
1

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

1

Large Projects & Software Engineering

With thanks to Bob Jones for ideas and illustrations

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

2

Why spend so much time talking about “Software Process”?

How do you create software?
• Lots of parts: Writing, documenting, testing, sharing, fixing, ….
• Usually done by lots of people

“Process” is just a big word for how they do this
• Exists whether you talk about it or not

“Why do we have to formalize this?”

2

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

3

Scale and process:
Building a dog house

•Can be built by one person
•Minimal plans
•Simple process
•Simple tools
•Little risk

Rational Software Corporation

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

4

Scale and process:
Building a family house

•Built by a team
•Models
•Simple plans, evolving to blueprints

•Well-defined process
•Architect
•Planning permission
•Time-tabling and Scheduling
•...

•Power tools
•Considerable risk

Rational Software Corporation

3

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

5

Scale and process:
Building a skyscraper

•Built by many companies
•Modeling
•Simple plans, evolving to blueprints
•Scale models
•Engineering plans
•Well-defined process
•Architectural team
•Political planning
•Infrastructure planning
•Time-tabling and scheduling
•Selling space
•Heavy equipment
•Major risks

Rational Software Corporation

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

6

Why do software projects fail?
Even if you do produce the code it does not guarantee that the project will
be a success

There are many other factors (both internal and external) that can affect the
success of a project...

4

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

7

Communication explosion
More people means more time communicating which means more
misunderstandings and less time for the software

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

8

Why software projects fail...

Undefined responsibilities

“Hey... this could be the chief”

Gary Larson

Too little responsibility can cause
a lot of confusion & embarrassing
mistakes

5

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

9

Why software projects fail...

Missed user requirements

Gary Larson

We’re not smart enough to
know everything people want
the system to do; we need
to ask!

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

10

Why software projects fail...

Badly defined interfaces

Fumbling for his recline button,
Bob unwittingly instigates a disaster

Gary Larson

Spend the time to design
and test good interfaces

6

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

11

Why software projects fail...

Creeping featurism

“No, no… Not this one. Too many bells and
whistles”

Gary Larson

Focus on what the users are
asking for, not what the
developers think is cool

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

12

Why software projects fail...

Unrealistic goals

“It’s time we face reality, my friends… We’re not
exactly rocket scientists”

Gary Larson

Analysis and design would make it
clear the project is not feasible

7

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

13

The life time of HEP software

Users like stable and maintained systems
Vote with their feet

It takes time to develop a new system
• Geant3 6+ yrs 3 people 300 KLOCs
• PAW 6+ yrs 5 people 300
• Zebra 4+ yrs 2 people 100
• ROOT 5* yrs 3 people 630
• Working system after 1 year.

Real work is after that !!

Software is a long-term commitment

R. Brun

Many releases of the software are needed over its lifetime
to fix bugs, add new features, support new platforms etc

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

14

How do we cope?
We try to find a way of working that leads to success

• We create a “process” for building systems
• We devise methods of communicating and record keeping: “models”
• We use the best tools & methods we can lay our hands on

And we engage in denial:

8

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

15

Can’t technology save us?
We’ve built a series of ever-larger tools to handle large code projects:

CVS for controlling and versioning code
SRT for building “releases” of systems
CMT for “configuration management”

But we struggle against three forces:
•We’re always building bigger & more difficult systems
•We’re always building bigger & more difficult collaborations
•And we’re the same old people

Net effect: We’re always pushing the boundary of what we can do

Stupidity got us into this mess; why can’t it get us out? - Will Rogers

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

16

CVS Source Code Management
Maintains a repository of text files

• Allows users to check in and check out changed text
• Old code remains available

Each checked-in change defines a new revision
You can retrieve, ask for differences with any of them

• Revisions can be tagged for easy reference
Anybody can get a specific set of source code file versions
Collaboration can use “tags” to control software consistency

Big advantage: checkout is not exclusive
• More than one developer can have the same file checked out
• Developers can control their own use of the code for read, write
• Changes can come from multiple sources
• CVS handles (most) of the conflict resolution

Key tool for large collaborations!
• But can also be an important tool for individuals

9

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

17

Why isn’t CVS enough?
CVS let’s me “check out” complete source code. Then just compile!

• Works great for small projects
• But runs into several levels of scaling problems

Want to attach to external code
• We don’t write everything (though tempted)
• Sometimes don’t get source for external code
• Need some way to connect to specific external libraries:

Both specific product, and a specific version of that product

Want to separate code into multiple parts
• So people/institutions can take responsibility for parts
• But software has cross-connections
• Need structure that works for both

And still need to be able to build the code

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

18

Handling complicated builds
Multiple “packages” require cross connects while compiling

• Typing the compile command gets boring fast
g++ -c -I"/afs/cern.ch/user/s/scherzer/public/1001/InstallArea/include/PixelDigitization"
-I"/afs/cern.ch/user/s/scherzer/public/1001/InstallArea/include/SiDigitization"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/InDetSimEvent"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/HitManagement"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/TestTools"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/TestPolicy"
-I"/afs/cern.ch/atlas/offline/external/Gaudi/0.14.6.14-pool201/GaudiKernel/v15r7p4"
-I"/afs/cern.ch/sw/lcg/external/clhep/1.8.2.1-atlas/slc3_ia32_gcc323/include"
-I"/afs/cern.ch/sw/lcg/external/Boost/1.31.0/slc3_ia32_gcc323/include/boost-1_31"
-I"/afs/cern.ch/sw/lcg/external/cernlib/2003/slc3_ia32_gcc323/include" -O2 -pthread
-D_GNU_SOURCE -pthread -pipe -ansi -pedantic -W -Wall -Wwrite-strings -Woverloaded-virtual
-Wno-long-long -fPIC -march=pentium -mcpu=pentium -pedantic-errors -ftemplate-depth-25
-ftemplate-depth-99 -DHAVE_ITERATOR -DHAVE_NEW_IOSTREAMS -D_GNU_SOURCE
-o PixelDigitization.o -DEFL_DEBUG=0 -DHAVE_PRETTY_FUNCTION -DHAVE_LONG_LONG
-DHAVE_BOOL -DHAVE_EXPLICIT -DHAVE_MUTABLE -DHAVE_SIGNED -DHAVE_TYPENAME
-DHAVE_NEW_STYLE_CASTS -DHAVE_DYNAMIC_CAST -DHAVE_TYPEID
-DHAVE_ANSI_TEMPLATE_INSTANTIATION -DHAVE_CXX_STDC_HEADERS ’
-DPACKAGE_VERSION="PixelDigitization-00-05-16"' -DNDEBUG -DCLHEP_MAX_MIN_DEFINED
-DCLHEP_ABS_DEFINED -DCLHEP_SQR_DEFINED ../src/PixelDigitization.cxx

Build tools: “make”, “Ant”, etc
• Manually create a “makefile” that forwards include options to the compiler

g++ -IpkgA -IpkgB
• Lets you adapt to various internal structures

g++ -IpkgA -IpkgB/include -IpkgC/headers

• Also lets you add other options to control debugging, etc

10

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

19

But size keeps getting in the way
BaBar (offline production code only):

• 350 packages
• 14,000 files
• 6 million lines of source
Some of these are large “for historical reasons”
But that’s true of just about any project

CVS checkout: 41 minutes
Build from scratch: 14 hours

Spread across multiple production machines; never did complete on laptop

“gmake” with one change: about 6 minutes to think about dependencies
And I don’t even want to think about the size of a monolithic Makefile

And everybody will need multiple copies…
Old ones, new ones, …

“But I just want to run the program!”

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

20

“Release Systems” are built to deal with this
Key capabilities:

Partial builds, including the case of “just run it”

Ensuring consistency among the parts

Key concepts:
“Release”: labeled, consistent build of the entire system

“Package version”: name for a particular set of contents
The purpose of development is to change the contents of packages!
Helpful to have these be independent, so people can work independently

“Architecture”: A particular type of computer
hardware, software, even location

11

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

21

Simple Example: SRT (SoftRelTools)
Allows a build to mix existing (shared) and individual parts

Check out some packages & built just those
Pre-built libraries, include files, etc are matched in “versions”

Set of shell scripts and Makefile fragments
Work within a particular directory structure

$BFDIST/ packages/

releases/

pkgA/

pkgB/

1.0.1/

1.0.3/

1.0.2/

1.0.7/

1.1.4/

1.1.2/

1.0.9/

current/

production/

pkgA/

pkgB/

include/ pkgA/

pkgB/

lib/

bin/

AIX/

HPUX/

OSF1/

Makefile

doc/

pkgA/ (include files)

libpkgA.a

libpkgB.a

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

22

Typical use:
Create an area for your own work

Specify the production release you want as context
Do a CVS checkout of the package(s) you want to edit

Specify which contents
Typically either the one from the context, or the latest

Compile, test, debug, edit, repeat

Eventually, you’ve made progress, and want to share it
Check changes into CVS

Now they’re safe, and colleagues can get changes

Tag CVS
So you can tell your colleagues how to get these

Make part of next “production” release
Typically a “package coordinator” role to decide about this

These steps do not have to happen quickly, all at once, or by same person
Biggest differences between collaborations occur here

12

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

23

What else do we want from a release system?
Better support of development

Not just building complete versions
Also want to build & run test scaffolds

More complicated package, release structures
Not just a flat set of co-equal packages with no substructure

Including enough flexibility to develop release tool itself

Help distributing the workload
SRT spread parts of load across lots of package coordinators
But somebody still had to pull the production releases together

“Did you run your unit tests?”
If I update pkgA to V01-00-03, will pkgB V02-01-00 still work?

Help ensuring consistency
If I update pkgA to V01-00-03, will pkgB V02-01-00 still work?

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

24

“Consistency”

Software strongly depends on other software
• Usually managed at the package level

(This can result in lots of packages, as you subdivide over and over)

• Expresses how changes in one piece can drive changes in another

13

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

25

Robert Martin’s “open/closed” principle
Some parts of the code need to be “stable”
Other parts are being continually developed

One solution: Separate stable interfaces from evolving implementations

But even stable interfaces have to change sometimes

And you also need tools for handling dependence on external code,
compiler/OS differences, location differences, etc

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

26

CMT: A modern example

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>

use AtlasPolicy v2r1
use CxxFeatures v2r1 Utilities
use CLHEP v2r1 External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test
...

Requirements file provides custom language for expressing our needs

Example from C.
Arnault (LAL and
Atlas)

14

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

27

CMT: A modern example

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>

use AtlasPolicy v2r1
use CxxFeatures v2r1 Utilities
use CLHEP v2r1 External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test
...

Provides definitions for
standard Atlas conventions

(include paths, directory
structure, default

behavioural patterns, …)

Requirements file provides custom language for expressing our needs

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

28

CMT: A modern example

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>

use AtlasPolicy v2r1
use CxxFeatures v2r1 Utilities
use CLHEP v2r1 External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test
...

An additional (non standard)
include search path

Requirements file provides custom language for expressing our needs

15

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

29

CMT: A modern example

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>

use AtlasPolicy v2r1
use CxxFeatures v2r1 Utilities
use CLHEP v2r1 External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test
...

Describes additional
subdirectories (branches)
specific to this package

Requirements file provides custom language for expressing our needs

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

30

CMT can reason from these
• Find inconsistencies
• Create the include options needed for compile and link
• Connect to the correct prebuilt parts

Includes more information that makes CMT more powerful for users:

The requirements file

Author(s),
manager(s)

Structural information
•specialized directory structure
•used packages
•links to external packages)

Constituents
•Libraries
•Applications
•generated documents

Make macros and environment variables
and their possible values on various platforms,

sites, environments
Customization for new

languages, or document
generators

Definition of conventional
behavioral patterns

16

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

31

Custom package structure: Describing a library

...
apply_pattern default_no_share_linkopts

library MagneticField -no_share \
AbstractMagneticField.cxx \
MagField.cxx \
MagFieldFor.cxx \
MagFieldGradient.cxx \
Tableau.cxx \
reamag.F \
thanatos.F

...

Apply a “pattern” (defined in ATlasPolicy):

Provide client packages with information
needed to link with static library provided this

package.

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

32

Custom package structure: Describing a library

...
apply_pattern default_no_share_linkopts

library MagneticField -no_share \
AbstractMagneticField.cxx \
MagField.cxx \
MagFieldFor.cxx \
MagFieldGradient.cxx \
Tableau.cxx \
reamag.F \
thanatos.F

...

This describes a (static) library and all its
source files.

By default they are searched in ../src

The result will be

libMagneticField.a

17

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

33

Building a test program

...
application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_check "ln -s $(data_file) test.dat"
macro test_check_args "test.dat"
macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies MagneticField

Create an application named test, with one
source file

run with the command

> gmake check

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

34

Building a test program

...
application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_check "ln -s $(data_file) test.dat"
macro test_check_args "test.dat"
macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies MagneticField

The following macro definitions are private
to this package.

Client packages do not inherit these.

18

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

35

Building a test program

...
application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_check "ln -s $(data_file) test.dat"
macro test_check_args "test.dat"
macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies MagneticField

Define data file to be used in the test
procedure.

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

36

Building a test program

...
application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_check "ln -s $(data_file) test.dat"
macro test_check_args "test.dat"
macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies MagneticField

These three standard make macros provide
the parameters for the test procedure

19

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

37

Building a test program

...
application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_check "ln -s $(data_file) test.dat"
macro test_check_args "test.dat"
macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies MagneticField

Assure that MagneticField target is always
built before the test target.

This is useful when using the -j option of
gmake

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

38

How do you know what’s compatible?
Updated code might be fix, cause problems:

• Fix algorithmic bugs
• Add new capabilities
• Break interfaces
• Break assumptions

Collaborations enforce conventions via package versioning
• ‘V01-02-03’ as triplet of major, minor, patch numbers

‘Bigger is better’, but might break other things
Different major numbers mean they won’t work together
A larger minor number is backward-compatible with a smaller one
Different patch numbers should work together

(But larger is still better)

CMT provides ways to ensure that requirements are met

Is that enough?

20

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

39

When Boeing wanted to design the 747, they had two choices:

1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

Why?

What can we learn from this?

