else {
sprintf(send_buffer, "hello %s, greetings from %s, rank = %d",

master_name, my_name, my_rank);
MPI_Send (send_buffer, strlen(send_buffer) + 1, MPI_CHAR,

MASTER_RANK, 0, MPI_COMM_WORLD);
}
MPI_Finalize(); Source http://beige.ucs.indiana.edu/I590/node62.html
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MPI and the Grid

• Massive parallel applications typically require fast 
networks with similar latencies between the processors

• Grids and wide-area networks are very heterogeneous
• MPI is supported by EGEE

– On single clusters only
• Often, it makes no sense to

run MPI code across sites
– Latency issue
– Worker node might sit

behind firewall

Site 1

Site 2

Site 3



16

CSC 2007, Grid Track, Dubrovnik, Croatia 31

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Overview

• Motivation & Terminology
• Performance of Grid job submission
• How to speed up applications
• Performance example
• Message Passing Interface and the Grid
• Data and protocol related issues

CSC 2007, Grid Track, Dubrovnik, Croatia 32

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Data Access Optimisation

• A Data Grid typically provides large volumes of 
replicated data

• Some data items are more frequently accessed
• Goal: access to “close” data

– With smallest network latency
• EGEE currently does not have a “data access” monitor 

which automatically creates/deletes data items
– There is a well studied theory about that in database research
– Similar to the caching mechanisms
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Data Transfer

• An important part of a Data Grid is to deliver files 
efficiently and securely
– Easy, we learned about GridFTP and parallel streams
– However, for whom  do we optimise?

For a single user?
For a user community (experiment?)
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Data Transfer Tuning

• Using parallel streams is only one way to optimise 
network bandwidth utilisation
– However, 8-16 streams are often good enough

• Need to optimise TCP buffer size 

TCP buffer size = RTT x speed of bottleneck link
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Protocol Issues

• Services in a Grid need to interact with each other
• Grid or Web services typically use SOAP
• However, SOAP is not the “fastest protocol”

– Good for simple client-server interactions
– Bad for applications with lot’s of communication and/or many 

large data types to be passed on
• Other high performance protocols:

– xrootd protocol for accessing data in ROOT
– LFC’s protocol to deliver replica locations

Web services using SOAP are great for interoperability.
For mission critical applications they can be performance killers.  
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Conclusion

• Grid systems are typically very 
complex

• Making things “work” is hard
• Makings things “run fast” is 

even harder
– However, important to keep in!

• Try to extract parallelism of 
your application


