I Tools and Methods Extra Slides

Large Projects & Software Engineering

Difbert By Scott Adams

=

School -/ Camputing

—

|

vl = E
I'D LIKE TO START g IT'S ABOUT A GUY
WITH A CARTOON. @ WHQO sHOWS A
£ CARTOON BEFORE
il | cIvING A BORING
L PRESENTATION.
\t \
£
=z
: Ly

2,'-||'-ur 1999 United Fealure Syndicate. Inc

BUT 1T DOESW'T
WORK BECAUSE
THE CARTOON HAS
NO PUNCHLINE.

1 Bob Jacobsen, - UC Berkeley

With thanks to Bob Jones for ideas and illustrations

I Tools and Methods Extra Slides

Why spend so much time talking about “ Software Process”?

How do you create software?

» Usually done by lots of people

“Process” is just a big word for how they do this
« Exists whether you talk about it or not

“Why do we have to formalize this?”

* Lots of parts: Writing, documenting, testing, sharing, fixing,

=

School -/ Camputing

BEFORE I ACCEPT THE SOFT-
WARE YOU WROTE UNDER
CONTRACT, TELL ME LHAT
DEVELOPMENT METHODOLOGY
~ YOU USE.

WE HOLD WILLAGE MEET-
INGS TO BOAST OF OUR
SKILLS AND CURSE THE
DEVIL-SPALINED END-

USERS. MeoMETIMES WE
| JUGGLE,

\5?&“‘,‘5 E-mail: SCOTTADAME®ACL.COM

Afanfac 1098 Unitad Faatura Byndizate. I (NYC)

AT THE LAST MINUTE
WE SLAM OUT S0ME

CODE AND /7 (j0ULD FIND
GO ROLLER | TyTs, HMORDLUS
SKATING.

IF NOT FOR. THE
PIG ON MY BACK

2 Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides (3
CERN
School +f Computis

Scale and process:
Building a dog house

«Can be built by one person
*Minimal plans

«Simple process

«Simple tools

sLittle risk

Rational Software Corporation

Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides (3
CERN
School +f Computis

Scale and process:
Building a family house

*Built by a team

*Models

*Simple plans, evolving to blueprints
*\Well-defined process

8 -Architect

& +Planning permission

*Time-tabling and Scheduling

*Power tools
eConsiderable risk

Rational Software Corporation

Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides

School -/ Camputing

Scale and process:
Building a skyscraper

Built by many companies
Modeling

Simple plans, evolving to blueprints
Scale models

Engineering plans
Well-defined process
Architectural team

Political planning
eInfrastructure planning
*Time-tabling and scheduling
*Selling space

*Heavy equipment

*Major risks

Rational Software Corporation

5 Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides

School -/ Camputing

Why do software projects fail?

Even if you do produce the code it does not guarantee that the project will
be a success

There are many other factors (both internal and external) that can affect the
success of a project...

| CALVIN AND HOBBES » 6ifl Watterson

. ~- i, TN SOMETHING SEEM
@ \ﬂp ;[0 PLAUSIBLE AT THE TMe!
- T~ o | aip s mene W :
b }l # ./;3 ' RETROSFECT P
se ket Pl i
' = ‘%ﬂ% 5 § R :
"'...cb? Sk e o 3y n..} . !
L 2.?."’ il u-__‘:‘_:_-‘_i _L!'.f i3
ARG - |l - :
—n & = % t. 1 ——— -.._;1_
. JI . UH - .-u:'

6 Bob Jacobsen, - UC Berkeley

Communication explosion

Tools and Methods Extra Slides

More people means more time communicating which means more
misunderstandings and less time for the software

Ty P,
Dsputy Fronk Potar]
Wenagar
r T g T 1
B Inaotzan Chertes Youn, g Boutigny | | Andy LankicrdMaurn Morandn o Reiras
| Off.Lina Coordinslor | | %" || CnLine Coordinalor Todls |
‘Tava Goady Juhn LoSaem WG Hufler Wk WIkns
Depulysssiont Fraucion Manogsr Dota Flow
Ed Frank hris Hosas Gregory DubrisFalinam
Reco Manogar Cunlby ASELRINCRAOC & Evart Procassing Puckal Yidao
E1ll Lodkman Waller Toki Tom Glanzman Ricarda Kau
‘Sm anagar Doz Man ager Prompt Rem Daskiop Suppor
Dorad Quomic Do Boutlg STy Abeoime
‘I Dutabaza Manager | Tt Deartdien | ‘I Canrod |
| Doy Johnsan L Do Brcem
Reduas e Manager Calbration
Gaular Hamsl da ol Hall Geddss:
——w || Physics Tocks Archited M Aun Carird
fury Kolmansky Ell Rusenberg
—_— Pivics Contoat Rl pasa klanagar

—+/{Foom]

Dolchosg

1 JusT HEARD THAT ALL

OUR TOP EXECUTIVES

GOT LOCKED IN A

CONFEREMNCE ROOM AND

STARVED. TO DEATH.
T

LIHY DIDN'T THEY
USE THE PHONE TO
CALL FOR HELPT

wnw.dilbest.com

—
5 Adjans

ONE WEEK AGO...

ITS AGREED:
WE DILAL
83 TO GET
AW OUTSIDE
LINE .

ClM[a3 @ 19 United Fastura Synaicate, inc.

UH-OH.
THIS ONE

DOESNT DO
DECIMALS,

.
&

7 LU UALUUSTIH, T UL USINGITY

=

School -/ Camputing

Why software projects fail...

Undefined responsibilities

“Hey... this could be the chief”

Too little responsibility can cause
a lot of confusion & embarrassing
mistakes

8 Bob Jacobsen, - UC Berkeley

Tools and Methods Extra Slides

=

School -/ Camputing

I Tools and Methods Extra Slides

We're not smart enough to
know everything people want
the system to do; we need
to askl

Why software projects fail...

Missed user requirements

Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides

10

Why software projects fail...

Badly defined interfaces

Fumbling for his recline button,
Bob unwittingly instigates a disaster

Spend the time to design
and test good interfaces

Bob Jacobsen, - UC Berkeley

" Tools and Methods Extra Slides (8:
Why software projects fail... am -

Creeping featurism

“No, no... Not this one. Too many bells and
whistles™

Focus on what the users are
asking for, not what the
developers think is cool

Bob Jacobsen, - UC Berkeley

11

Tools and Methods Extra Slides (8:
CERN

Why software projects fail... e

Unrealistic goals

“It’s time we face reality, my friends... We’re not
exactly rocket scientists”

Analysis and design would make it
clear the project is not feasible

Bob Jacobsen, - UC Berkeley

12

X . Tools and Methods Extra Slides R.Brun
The life time of HEP software MQ%.,

Software is a long-term commitment

Users like stable and maintained systems Deliverables
Vote with their feet B Tt~ 2 " N

It takes time to develop a new system
e Geant3 6+yrs 3 people 300 KLOCs
¢ PAW 6+ yrs 5 people 300
e Zebra 4+ yrs 2 people 100
¢ ROOT 5* yrs 3 people 630
* Working system after 1 year.

Real work is after that !!

Many releases of the software are needed over its lifetime
to fix bugs, add new features, support new platforms etc

13 Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides (g
How do we cope?

We try to find a way of working that leads to success
*We create a “process” for building systems
» We devise methods of communicating and record keeping: “models”
* We use the best tools & methods we can lay our hands on

And we engage in denial:

AT WHAT POINT
CAN THIS NO

LOMGER BE CALLED
SOPTIMISM" T

HERE'S GWHAT I
DOMN'T UNDER-

TO FOLLOWY A
PROCESS THAT HAS
FALLED THIRTY

TIMES IN A ROLD

AND YOU
KNOW IT

www.dilbert.com scotiadoma@acloom

iafifrg* 1898 Unliod Faatura Syndlcate, in

14 Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides

Can’t technology save us?

We’ve built a series of ever-larger tools to handle large code projects:
CVS for controlling and versioning code
SRT for building “releases” of systems
CMT for “configuration management”

But we struggle against three forces:
*We’re always building bigger & more difficult systems
*We’re always building bigger & more difficult collaborations

*And we’re the same old people

Net effect: We’re always pushing the boundary of what we can do

Stupidity got us into this mess; why can’t it get us out? - Will Rogers

15 Bob Jacobsen, - UC Berkeley

=

School -/ Camputing

I Tools and Methods Extra Slides

CVS Source Code Management

Maintains a repository of text files
* Allows users to check in and check out changed text

* Old code remains available
Each checked-in change defines a new revision
You can retrieve, ask for differences with any of them

* Revisions can be tagged for easy reference
Anybody can get a specific set of source code file versions
Collaboration can use “tags” to control software consistency

Big advantage: checkout is not exclusive
* More than one developer can have the same file checked out
* Developers can control their own use of the code for read, write
» Changes can come from multiple sources
* CVS handles (most) of the conflict resolution

Key tool for large collaborations!

*But can also be an important tool for individuals
16 Bob Jacobsen, - UC Berkeley

=

School -/ Camputing

I Tools and Methods Extra Slides

Why isn’'t CVS enough?

School -/ Camputing

CVS let’s me “check out” complete source code. Then just compile!
* Works great for small projects
* But runs into several levels of scaling problems

Want to attach to external code
* We don’t write everything (though tempted)
» Sometimes don’t get source for external code

* Need some way to connect to specific external libraries:
Both specific product, and a specific version of that product

Want to separate code into multiple parts —T—— Pkaal
» So people/institutions can take responsibility for parts
» But software has cross-connections
» Need structure that works for both

—— pkaB!

And still need to be able to build the code

17 Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides

Handling complicated builds

School -/ Camputing

Multiple “packages” require cross connects while compiling

* Typing the compile command gets boring fast

g++ -c -I"/afs/cern.ch/user/s/scherzer/public/1001/InstallArea/include/PixelDigitization"
-1"/afs/cern.ch/user/s/scherzer/public/1001/Install Area/include/SiDigitization"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/Install Area/include/InDetSimEvent"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/Install Area/include/HitManagement"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/TestTools"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/TestPolicy"
-1"/afs/cern.ch/atlas/offline/external/Gaudi/0.14.6.14-pool201/GaudiKernel/v15r7p4"
-1"/afs/cern.ch/sw/lcg/external/clhep/1.8.2.1-atlas/slc3_ia32_gcc323/include”
-I"/afs/cern.ch/sw/lcg/external/Boost/1.31.0/slc3_ia32_gcc323/include/boost-1_31"
-I"/afs/cern.ch/sw/lcg/external/cernlib/2003/slc3_ia32_gcc323/include” -O2 -pthread
-D_GNU_SOURCE -pthread -pipe -ansi -pedantic -W -Wall -Wwrite-strings -Woverloaded-virtual
-Wno-long-long -fPIC -march=pentium -mcpu=pentium -pedantic-errors -ftemplate-depth-25
-ftemplate-depth-99 -DHAVE_ITERATOR -DHAVE_NEW_IOSTREAMS -D_GNU_SOURCE

-0 PixelDigitization.o -DEFL_DEBUG=0 -DHAVE_PRETTY_FUNCTION -DHAVE_LONG_LONG
-DHAVE_BOOL -DHAVE_EXPLICIT -DHAVE_MUTABLE -DHAVE_SIGNED -DHAVE_TYPENAME
-DHAVE_NEW_STYLE_CASTS -DHAVE_DYNAMIC_CAST -DHAVE_TYPEID
-DHAVE_ANSI_TEMPLATE_INSTANTIATION -DHAVE_CXX_STDC_HEADERS’
-DPACKAGE_VERSION="PixelDigitization-00-05-16"" -DNDEBUG -DCLHEP_MAX_MIN_DEFINED
-DCLHEP_ABS_DEFINED -DCLHEP_SQR_DEFINED ../src/PixelDigitization.cxx

Build tools: “make”, “Ant”, etc
» Manually create a “makefile” that forwards include options to the compiler
g++ -1pkgA -IpkgB
* Lets you adapt to various internal structures
g++ -IpkgA -IpkgB/include -1pkgC/headers

* Also lets you add other options to control debugging, etc
18 Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides

But size keeps getting in the way

BaBar (offline production code only):
* 350 packages
« 14,000 files
6 million lines of source
Some of these are large “for historical reasons”
But that’s true of just about any project

CVS checkout: 41 minutes
Build from scratch: 14 hours

And everybody will need multiple copies...
Old ones, new ones, ...

“But | just want to run the program!”
19 Bob Jacobsen, - UC Berkeley

Spread across multiple production machines; never did complete on laptop

“gmake” with one change: about 6 minutes to think about dependencies
And | don’t even want to think about the size of a monolithic Makefile

=

School -/ Camputing

I Tools and Methods Extra Slides

“Release Systems” are built to deal with this

Key capabilities:
Partial builds, including the case of “just run it”

Ensuring consistency among the parts

Key concepts:

“Architecture”: A particular type of computer
hardware, software, even location

20 Bob Jacobsen, - UC Berkeley

“Release”: labeled, consistent build of the entire system

“Package version”: name for a particular set of contents
The purpose of development is to change the contents of packages!
Helpful to have these be independent, so people can work independently

=

School -/ Camputing

10

" Tools and Methods Extra Slides (8:
Simple Example: SRT (SoftRelTools)

School -/ Camputing

Allows a build to mix existing (shared) and individual parts
Check out some packages & built just those
Pre-built libraries, include files, etc are matched in “versions”

Set of shell scripts and Makefile fragments
Work within a particular directory structure
$BFDIST/ pkgA/

1.0.1/ Makefile

1.0.2/ doc/

1.0.3/ PkgA/ (include files)
pkgB/

releases/ 1.0.7/ pkgA/

1.0.9/ pkgB/

112/ pkoA/

include/
1.1.4/ pkgB/

lib/ AIX/ libpkgA.a

F libpkgB.a
HPUX/ P
bin/ OSF1/

l—— production/

—— current/

21 Bob Jacobsen, - UC Berkeley
I " Tools and Methods Extra Slides (8:
Typical use: :
School f Computing

Create an area for your own work

Specify the production release you want as context
Do a CVS checkout of the package(s) you want to edit

Specify which contents

Typically either the one from the context, or the latest
Compile, test, debug, edit, repeat

Eventually, you’ve made progress, and want to share it

Check changes into CVS
Now they’re safe, and colleagues can get changes
Tag CVS
So you can tell your colleagues how to get these
Make part of next “production” release
Typically a “package coordinator” role to decide about this

These steps do not have to happen quickly, all at once, or by same person

Biggest differences between collaborations occur here
22 Bob Jacobsen, - UC Berkeley

11

I Tools and Methods Extra Slides

What else do we want from a release system?

Better support of development

Not just building complete versions
Also want to build & run test scaffolds

More complicated package, release structures
Not just a flat set of co-equal packages with no substructure

Including enough flexibility to develop release tool itself

Help distributing the workload
SRT spread parts of load across lots of package coordinators

But somebody still had to pull the production releases together
“Did you run your unit tests?”
If I update pkgA to VV01-00-03, will pkgB V02-01-00 still work?

Help ensuring consistency
If 1 update pkgA to V01-00-03, will pkgB V02-01-00 still work?

23 Bob Jacobsen, - UC Berkeley

=

School -/ Camputing

I Tools and Methods Extra Slides

“Consistency”

Software strongly depends on other software

» Usually managed at the package level
(This can result in lots of packages, as you subdivide over and over)

* Expresses how changes in one piece can drive changes in another

24 Bob Jacobsen, - UC Berkeley

12

I Tools and Methods Extra Slides (8
CERN

Robert Martin’'s “open/closed” principle

School f Computing
Some parts of the code need to be “stable”
Other parts are being continually developed

.

Sa Ve

One solution: Separate stable interfaces from evolving implementations

But even stable interfaces have to change sometimes

And you also need tools for handling dependence on external code,
compiler/OS differences, location differences, etc

25 Bob Jacobsen, - UC Berkeley
I Tools and Methods Extra Slides (8
CMT: A modern example

School -/ Camputing

Requirements file provides custom language for expressing our needs

Thibhiew CxxFentires
+wirl
RngneticFicld <y — mg;‘l'ﬁﬁ'
¥Zrl
Esternal/CLHEF External/LECICC
virl 25l

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>

\use AtlasPolicy v2ril

use CxxFeatures v2rl Utilities
use CLHEP v2ril1 External
Example from C.
include_dirs $(MAGNETICFIELDROOT)/MagneticField Arnault (LAL and
Atlas)

branches MagneticField doc src test

26 Bob Jacobsen, - UC Berkeley

27

I Tools and Methods Extra Slides

CMT: A modern example

CERN
School -/ Camputing

Requirements file provides custom language for expressing our needs

‘Tt o/ CxxFonturen
virl
Tagnetictield H:‘ Allaslohey
¥yl Z > varl
T o
Extenal/CLHEP Fternal/LECOC
varl] varl

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>

Provides definitions for

\Juse AtlasPolicy v2r1 <=

use CxxFeatures v2rl Utilities

use CLHEP v2ril External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test

Standard Atlas conventions

(include paths, directory
structure, default
behavioural patterns, ...)

Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides

28

CMT: A modern example

CERN
School -/ Camputing

Requirements file provides custom language for expressing our needs

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>

\use AtlasPolicy v2ril

use CxxFeatures v2rl Utilities

use CLHEP v2rl External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test

Thibhiew CxxFentires
+wirl
RngneticFicld <y — mg;‘l'ﬁﬁ'
¥Zrl
Esternal/CLHEF External/LECICC
virl 25l

L

An additional (non standard)

include search path

Bob Jacobsen, - UC Berkeley

14

I Tools and Methods Extra Slides (8
CERN

CMT: A modern example

School -/ Camputing

Requirements file provides custom language for expressing our needs

‘Tt o/ CxxFonturen
virl
Tagnetictield H:‘ Allaslohey
¥yl Z > varl
Extenal/CLHEP Fternal/LECOC
varl] varl

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>

Describes additional
L”subdirectories (branches)
specific to this package

\use AtlasPolicy v2ril
use CxxFeatures v2rl Utilities
use CLHEP v2rl1 External

include_dirs $(MAGNETICFIELDROOT)/Magnetigfield

branches MagneticField doc src test

29 Bob Jacobsen, - UC Berkeley

[T 00ls and Meethods Extra Slides
=X
CMT can reason from these
*Find inconsistencies
* Create the include options needed for compile and link
» Connect to the correct prebuilt parts

Includes more information that makes CMT more powerful for users:

Make macros and environment variables
and their possible values on various platforms,

Author(s), sites, environments
Customization for new manager(s) /
languages, or document X
generators N Constituents

leLibraries

The requirements file *Applications
egenerated documents

Structural information
especialized directory structure Defipition of conventional
.used packages behavioral patterns
links to external packages)

30 Bob Jacobsen, - UC Berkeley

15

I Tools and Methods Extra Slides

Custom package structure: Describing a library (SC

School -/ Camputing

apply_pattern default_no_share_ linkopts

library MagneticField -no_share
AbstractMagneticField.cxx \

MagField.cxx \ Apply a “pattern” (defined in ATlasPolicy):
MagFieldFor.cxx \ Provide client packages with information
MagFieldGradient.cxx \ needed to link with static library provided this
Tableau.cxx \ K

package.
reamag-F \
thanatos.F
31 Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides

Custom package structure: Describing a library (SC

School -/ Camputing

apply_pattern default_no_share_linkopts

) o This describes a (static) library and all its
library MagneticField -no_share \ source files
AbstractMagneticField.cxx \ — G, :
MagField.cxx \ By default they are searched in ../src
MagFieldFor.cxx \)
MagFieldGradient.cxx \ The result will be
Tableau. cxoc i libMagneticField.a
reamag-F \

thanatos.F

32 Bob Jacobsen, - UC Berkeley

16

I Tools and Methods Extra Slides (8
CERN

Building a test program

School -/ Camputing

application test -check ../test/main.cxx

private

macro data_file "/afs/cern_§h/atlas/offline/data/bmagatlas02.data”
macro test_pre_check "In -s $({ata_file) test.dat"
macro test _check_args '"test.dat

macro test_post_check "/bin/rm -f\test.dat"

macro test _dependencies MagneticFkie

Create an application named test, with one
source file

run with the command

> gmake check

33 Bob Jacobsen, - UC Berkeley
I — Tools and Methods Extra Slides (8
Building a test program

School -/ Camputing

application test -check ../test/main.cxx

private

macro data_Tfi ""/afs/cern.ch/atlas/offline/data/bmagatlas02.data”
macro test_pre_chec
macro test_check_args
macro test_post_check "/bi

wIn -s $(data_file) test.dat”
st.dat"
rm -f test.dat"

macro test _dependencies Magnhetic

NThe following macro definitions are private
to this package.

Client packages do not inherit these.

34 Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides (8:
CERN

Building a test program

School -/ Camputing

application test -check ../test/main.cxx
private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_ch test.dat"
macro test_check_arg

macro test_post_check "

macro test_dependencies MagnetlcNe\ld N
N

Define data file to be u2ed in the test

"In -s $(data_fil
stest.dat"”
rm -f test.dat"

procedure.
35 Bob Jacobsen, - UC Berkeley
I — Tools and Methods Extra Slides (8:
Building a test program

School -/ Camputing

application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”
macro test_pre_check "In -s $(data_file) test.dat"

macro test check args "test.dat"
macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies Magnew
N hese three standard make macros provide

the parameters for the test procedure

36 Bob Jacobsen, - UC Berkeley

18

I Tools and Methods Extra Slides

Building a test program

School -/ Camputing

application test -check ../test/main.cxx

private

macro test_pre_check "In -s $(data_file) test.dat"
macro test _check_args ''test.dat"
macro test_post_check "/bin/rm -f test.dat"

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_dependen(:lew
LAssure that MagneticField target is always

built before the test target.

This is useful when using the -j option of

gmake

37 Bob Jacobsen, - UC Berkeley

I Tools and Methods Extra Slides

How do you know what's compatible?

Updated code might be fix, cause problems:
* Fix algorithmic bugs
* Add new capabilities
*Break interfaces

*Break assumptions

‘Bigger is better’, but might break other things

Different patch numbers should work together
(But larger is still better)

Is that enough?

38 Bob Jacobsen, - UC Berkeley

CMT provides ways to ensure that requirements are met

School -/ Camputing

Collaborations enforce conventions via package versioning
*“V01-02-03’ as triplet of major, minor, patch numbers

Different major numbers mean they won’t work together
A larger minor number is backward-compatible with a smaller one

19

Tools and Methods Extra Slides

When Boeing wanted to design the 747, they had two choices:

1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

Why?

39 Bob Jacobsen, - UC Berkeley

=

School -/ Camputing

20

