
Exercises Data Technologies

3 Understanding RAID & Redundancy

3.1 RAID-4

In your /data directory you can find 5 files named stripe-<n> [n=1-5].

File 1-4 contain each the data of one 64k sized stripe in RAID-4 format, file 5 contains the
parity stripe of a RAID-4 format. The format is explained here:

3.1.1 Write a program that recalculates and checks the parity information of these RAID-4 files.
Choose a fast implementation! You can make the assumption that the error rate is low.

I have provided a framework program for this written in C which misses only the computational
part. You find it on your desktop in the /data directory: /data/readstripe/readstripe.c

> cd /data/readstripe
> ./compile.sh # to compile readstripe.c with -O3
> time readstripe /data/stripe
> real 0m0.021s
> user 0m0.001s
> sys 0m0.020s

Extend the programm with the missing parity verification!

3.1.2 Print all faulty byte offsets in stripe 1.

Data Technologies – CSC 2009

Lectures: Alberto Pace, Bernd Panzer-Steindl

Exercises: Andreas-Joachim Peters

Email Andreas.Joachim.Peters@cern.ch

64k 64k 64k 64k 64k 64k 64k 64k

64k 64k
64k 64k
64k 64k
64k 64k

Original File

Stripe 1
Stripe 2
Stripe 3
Stripe 4

Stripe 564k 64k
 XOR

3.1.3 Measure the execution time after many concurrent executions.

If you have it correctly running (e.g. you detect the right bytes), I will add you to the
ranking score (I verified that my algorithms run equally fast on csc01-40)

Top Implementations (+- 2ms) :
0 Andreas AlgSSE2 30ms out of competition 1.74 GB/s
1 Andreas Alg64 39ms 1.34 GB/s
2 Andreas Alg8.1 55ms 949 MB/s
3 Andreas Alg8.2 84ms 621 MB/s
4 Andreas Alg8.3 98ms 532 MB/s

3.1.4 Which additional information would you need to decide which stripe has faulty
information? I have added this information in the extended attributes of each stripe.
You can read it with getfattr ! There is a command on Linux to compute this information:
take the name of the attribute (without user.) and add a 'sum' and you have the command
to do it!

For the fast ones who have time left ... in any case please do it after exercise 3.2

3.1.5 As you might have verified before, all errors are located in only one stripe.

Try to recover and recreate the original file with this information using the 4 correct
stripes. To do this correctly you need also the information about the original file size. Can
you explain why?
In any case, it was 324675210 bytes! If you did the right job, you can list the contents of the
file using
'tar tvzf <merged file>` ! If not, it will complain that it is not readable!

Data Technologies – CSC 2009

Lectures: Alberto Pace, Bernd Panzer-Steindl

Exercises: Andreas-Joachim Peters

Email Andreas.Joachim.Peters@cern.ch

3.2 Raid-4 with row-diagonal parity (Raid-DP)

Reed-Solomon Codes help to improve the redundancy and protect against several device
failures. However the computational effort is growing fast with higher redundancy and
typically implementations are better done in dedicated hardware.

There is an alternative implementation to protect against double disk failures based on
simple parity operations called RAID-DP. The following figures shows how this
implementation works.

We start with a figure explaining a normal RAID-4. Instead of XOR the SUM is actually
computed for illustration purposes.

3.2.1 Which influence has the XOR unity (bit/word length) on the operation itself and on the
performance?

The computation of the second parity column is illustrated in the following picture:

Data Technologies – CSC 2009

Lectures: Alberto Pace, Bernd Panzer-Steindl

Exercises: Andreas-Joachim Peters

Email Andreas.Joachim.Peters@cern.ch

3.2.2 Try to write the required order of necessary parity operations to recover from a double disk
failure and count the total number of parity operations (# of XOR). The faulty blocks are
illustrated as black circles in the following picture:

3.2.3 Imagine you have 1MB of data. Try to scetch how the number of parity operations evolves
in Raid-DP if you increase the number of stripes from 4 to 1 Million.

3.2.4 We have a Raid-DP setup where each stripe is written on an identical individual harddisk.
Do you have a 'feeling' how fast read operations can be recovered if the first two stripes
(D-Stripes) are lost? If we can read non-degraded 100 MB/s and the XOR code run's at 600
MB/s, how fast can the degraded operation be?

3.2.5 What would be the effective usable space in percent for a RAID-DP with 10 stripes if you
include an SHA1 checksum for each 4k chunk? Are 4k chunks and SHA1 good choices?

	Exercises Data Technologies
	3	Understanding RAID & Redundancy
	3.1	RAID-4
	3.1.1	Write a program that recalculates and checks the parity information of these RAID-4 files.
Choose a fast implementation! You can make the assumption that the error rate is low.

I have provided a framework program for this written in C which misses only the computational part. You find it on your desktop in the /data directory: /data/readstripe/readstripe.c

> cd /data/readstripe
> ./compile.sh # to compile readstripe.c with -O3
> time readstripe /data/stripe
> real	0m0.021s
> user	0m0.001s
> sys		0m0.020s

Extend the programm with the missing parity verification!
	3.1.2	Print all faulty byte offsets in stripe 1.

	3.1.3	Measure the execution time after many concurrent executions.

If you have it correctly running (e.g. you detect the right bytes), I will add you to the ranking score (I verified that my algorithms run equally fast on csc01-40)

Top Implementations (+- 2ms) :
0	Andreas	AlgSSE2	30ms 		out of competition	1.74 GB/s
1	Andreas	Alg64		39ms					1.34 GB/s
2	Andreas	Alg8.1		55ms					949 MB/s
3	Andreas 	Alg8.2		84ms					621 MB/s
4	Andreas 	Alg8.3		98ms					532 MB/s

	3.1.4	Which additional information would you need to decide which stripe has faulty information? I have added this information in the extended attributes of each stripe.
You can read it with getfattr ! There is a command on Linux to compute this information:
take the name of the attribute (without user.) and add a 'sum' and you have the command
to do it!
	For the fast ones who have time left ... in any case please do it after exercise 3.2
	3.1.5	As you might have verified before, all errors are located in only one stripe.

Try to recover and recreate the original file with this information using the 4 correct stripes. To do this correctly you need also the information about the original file size. Can you explain why?
In any case, it was 324675210 bytes! If you did the right job, you can list the contents of the file using
'tar tvzf <merged file>` ! If not, it will complain that it is not readable!
	3.2	Raid-4 with row-diagonal parity (Raid-DP)
	3.2.1	Which influence has the XOR unity (bit/word length) on the operation itself and on the performance?
	3.2.2	Try to write the required order of necessary parity operations to recover from a double disk failure and count the total number of parity operations (# of XOR). The faulty blocks are illustrated as black circles in the following picture:
	3.2.3	Imagine you have 1MB of data. Try to scetch how the number of parity operations evolves in Raid-DP if you increase the number of stripes from 4 to 1 Million.

	3.2.4	We have a Raid-DP setup where each stripe is written on an identical individual harddisk. Do you have a 'feeling' how fast read operations can be recovered if the first two stripes (D-Stripes) are lost? If we can read non-degraded 100 MB/s and the XOR code run's at 600 MB/s, how fast can the degraded operation be?
	3.2.5	What would be the effective usable space in percent for a RAID-DP with 10 stripes if you include an SHA1 checksum for each 4k chunk? Are 4k chunks and SHA1 good choices?

