_

Tools and Methods Lecture 1

Tools and Methods

Track introduction

Tools you can use individually (part 1): Test Frameworks

CERN
School -/ Camputing

Ok, HOBBES, TNR. TWME
MBCGINE 15 AL SET. PUT
ON R GOGBLES AND WE'LL

BE OFF T THE FuTURE!
'EE ..;

[Wi Do ¥ GEez, Do ou T [WEVE GOT T0 CONTEND With
WE HAVE | TRINEUNG YERRS
T TUE, FUTIRE

TO WEAR
GFOGELEST | 15 LIKE DRMING
DO THE STREET

Hou CAN GO WITHOUT W,

GOB, T THINK W GOGGLES
ARE N THE BEDROOGM, F T
HOT BACK. M A COURLE. MMUTES,

1 Bob Jacobsen, - UC Berkeley

_

Tools and Methods Lecture 1

What do you need to do the job?

I need to calculate the sum of primes less than 100:
int sumPrimes() {
int sum = 0;
for (inti=1; i< 100; i++) { /op over possible primes
bool prime = true;
for @ntj=1; j < 10; j++) {//loop over possible factors
if @ % j == 0) prime = false;
}

if (prime) sum +=1i;
}

return sum;

}

This is quick, throw-away code
« Not well structured, efficient, general or robust
« | understand what I intended, because | wrote it just now

Already, | need an editor, compiler, linker, and probably a debugger

2 Bob Jacobsen, - UC Berkeley

CERN
School -/ Camputing

I Tools and Methods Lecture 1

“Don’t worry, I’'ll remember what
I changed.” Maybe

all you

“The answer looks OK, lets move
on.”

need is
“Does anybody know where this

value came from?”

“Your #%@!& code broke again!”

3 Bob Jacobsen, - UC Berkeley

[Tools and Methods Lecture 1
Projects come in different sizes

My sample program is a pretty small project!

I Size (arbitrary units)

4 Bob Jacobsen, - UC Berkeley

=

School -/ Camputing

Tools and Methods Lecture 1 (8:
Projects come in different sizes oy

School / Computing

My sample program is a pretty small project!
It can be done with a simple technique:

I Size (arbitrary units)

But that won’t solve larger problems well

5 Bob Jacobsen, - UC Berkeley

Tools and Methods Lecture 1 (8:
Projects come in different sizes oy

School / Computing

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

6 Bob Jacobsen, - UC Berkeley

[Tools and Methods Lecture 1
Projects come in different sizes

A larger project may need a different approach
« Those tend to require more effort up front

= Method 1
= Method 2

I) I Size (arbitrary units)

What do you do when your project grows?

7 Bob Jacobsen, - UC Berkeley

=

School -/ Camputing

[Tools and Methods Lecture 1
Projects come in different sizes

If you’re trying to solve a really large problem:

Method 1
Method 2
Method 3

I I Size (arbitrary units) 4

8 Bob Jacobsen, - UC Berkeley

=

School -/ Camputing

e

Tools and Methods Lecture 1 (8:
What has all this to do with us?

School -/ Camputing

Our systems tend to be complex systems
« HEP tends to work at the limit of what we know how to do

“If you only have a hammer, wood screws look a lot like nails™ - ??
“If you only have a screwdriver, nails are pretty useless” - Don Briggs

Ll g akibled il Hein ptloc
aratmal " fhy [{famgooditEe ween

:ﬁ»?,_z:, o ML.'? X =5

75 I x — e —

9 Bob Jacobsen, - UC Berkeley

e

Tools and Methods Lecture 1 (8:
Larger projects have standard ways of doing things

School -/ Camputing

To make it possible to communicate, you need a shared vocabulary
« Standards for languages, data storage, etc.

For people to work together, you have to control integrity of source code
«E.g. CVS to provide versioning and control of source code

Just building a large system can be difficult
« Need tools for creating releases, tracking problems, etc.

T DONT #AAVA T
ABAM! T AHT%E
TRKING BATHS

S

[T ——
.

10 Bob Jacobsen, - UC Berkeley

I Tools and Methods Lecture 1 (8:
But individual effort is still important! am I

Faroon -

You can’t build a great system from
crummy parts

You want your efforts to make a
difference

Good tools & methods can help you do
a better job

“Whatever you do may seem
insignificant, but it is most important
that you do it.” - Gandhi

“I've got it, too, Omar ... a strange feeling like
we've just been going in circles.”

11 Bob Jacobsen, - UC Berkeley
I Tools and Methods Lecture 1 (8:
The Tools & Method Track :
School of Computing

int sumPrimes() {
. int sum = 0;
A spectrum of places to improve: for (24713 £ <100 14 { //Joop over possitle peimes
prime = true;
for int j=1; j < 10; j++) { //loop over possible factors

*What you do in the next minutes IR
*What you do over the next years i prine) sum =4

return sum;

}

P 8-
Earth Domarveton, High Energy Physics,

"l

Applcations
use DataGrid maddieware
0 BCCHSS MASCUICES.

Three basic themes:
« Individual tools & methods
*Working with existing code
« Building new systems

DataGrid Middleware (Work Packages 1-5):
Workioad n.

Data Mal ng Services,
Mass Storage Management, Fabric Management

¥

DataGrid middieware
provides access
to destributed and

Testbed (Work Package 6)

echnical coordinationiof tastbed deplyraent

Infrastructure (Werk Packags 6-7)

.

Crganisation of tha technical work packages in the DataGnd praject

12 Bob Jacobsen, - UC Berkeley

[—— S UM 19 AUD Ton 20 Aug Tue 21 Aug | Wed 22 AUg| ThU 23 Aug | FN 23 Aug | Satzs Aug
L L L L L
. Computer Computer Computer | Introduction ROOT (sil"" k-
PI f 09.00 Open_lng Security Security Security to Physics |Technologies ce "
an 1(- Session 1 2 3 c
TR 09.55 Part 1 omputing =
thlS w APace A Pace A Pace 2 A.Naumann
—_— R.Frilhwirth | B.Bellenot
L L L L =
. Tools and Secure Secure ROOT ROOCT
10.05 2"9”'”‘3 Technig Technologies| Technalogies
- ession
11000 Part2 2 1 2 1 2
: B.Jacobsen | S.Lopi ki | S.Lopi ki | AN A.Naumann
B.Bellenot B.Bellenot
11.056 Coffee Coffee Coffee Coffee Coffee Coffee
L L L L E E
11.30 Tools and Web Services Web Introduction ROOT ROOT
i Techniques 1 Services to Physics |Technologies |[Technologies
1225 1 A Pace 2 Computing 1 4
: B.Jacobsen A Pace 1 A.Naumann | A.Naumann
R.Frilhwirth | B.Bellenot B.Bellenot
12.30 Lunch Lunch Lunch Lunch Lunch Lunch
13:30 Free Time Free Time Free Time
- Free Time Sport Sport Sport
14:30 Programme Programme | Programme
" : Free Time Free Time Free Time
Arrival :
14;30 Fér:osr?stzgioar? Sport Sport Sport
15:30 activities - TBC Programme Programme | Programme
: Study Time* Study Time* | Study Time*
15.30 Coffee Coffee Coffee Coffee
L L
16.00 Tools and Tools and ROOT
Techniques Technigues R Technologies
- eserve)
16:55 2 3 2 Free Time
: B.Jacobsen B.Jacobsen Excursion A.Naumann
B.Bellenot
E E (Details TBC) E E Sport
17.05 _Yoolsand Tools and Secure ROOT Programme
: Technigues Techniques Software |Technologies |(Details TBC)
18.00 1 4 1 2
: B.Jacobsen B.Jacobsen S.Lopienskl | A.Naumann
B.Bellenot
E E E L
18.05 Toaols and Tools and Secure ROOT
- Technigues Technigues Software |Technologies
19:00 2 2 2 =
13 ’ B.Jacobsen B.Jacobsen S.Lopienski | A.Naumann
I Tools and Methods Lecture 1 (8
Design
School f Computing
System architecture
Individual project —

14

Specific task

Architectural Design

Scope: Processors,
packages, tasks

Node

Package
Task

Mechanistic Design
Scope: Groups of
collaborating classes

Detailed Design

Scope: Classes

Class

Class

Class

attribute

operation

Class

Class

“Design” is how you think about what you’re doing

Bob Jacobsen, - UC Berkeley

e

Tools and Methods Lecture 1

Design Levels: an analogy

inter-planetary journey...

Architectural design

decide which planet to fly to
Mechanistic design

select the flight path
Detailed design

choose where to have lunch

15 Bob Jacobsen, - UC Berkeley

Imagine the project is not to build software but to go on an

Bill Watterson

e

Tools and Methods Lecture 1

Architectural design

Goals

and packages early

* Be able to visualize and reason about the
design in a common notation

*Be able to break work into smaller pieces that
can be developed by different teams
(concurrently)

 Acquire an understanding of non-functional
constraints
programming languages and operating systems

technologies: distribution, concurrency,
database, GUIs

component reuse

16 Bob Jacobsen, - UC Berkeley

. THE FIFT, R E
e Capture major interfaces between subsystems _ S o _

Neﬁher one of s \Nan{,ed a ‘5110—;1’? e

the new mastersuite, but 't«ur;z‘c
ke i can happen when =
W don't dean the wifee

?!‘Hf off gg;r buﬂdlm planse.

=

School -/ Camputing

17

I Tools and Methods Lecture 1 (&
CERN

Architectural Design Qualities

A well designed architecture has certain qualities:
« layered subsystems

« low inter-subsystem coupling

e robust, resilient and scalable

« high degree of reusable components

e clear interfaces

«driven by the most important and risky use cases
+EASY TO UNDERSTAND

Bob Jacobsen, - UC Berkeley

18

I Tools and Methods Lecture 1 (&
CERN

Mechanistic Design

Specify the details of inter-object collaboration mechanisms
*Determine the structure of classes and their associations
Class diagram
*Determine the behavior of classes

Interaction diagrams
Collaboration
Sequence

eTarget: The people working together
Over time & space
You can’t do everything!

Bob Jacobsen, - UC Berkeley

e

Class Diagram

that exist between them

19

Tools and Methods Lecture 1

Describes the types of objects in the system
and the various kinds of static relationships

aggregation
class 1 P

1 ‘ name
Office |

. ‘ 1.* e multiplicity
Department Locatiorp
name : Name |

address : String
voice : Number

0.1
constraint
rale 1
o isubsel} | association
member 1.0 1] manager
Person

name : Name attributes

employeelD : Integer '

title : String operations

getPhoto(p: Photo)

/Contactlnfurmatiun

getSoundBite()
getContactinformation() - - =

address : String

getPersonalRecords() -

Ty

PersonnelRecord

dependency

taxiD

salary

Bob Jacobsen, - UC Berkeley

Rational Software Corporation

generalization

employmentHistory 4O>

ISecurelnformation

=

School -/ Camputing

interface

—
Example Class Diagrams

choice

TH3

TH3C TH38 TH3F TH3D

20

There are many possible designs

Goal: Allow you to reason about the
strengths and weaknesses of a particular

Communicate through time and space

TH1
TH18 THiF THID
THz2 TProfile
A
THz28 THzF THz2D
TProfile2D

Bob Jacobsen, - UC Berkeley

getTheta() : double
getEnergy() : double

Tools and Methods Lecture 1

=

getPhi() : double

" Computing
Cluster Track
phi - double phi : double
theta : double theta : double
energy : double pt : double

getPhi() : double
getTheta() : double
getPt() : double

0.# clusters

clusters

1

0..# tracks

tracks

1

Calo
I clusters : integer

getNoOfClusters() : integer

Tracker

/tracks : integer

getNoOfTracks() : integer

1%

calo

7
1

tracker

eventMNo : integer

getEventNo() : integer

Event

_

Tools and Methods Lecture 1 (8:
Building software is difficult

School -/ Camputing

It cannot be learned from a book
» You have got to do it and make mistakes
e Only time will tell if the result is “good”
It is a creative activity
* And hence enjoyable
» Not always clear when you should stop
It requires experience
« After a while you will tend to be more cautious and less ambitious
e Try to keep it simple
You will remember past-project horror stories
Or am | just getting old?

T HAVE A CLOUD OF DOOM
THRT ZAPS EVERYONE MEAR
ME ONCE A MINUTE.

T™ LOOKING FOR A
WOMAN WHO DOESN'T
THINK THAT PAST BEHAVIOR
IS AN INDICATION

OF THE FUTURE

Lo A WOMAN WITH
ABSOLUTELY MO SEMSE
OF PATTERMN RECOGNITION,

QUCH. T'M GLAD
THAT WON'T
HAPPEN AGAIN,

Slzafap P 157 Unitad Fastors Syndicate, lac

S7s bmal SCOTIADANSEAQL CON

Copuright 2 1007 United Feature Sundicate, Inc.
Fedistribution in whole or in port prohibited

21 Bob Jacobsen, - UC Berkeley

_—__—_m_— Tools and Methods Lecture 1

School -/ Camputing

Tools you can use

Knowing whether it works - JUnit

22 Bob Jacobsen, - UC Berkeley

23

I Tools and Methods Lecture 1 (8:
CERN

Toward an informed way of experimental working

These techniques remove the cost from small, experimental changes
« Allows you to make quick progress on little updates
< Without risk to the big picture

How do you know those steps are progress?

Somewhere, something went terribly wrong

Bob Jacobsen, - UC Berkeley

24

Tools and Methods Lecture 1 (8:
Testing
School 1 Computi

But don’t you see Gerson - if the particle is too small and too short-lived to detect,
we can’t just take it on faith that you’ve discovered it.”

Bob Jacobsen, - UC Berkeley

12

e

Tools and Methods Lecture 1

The role of testing tools

Remember our original example:
« Simple routine, written in a few minutes
«“So simple it must be right”

int sumPrimes() {

int sum = 0;

for (inti=1; i< 100; i++) { /oop over possible primes
bool prime = true;
for (ntj=1; j < 10; j++) {//Ioop over possible factors

if @ % j == 0) prime = false;

}
if (prime) sum +=1i;

}

return sum;

}

But its not right...

"'Study it forever and you'll still wonder. Fly it once and you'll know.”

=

School -/ Camputing

- Henry
Spencer
25 Bob Jacobsen, - UC Berkeley
I Tools and Methods Lecture 1 (8:
How to test? :
School of Computing
Simplest: Run it and look at the output
« Gets boring fast!
«How often are you willing to do this?
More realistic: Code test routines to provide inputs, check outputs
« Can become ungainly
0 JUnit EE
JUnit
Test class name:
|TeleindVaIs |vH || Run |
Most useful: A test framework () el et vt (10
*Great feedback _ ——— Ju
. El;;s EE)rrurs. Eallur=5.
 Better control over testlng T estrindvals =]|[Run
 testCreare
' testMotsquare
l"‘tEstIsSquare
i testlsCube =l
' Failures l 2 Test Hierarchy|
4] ID i
[Finished: 2.35 seconds Exit

26

Bob Jacobsen, - UC Berkeley

13

e

27

Tools and Methods Lecture 1 (8:
Testing Frameworks: CppUnit, Junit, et al

School -/ Camputing

To test a function:
public dass FindVals {
// determine whether an number is a square
bodlean isSquare (rt val) {
double roct =Math.floar(Math.pow(val, 0.5));
if (Math.abs (root*roct - val) < 1.E-6) return true;
else return false;

You write a test:
public vaid testIsSquare() {
FindVals s =new FindVals();
Assert.assertTrue(sisSquare(4));

) e

’ Invoke a function

Plus tests for other cases... Check the result ‘

Bob Jacobsen, - UC Berkeley

e

28

- Tools and Methods Lecture 1 ~
Embed that in a framework (8

Sehool of Computing
Gather together all the tests
// define test suite
public statdic Test suite() {
// dltests from here down in heirarchy
TestSuite suite = new TestSuite(TestFindVals.dlass);
return suite; AN
} Junit uses class name
to find tests

Start the testing
*To just run the tests: junit.textui.TestRunner.main(TestFindVals.class.getName());
*Viaa GUI: junit.swingui.TestRunner.main(TestFindVals.class.getName ());

And that’s it!

Invoke tests for my class

Bob Jacobsen, - UC Berkeley

14

R —
Running the tests

Tools and Methods Lecture 1

|

1Unit

Test class name:

|TestFind‘u'aIs |v|| || Run |

[v] Reload classes every run

—JU

Rums: Errors: Failures:
- o o

[TestFindwvals - | Run

i testCreate

W estMotSquare

i testlsSquare

i testls Cube -

_{- Test Hierarchy |

[Finished: 2.35 secands Exit

=

+ Computing

i
29 Bob Jacobsen, - UC Berkeley
I Tools and Methods Lecture 1 @:
Running the tests
School 1 Computing
E = SNf=—————————————————— E
JUnit
Test class name:
TestFindVals |v|| - || Run |
[v] Reload classes every run
Rums: Errors: Failures:
10/10 o 1
testMotCube(TestFindwvals) - | Run
4] [*]
at TestFindwals testMotCube(TestFindWals java: 29)
=
4 [»]
[Finished: 5.257 seconds Exit
i

30

Bob Jacobsen, - UC Berkeley

15

e

31

Tools and Methods Lecture 1

How JUnit works - one test:

public void testOnelsPrime() {
SumPrimes s = new SumPrimes();
Assert.assertEquals(*‘'check sumPrimes(1)", 1, s.sumPrimes(1));

This defines a “method” (procedure) that runs one test (line 1 and 4)
«JUnit treats as a test procedure any method whose name starts with “test”
« The tests will be run in the order they appear in the file

Line 2 creates an object “s” to be tested
Line 3 checks that sumPrimes(1) returnsa 1
Assert is a class that checks conditions

assertEquals(“message”, valueExpected, valueToTest) does the check
If the check fails, the message and observed values are displayed

Bob Jacobsen, - UC Berkeley

School -/ Camputing

32

_—__—_m_— Tools and Methods Lecture 1

If the check fails:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Bob Jacobsen, - UC Berkeley

Sehant -/ Computing

16

I Tools and Methods Lecture 1
Other views:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

33 Bob Jacobsen, - UC Berkeley

cem ('8:

Tamputing

[Tools and Methods Lecture 1
Why?
One test isn’t worth very much
« Maybe saves you a couple seconds once or twice

But consistently building the tests as you build the code does have value
* Have you ever broken something while fixing a bug? Adding a feature?
Tests remember what the program is supposed to do
« A set of tests is definitive documentation for what the code does
« Alternating between writing tests and code keeps the work incremental
Keeping the tests running prevents ugly surprises
« And its very satisfying!

= HP cldm
— Tradtignal

“Extreme Programming” advocates
writing the tests before the code
« Not clear for large projects

< But individuals report good results /
— ___.—--“"“

34 Bob Jacobsen, - UC Berkeley

School -/ Camputing

17

_

Tools and Methods Lecture 1

The art of testing

What makes a good test?
* Not worth testing something that’s too simple to fail
« Some functionality is too complex to test reliably

* Best to test functionality that you understand, but can imagine failing
If you’re not sure, write a test
If you have to debug, write a test
If somebody asks what it does, write a test

How big should a test be?

* A JUnit test is a unit of failure
When a test fails, it stops
The pattern of failures can tell you what you broke
* Make lots of small tests so you know what still works

What about existing code?
* Probably not practical to sit down and write a complete set of tests

< But you can write tests for new code, modifications, when you have a question
about what it does, when you have to debug it, etc

35 Bob Jacobsen, - UC Berkeley

CERN
School -/ Camputing

Tools and Methods Lecture 1

Summary 1

CERN
School -/ Camputing

.a'[{;& P
4

T

The principle of ‘I think, therefore | am’, does not apply to high quality software. - Malcolm
Davis

In art, intentions are not enough. What counts is what one does, not what one intends to do. -
Pablo Picasso

Excellence is not a single act, but a habit. You are what you repeatedly do. - Aristotle, as
quoted by Shaquille O’Neal

36 Bob Jacobsen, - UC Berkeley

18

