
Software version systems
Part II: Distributed versioning systems

Matti Kortelainen

Helsinki Institute of Physics

CERN School of Computing 2008
Gjøvik University College

Tuesday 2nd September, 2008

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 1 / 9



Version control systems (VCS)

Version control keeps track of changes

Makes (or at least should make) easy to share code between
developers

Centralized VCS

CVS

Subversion

Distributed VCS

Bazaar (Unix/Mac/Win)

Darcs (Unix/Mac/Win)

Git (POSIX/Mac + Win)

Mercurial (Unix/Mac/Win)

Monotone (Unix/Mac/Win)

Mercurial users

Mozilla

OpenSolaris

Git users

Linux kernel (9 MLOC)

X.org

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 2 / 9



Centralized version control

One central repository which contains
the history of code changes

Each developer communicates only with
the repository

Commits, history browsing etc. require
on-line connection between the
developer and the repository

Pitfalls

Developers need write access to the
repository
One possible point of failure
Branching and merging might be
difficult (CVS)

Repository

Developers

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 3 / 9



Distributed version control
Key ideas

Every developer has a local repository
containing the full history of the code

Any developer can anytime anywhere write
code and commit it
Fast history browsing
Binary search can be used to find commits
which introduce bugs
Multiple backups of the project code
(automatically)
It is very easy for newcomers to start to
contribute new code

Typically branching and merging are technically
easy and usually use of branches is encouraged

Conflicts will happen, but there are good tools
Communication!

Example file tree
project/

.git/

include/

src/

...

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 4 / 9



Distributed version control
Development model

All repositories are equal, unless the
developers decide otherwise

Developers can communicate and share
code (individual commits or branches)
directly with each other

Enables several development models

Everybody shares with everybody
One developer acts as maintainer
One repository is decided to be a central
repository

Project

directory

Repository

Project

directory

Repository

Project

directory

Repository

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 5 / 9



Distributed version control
Development model

All repositories are equal, unless the
developers decide otherwise

Developers can communicate and share
code (individual commits or branches)
directly with each other

Enables several development models

Everybody shares with everybody
One developer acts as maintainer
One repository is decided to be a central
repository

Project

directory

Repository

Project

directory

Repository

Project

directory

Repository

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 5 / 9



Distributed version control
Development model

All repositories are equal, unless the
developers decide otherwise

Developers can communicate and share
code (individual commits or branches)
directly with each other

Enables several development models

Everybody shares with everybody
One developer acts as maintainer
One repository is decided to be a central
repository

Public

repository

Project

directory

Repository

Project

directory

Repository

Project

directory

Repository

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 5 / 9



Distributed version control
Development model

All repositories are equal, unless the
developers decide otherwise

Developers can communicate and share
code (individual commits or branches)
directly with each other

Enables several development models

Everybody shares with everybody
One developer acts as maintainer
One repository is decided to be a central
repository

Central

repository

Project

directory

Repository

Project

directory

Repository

Project

directory

Repository

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 5 / 9



Distributed version control
Interoperability, repository size

Good interoperability

Import from CVS, Subversion and other distributed VCS
It is possible to track e.g. CVS or Subversion repositories using Git

What about the size of the repository?

Not really a problem, if the VCS has smart repository format
Some support submodules

Example: Mozilla project1

Size of checkout: 350 MB
Original CVS: 2.7 GB

Conversion to Subversion: 8.2 GB
Conversion to Git: 450 MB
And this contains the whole history from 1998!

1http://keithp.com/blogs/Repository_Formats_Matter/
Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 6 / 9

http://keithp.com/blogs/Repository_Formats_Matter/


Distributed version control
Interoperability, repository size

Good interoperability

Import from CVS, Subversion and other distributed VCS
It is possible to track e.g. CVS or Subversion repositories using Git

What about the size of the repository?

Not really a problem, if the VCS has smart repository format
Some support submodules

Example: Mozilla project1

Size of checkout: 350 MB
Original CVS: 2.7 GB
Conversion to Subversion: 8.2 GB

Conversion to Git: 450 MB
And this contains the whole history from 1998!

1http://keithp.com/blogs/Repository_Formats_Matter/
Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 6 / 9

http://keithp.com/blogs/Repository_Formats_Matter/


Distributed version control
Interoperability, repository size

Good interoperability

Import from CVS, Subversion and other distributed VCS
It is possible to track e.g. CVS or Subversion repositories using Git

What about the size of the repository?

Not really a problem, if the VCS has smart repository format
Some support submodules

Example: Mozilla project1

Size of checkout: 350 MB
Original CVS: 2.7 GB
Conversion to Subversion: 8.2 GB
Conversion to Git: 450 MB
And this contains the whole history from 1998!

1http://keithp.com/blogs/Repository_Formats_Matter/
Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 6 / 9

http://keithp.com/blogs/Repository_Formats_Matter/


They’re not perfect
Or where Subversion beats Git

Single repository, which contains everything for sure

Access control, as fine-grained as required

Shorter revision numbers

Subversion starts numbering from 1
Git uses SHA-1 hashes for identifying commits

If one has a centralized system working well enough, one shouldn’t
break it

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 7 / 9



Usage examples (with Git terminology)

Start the project

Initialize an empty repository

Clone the public repository

Edit code, commit

Fetch or pull new commits from the
public repository, or from someone else

Push the commits to the public
repository

Project

directory

Empty

repository

Example command
$ mkdir project

$ cd project

$ git init

Initialized empty Git repository

in .git/

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 8 / 9



Usage examples (with Git terminology)

Start the project

Initialize an empty repository
Clone the public repository

Edit code, commit

Fetch or pull new commits from the
public repository, or from someone else

Push the commits to the public
repository

Project

directory

Cloned

repository
Public

repository

Example command
$ git clone

http://www.kernel.org/pub/

scm/linux/kernel/git/

torvalds/linux-2.6.git

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 8 / 9



Usage examples (with Git terminology)

Start the project

Initialize an empty repository
Clone the public repository

Edit code, commit

Fetch or pull new commits from the
public repository, or from someone else

Push the commits to the public
repository

Project

directory

Local

repository

Example command
$ git add foo.cc foo.h

$ git commit

or

$ git commit -a

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 8 / 9



Usage examples (with Git terminology)

Start the project

Initialize an empty repository
Clone the public repository

Edit code, commit

Fetch or pull new commits from the
public repository, or from someone else

Push the commits to the public
repository

Project

directory

Local

repository
Public

repository

Example command
$ git fetch

or

$ git pull

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 8 / 9



Usage examples (with Git terminology)

Start the project

Initialize an empty repository
Clone the public repository

Edit code, commit

Fetch or pull new commits from the
public repository, or from someone else

Push the commits to the public
repository

Project

directory

Local

repository
Public

repository

Example command
$ git push origin

or

$ git push

ssh://account@host/repository

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 8 / 9



Summary

Distributed VCS are flexible and enable
several development models

Branching and merging are easy

Some are very efficient both in speed and in
space

They’re not superior in general

E.g. if one only want’s to track individual
files, CVS might be still ok

Further information

http://git.or.cz/
http://www.selenic.com/mercurial/
Wikipedia, Google, etc.

Project

directory

Repository

Project

directory

Repository

Project

directory

Repository

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 9 / 9

http://git.or.cz/
http://www.selenic.com/mercurial/

