Matti Kortelainen (HIP)

Software version systems

Part Il: Distributed versioning systems

Matti Kortelainen

Helsinki Institute of Physics

CERN School of Computing 2008
Gjgvik University College
Tuesday 2"¢ September, 2008

Distributed versioning systems

CSC2008 2.9.2008

1/

9



Version control systems (VCS)

@ Version control keeps track of changes

@ Makes (or at least should make) easy to share code between

developers

Centralized VCS Distributed VCS
e CVS @ Bazaar (Unix/Mac/Win)
@ Subversion e Darcs (Unix/Mac/Win)

e Git (POSIX/Mac + Win)
@ Mercurial (Unix/Mac/Win)
@ Monotone (Unix/Mac/Win)

Mercurial users Git users

e Mozilla @ Linux kernel (9 MLOC)
@ OpenSolaris o X.org

o’

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 2/9



Centralized version control

@ One central repository which contains
the history of code changes

@ Each developer communicates only with
the repository

o Commits, history browsing etc. require
on-line connection between the
developer and the repository

o Pitfalls

o Developers need write access to the
repository

e One possible point of failure

e Branching and merging might be
difficult (CVS)

Developers

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 3/9



Distributed version control

Key ideas

@ Every developer has a local repository
containing the full history of the code
o Any developer can anytime anywhere write
code and commit it
e Fast history browsing

e Binary search can be used to find commits Example file tree
which introduce bugs project/

e Multiple backups of the project code .git/
(automatically) include/

o It is very easy for newcomers to start to ey

contribute new code
@ Typically branching and merging are technically
easy and usually use of branches is encouraged

o Conflicts will happen, but there are good tools
e Communication!

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008



Distributed version control

Development model

@ All repositories are equal, unless the
developers decide otherwise

@ Developers can communicate and share
code (individual commits or branches)
directly with each other

@ Enables several development models

o Everybody shares with everybody
e One developer acts as maintainer

e One repository is decided to be a central
repository

Matti Kortelainen (HIP) Distributed versioning systems

Project
directory

Project
directory

Project
directory

CSC2008 2.9.2008

5/9



Distributed version control

Development model

@ All repositories are equal, unless the
developers decide otherwise

@ Developers can communicate and share
code (individual commits or branches)
directly with each other

@ Enables several development models

e Everybody shares with everybody
e One developer acts as maintainer

e One repository is decided to be a central
repository

Matti Kortelainen (HIP) Distributed versioning systems

Project
directory

Project
directory

Project
directory

CSC2008 2.9.2008

5/9



Distributed version control

Development model

@ All repositories are equal, unless the
developers decide otherwise

@ Developers can communicate and share
code (individual commits or branches)
directly with each other

@ Enables several development models

o Praeer

e Everybody shares with everybody directory — directory
e One developer acts as maintainer directory
e One repository is decided to be a central

repository

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 5/9



Distributed version control

Development model

@ All repositories are equal, unless the
developers decide otherwise

@ Developers can communicate and share
code (individual commits or branches)
directly with each other

@ Enables several development models

e Everybody shares with everybody Girectary — diractory
e One developer acts as maintainer

directory
e One repository is decided to be a central
repository

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 5/9



Distributed version control

Interoperability, repository size

@ Good interoperability

e Import from CVS, Subversion and other distributed VCS

e It is possible to track e.g. CVS or Subversion repositories using Git
@ What about the size of the repository?

o Not really a problem, if the VCS has smart repository format

e Some support submodules
e Example: Moxzilla project!

o Size of checkout: 350 MB
e Original CVS: 2.7 GB

'http://keithp.com/blogs/Repository_Formats_Matter/

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008


http://keithp.com/blogs/Repository_Formats_Matter/

Distributed version control

Interoperability, repository size

@ Good interoperability

e Import from CVS, Subversion and other distributed VCS

e It is possible to track e.g. CVS or Subversion repositories using Git
@ What about the size of the repository?

o Not really a problem, if the VCS has smart repository format

e Some support submodules
e Example: Moxzilla project!

o Size of checkout: 350 MB
e Original CVS: 2.7 GB
o Conversion to Subversion: 8.2 GB

'http://keithp.com/blogs/Repository_Formats_Matter/

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008


http://keithp.com/blogs/Repository_Formats_Matter/

Distributed version control

Interoperability, repository size

@ Good interoperability
e Import from CVS, Subversion and other distributed VCS
e It is possible to track e.g. CVS or Subversion repositories using Git
@ What about the size of the repository?
o Not really a problem, if the VCS has smart repository format
e Some support submodules
e Example: Moxzilla project!
e Size of checkout: 350 MB
e Original CVS: 2.7 GB
e Conversion to Subversion: 8.2 GB
e Conversion to Git: 450 MB
e And this contains the whole history from 1998!

'http://keithp.com/blogs/Repository_Formats_Matter/

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008


http://keithp.com/blogs/Repository_Formats_Matter/

They're not perfect

Or where Subversion beats Git

@ Single repository, which contains everything for sure
@ Access control, as fine-grained as required
@ Shorter revision numbers

e Subversion starts numbering from 1

o Git uses SHA-1 hashes for identifying commits

@ If one has a centralized system working well enough, one shouldn't
break it

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 7/9



Usage examples (with Git terminology)

@ Start the project
e Initialize an empty repository

Example command

$ mkdir project

$ cd project

$ git init

Initialized empty Git repository
in .git/

8/9

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008



Usage examples (with Git terminology)

@ Start the project ‘
e Initialize an empty repository

o Clone the public repository LJE

Project
directory

Example command

$ git clone
http://www.kernel.org/pub/
scm/linux/kernel/git/
torvalds/linux-2.6.git

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 8/9



Usage examples (with Git terminology)

@ Start the project
e Initialize an empty repository
o Clone the public repository

o Edit code, commit .,,c,

directory

Example command

$ git add foo.cc foo.h
$ git commit

or
$ git commit -a

CSC2008 2.9.2008

Matti Kortelainen (HIP) Distributed versioning systems



Usage examples (with Git terminology)

@ Start the project

e Initialize an empty repository
o Clone the public repository

T

e
o Edit code, commit =
directory

@ Fetch or pull new commits from the
public repository, or from someone else
Example command

$ git fetch
or
$ git pull

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008



Usage examples (with Git terminology)

@ Start the project

e Initialize an empty repository
o Clone the public repository

o Edit code, commit —
directory

@ Fetch or pull new commits from the
public repository, or from someone else

@ Push the commits to the public Example command
repository $ git push origin
or
$ git push

ssh://account@host/repository

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 8/9



@ Distributed VCS are flexible and enable
several development models

@ Branching and merging are easy

@ Some are very efficient both in speed and in
space
@ They're not superior in general
e E.g. if one only want's to track individual Project ‘ project

files, CVS might be still ok e | ol e
o Further information
e http://git.or.cz/
e http://www.selenic.com/mercurial/
e Wikipedia, Google, etc.

Matti Kortelainen (HIP) Distributed versioning systems CSC2008 2.9.2008 9/9


http://git.or.cz/
http://www.selenic.com/mercurial/

