
1.1.1
HINT 1 (1)

1. bash has an intrinsic time command with %% time
resolution

2. the GNU program /usr/bin/time has only % time
resolution

Run in the bash shell 'time sleep 1' – not '/usr/bin/time sleep 1'

Data Technologies
Exercises

1.1.2
HINT 1(1)

Most programs you will measure with time will have longer
startup times than a sleep command. The implementation of a

'sleep 1' is just one systemcall

nanosleep({1, 0}, NULL) = 0

You can consider the overhead you measure as a lower
boundary for a systematic error in the measurement!

1.1.3
HINT 1(1)

The gettimeofday function in Linux is able to

return you the current time with a microsecond resolution.

sleep is also a function in the standard C library!

1.2.1/2
HINT 1(3)

Read in the man page 'SORTING of taks window'

by memory

and

by cpu consumption!

In any case you leave top with 'q' and you can enforce an update
by using SPACE

1.2.1/2
HINT 2(3)

2 Hz means twice per second

Search in the manual page for

'COMMAND-LINE Options'

'Delay time'

1.2.1/2
HINT 3(3)

You can sort by physical memory usage pressing 'M' in the
interactive top window.

You an switch to cpu usage sorting pressing 'P'.

You can set the update frequency pressing 's' or 'd' and then the
interval time e.g. 's1' for 1 Hz.

1.2.3
HINT 1(1)

You can run vmstat with 1Hz updates like:

> vmstat 1

The first argument is time between two outputs.

You can calculate the total used cpu time as (us + sy).
[user + system time]

1.3.1
HINT 1(2)

> yes

This command writes in an infinite loop 'y\n' to STDOUT.

You can redirect STDOUT to a file like:

> yes > /tmp/yes.out

You can interrupt the running command using Control-C

1.3.1
HINT 2(2)

IO rate = <Mb written> / <time to write>

1.3.2
HINT 1(1)

To trace system calls you just prepend your command line with
the 'strace' command:

> strace yes

Compare the blocksize used for yes on the terminal and in case
of /dev/null or file redirection!

1.3.3
HINT 1(1)

You can write arbitrary strings to STDOUT with yes in an infinite
loop using the syntax:

> yes <string>

1.3.4
HINT 1(2)

Try to identify your hard disk in the iostat window and read the
kb/s read value. Certainly you can trust these values only if you
are sure no other applications use your device at the same time.

If you use vmstat with a 1Hz output it is easier to see, at which
time data is written out to disk.

1.3.4
HINT 2(2)

'no cache' means every write call is going directly to write on disk
without caching.

'write-through' means every write call is writing through the
cache on disk

'write-back' means write calls are first only written into the cache
and in regular intervals or under memory pressure pages get

written on disk.

1.4.1
HINT 1(1)

Inspect the system calls for reads on the source and writes on
the target!

1.4.2
HINT 1(1)

Measure the realtime with the time command first and then
repeat the same inserting 'strace' on the commandline before the

executable name.

1.5
HINT 1(2)

Try to add the '-f' flag to the strace command to follow detaching
programs!

1.5
HINT 2(2)

Check the CPU consumption and process PIDs using top!

Redirect the output of 'strace -f <cmd>' to a file and try to
understand the syscall pattern. Lookout for fork & execv

statements!.

Just count how many times certain events occure!

	1.1.1
	1.1.2
	1.1.3
	1.2.1/2
	1.2.1/2
	1.2.1/2
	1.2.3
	1.3.1
	1.3.1
	1.3.2
	1.3.3
	1.3.4
	1.3.4
	1.4.1
	1.4.2
	1.5
	1.5

