Tools and Techniques

Large Projects & Software Engineering

Dilbert By Scott Adams

CERN @

School of Computing

I'D LIKE TO STARY
WITH A CARTOON.

www.dilbert.com scottadams@aol.com

1TSS ABCUT A GUY
WHO sHOWS A
CARTOON BEFORE
GIVING A BORING
PRESENTATION.

3{&[}77 D 1999 United Feature Syndicate. inc.

DUT 1T DOESN'T
WORK BECAUSE
THE CARTOON HAS
NO PUNCHLINE.

ﬁ, o@ll %

With thanks to Bob Jones for ideas and illustrations

Bob Jacobsen, UC Berkeley

Tools and Techniques @;
CERN

School of Computing
Why spend so much time talking about “Software Process’”?

How do you create software?
*Lots of parts: Writing, documenting, testing, sharing, fixing,
*Usually done by lots of people

“Process” is just a big word for how they do this
* Exists whether you talk about it or not

“Why do we have to formalize this?”

——

BEFORE T ACCEPT THE SOFT-
LWARE YOU WROTE UNDER
CONTRACT, TELL ME WHAT

WE HOLD WILLAGE MEET-
IMGS TO BOAST OF OUR
SKILLS AND CURSE THE

AT THE LAST MINUTE
WE SLAM OUT SOME
CODE AND

DEVELOPMENT METHODOLOGY|Z | DEVIL-SPAWMNED END- 20 MOLLER %Htﬁmﬁht;;g&
YOU USE: “E’EF:‘E' (SOMETIMES WE|S | SKATING. | TF NOT FORTHE
I JUGGLE. [~ ' PIG ON MY BACK

E-mail: SCOTTADAMS®E AQL.COM

AV

e siag® 198 Unitad Fosture Syndicsis. Ine (NYC)

Bob Jacobsen, UC Berkeley

Tools and Techniques @
CERN

School of Computing

Scale and process:
Building a dog house

« Can be built by one person
 Minimal plans

 Simple process

« Simple tools

« Little risk

Rational Software Corporation

3 Bob Jacobsen, UC Berkeley

Scale and process:
Building a family house

Tools and Techniques

Bob Jacobsen, UC Berkeley

s

School of Computing

Built by a team

Models

Simple plans, evolving to
blueprints
Well-defined process

Architect
Planning permission
Time-tabling and Scheduling

Power tools
Considerable risk

Rational Software Corporation

Scale and process:
Building a skyscraper

Tools and Techniques

Bob Jacobsen, UC Berkeley

=X

School of Computing

Built by many companies

Modeling

Simple plans, evolving to
blueprints

Scale models
Engineering plans
Well-defined process
Architectural team
Political planning
Infrastructure planning
Time-tabling and scheduling
Selling space

Heavy equipment
Major risks

Rational Software Corporation

Tools and Techniques

Why do software projects fail?

=X

School of Computing

Even if you do produce the code it does not guarantee that the
project will be a success

There are many other factors (both internal and external) that can

affect the success of

a project...

GALVIN AND HOBBES » Bill Wattersen

Bob Jacobsen, UC Berkeley

iy

B, CAN SOMETHING. SEEMD
= PLAUSIELE AT THE TIME:

ARD 30 IDAGTIC . W 3
RETROSPECT P F

’

Tools and Techniques

Communication explosion

s

School of Computing

More people means more time communicating which means more
misunderstandings and less time for the software

Caries Youg L Robario ol
Deputy Fronk Portar CCE
Wenagar
1 1 L 1 1
Bioh Joeotean Cherles Yioun Inique Boatigy Lonklord®aum kMorandn Poul Foiras
OfF-Ling Coond inolor OnLine Coordinokor Tools
Showa Gosdy John LoSgem Wika Hufar Work Willame
Dol sl i ok Produclion Manogsr i Coka Fiow Wehmasiar
| Ed Frank Chris Hoskas | ry Dubols-Felsnann
R faka nex ar Cuml by A 5 sUna nee'0C Nt Evank ng Paskal ¥idao
| Exl Loakamean 1 wller Tokl | Tom CGlareman Flcarda Kou
Sm kkaragar Doz Maneger Prompt Risim Oeskicp Suppod
Derd uorme Dami Bioutiy Gar ny Aboime:
I Databorea Mdanager T m%umnw I Conircl
Daug Jchreon | | Drva Broam
Faleszse Wanagar Cal brobon
Goular Hanel de Monchanoull | Geddes
——[| Fhysics Tooks Archion I Aun Conirl
| Yury Holomea neky | Ell Rranbag
— Piysics Contmat Pl e=ps Wareagar
Cigoim Tl e
[n Dolchcaa

T JUST HEARD THAT ALL
QOUR TOP ERECUTIVES
GOT LOCKED TN A
CONFEREMCE ROOM AND
STARVED. TO DEATH.

7

wvwwdifher.com

Bob Jacobsen, UC Berkeley

5 Atpam s

CALL FOR HELPT

LIHY DIDN'T THEY
UJSE THE PHOMNE TO

ONE WEEK AGO. ..

Syndicale, Ins.

WE DIAL

83 TO GET

"{HII‘!F @ 1988 Pnited Faslurae

ITS AGREED:

AN OUTSIDE

UH-OH.
THIS ONE

DOESNT DO
DECIMALS.

: Tools and Techniques @
Why software projects fail...

School of Computing

Undefined responsibilities

“Hey... this could be the chief”

Too little responsibility can cause
a lot of confusion & embarrassing
mistakes

afy Larson

AR LS s il

8 Bob Jacobsen, UC Berkeley

Tools and Techniques

Why software projects fail...

Missed user requirements

We're not smart enough to
know everything people want
the system to do: we need
to askl

9 Bob Jacobsen, UC Berkeley

s

School of Computing

Tools and Techniques

Why software projects fail...

Badly defined interfaces

Fumbling for his recline
button, Bob unwittingly instigates a

disaster

Spend the time to design
and test good interfaces

10 Bob Jacobsen, UC Berkeley

B e e e A
A

e e A A
o L

CERN &
School of Computing

P

e AR L Ao
e g MRt

i

oS S) ;

R R L R e R R

WW-:':-\.‘:'-'\-$+'\:-'\-'\-:-:--::--:-:H-.n.#q.vq.-:-@-ﬁﬂh
:’:‘:'-':‘:'-‘:':'\-'-'$""+'\'.¢'\.+HHvﬁvﬁvﬁv.\:.v.:.'\-:-:u:q:-m
A S S A e e ik

ol
e
e
o R WM@?:iﬁﬁgi;ig

: Tools and Techniques @
Why software projects fail...

School of Computing

Creeping featurism

“No, no... Not this one. Too many bells
and whistles”

Focus on what the users are
asking for, not what the
developers think is cool

I &
~4 sGary Larson

&
.-l'.'l-"l' -

11 Bob Jacobsen, UC Berkeley

: Tools and Techniques (8:
Why software projects fail...

School of Computing

Unrealistic goals

“It’s time we face reality, my friends...
We’re not exactly rocket scientists”

Analysis and design would make it
clear the project is not feasible

12 Bob Jacobsen, UC Berkeley

10015 alll Ivieu1OUs LeCulule L
Design @

School of Computing

System architecture

Individual project —

Architectural Design
Sp ecific task Scope: Processors, Node Package
packages, tasks

Mechanistic Design

Scope: Groups of
collaborating classes \

Class

Detailed Design

Scope: Classes

Class

attribute

operation

“Design” is how you think about what you’re doing

13 Bob Jacobsen, UC Berkeley

10015 al'lu IvietilOus Lecuuice L
Design Levels: an analoqy §C

School of Computing

Imagine the project is not to build software but to go on an
Inter-planetary journey...

Architectural design |

| - . o
decide which planet to fly to ‘ o
:"{%/f/
Mechanistic design

select the flight path
Detailed design

choose where to have lunch

Bill Watterson

14 Bob Jacobsen, UC Berkeley

10015 al'lu VICUOUS LEClulc L

Architectural design @

School of Computing

Goals ; , N —
« Capture major interfaces between w —— —
subsystems and packages early IR = = e
' ' . Newher one of us wanted cilo on L
*Be able to visualize and reason o e et e e b T
about the design in acommon =2 {ike this can happen When g
notation] o dont clean the ffee |
. singe OFE your UNdg PANS 3
*Be able to break work into smaller
pieces that can be developed by R
different teams (concurrently) il
*Acquire an understanding of non- | 3
functional constraints o o S

Sy
A%y
S

3

e
S
N

N

programming languages and K
operating systems j

technologies: distribution,
concurrency, database, GUIs

component reuse

-t
DY

Cx
o

X
S

Py

TR

MU=
B . e R
oL N o] "f“'ﬁ’i
AW T . . 1»“.’%7“’);&1# A

ar Dl T T 3

15 Bob Jacobsen, UC Berkeley

10015 alll vieu1UOUs LeCulule L
Architectural Design Qualities @

School of Computing

A well designed architecture has certain qualities:
layered subsystems

*low inter-subsystem coupling

*robust, resilient and scalable

*high degree of reusable components

clear interfaces

«driven by the most important and risky use cases
‘EASY TO UNDERSTAND

16 Bob Jacobsen, UC Berkeley

10015 alll Ivieu1OUs LeCulule L
Mechanistic Design @

School of Computing

Specify the details of inter-object collaboration mechanisms
*Determine the structure of classes and their associations
Class diagram

Determine the behavior of classes

Interaction diagrams
Collaboration
Sequence

eTarget: The people working together
Over time & space

You can’t do everything!

17 Bob Jacobsen, UC Berkeley

10015 alll Ivieu1OUs LeCulule L
Class Diagram QSC

School of Computing

Describes the types of objects in
the system and the various kinds of
static relationships that exist

between them
aggregation
’___—._____'__//

class 1

. name
* 1.* e multiplicity 1.+ /
Department Locatiorp Office

name : Name | — address : String
0..1 voice : Number

constraint

role -
eneralization
\. < {subset} | 4ss0ciation u

‘ Headguarters ‘

member | 1.." 1| manager

Person

name : Name attributes

employeelD : Integer '
title : String operations
gg:ggﬁ:ﬁ}g;ggmo) 'K(;omactlnformation

getContactinformation() - - - > address : String
getPersonalRecords() -

TN interface
[) PersonnelRecord :

dependency | tBxID))
employmentHistory

sala .
ki ISecurelnformation

Rational Software Corporation

Bob Jacobsen, UC Berkeley

18

Example Class Diagrams

There are many possible designs

Goal: Allow you to reason about
the strengths and weaknesses of a
particular choice

Communicate through time and

space
TH1
THIC TH1S THiF
TH3 TH2
.'"l |ﬁ\
THaC TH3s TH3F TH3D THzC TH25 THzF

19 Bob Jacobsen, UC

—>

10015 al'lu VICUOUS LEClulc L

Cluster

phi : double
theta : double
energy : double

getPhi() : double
getTheta() : double
getEnergy() : double

0..# clusters
clusters

1

s

School of Computing

Track

phi : double
theta : double
pt : double

getPhi() : double
getTheta() : double
getPt() : double

0.4 tracks
tracks

1

Calo
! clusters : integer

getNoOfClusters() : integer

Tracker
[tracks : integer

getNoOfTracks() : integer

1R]
THID calo tracker
|I.I| ‘1
Event
TProfile
eventNo : integer
getEventNo() : integer
THz2D
TPratile2D
Berkeley

10015 alll vieu1OUs LeClule o
Design 6C

School of Computing

Specify the details of inter-object collaboration mechanisms
Determine the structure of classes and their associations

Relationships of access, ownership, authority

Determine the behavior of classes

E.g. Interactions with other objects
Collaboration

Sequence ' (e

2 w
Vol o A Bl e | N\ \
ada it PSR ,,,q‘v‘» (M-}--,)‘ = 'A_. \\
Sy Akt B gl S <ol N .
AN vl LY et () Sy X
) A 0w o) Doy e Fof g)
- T i) ay B e

oo] 4.,..-«)‘,.«.,,‘.'_']}.,,1 S b Y Il
e
T e N smfrwdie) dapre -nj

How do we record and

communicate this?

20 Bob Jacobsen, UC Berkeley

10015 alll vieu1OUs LeClule o
UML Diagrams &

School of Computing

Use Case
Diagrams

Sequence
Diagrams

Collaboration Models
Diagrams

Statechart |
L Diagrams

Activity
L Diagrams

21 Bob Jacobsen, UC Berkeley

10015 alll vieu1OUs LeClule o
Class Diagram QSC

School of Computing

Describes the types of objects in
the system and the various kinds of
static relationships that exist
between them

aggregation
- —

class 1

o name
* 1. * e multiplicity 1 /
Department Locatiorp Office

name : Name |- 1 address : String
0..1 voice : Number

constraint

* *

role (._b 0 '_'_// generalization
K <_siu_s_e__ association

‘ Headquarters ‘

member | 1..* 1| manager
Person

name : Name attributes

employeelD : Integer 'K—-_

title : String operations
etPhoto(p: Photo

getScaunc;gite{}) {/(;ontactlnformation

getContactinformation() - - > address : String
getPersonalRecords() -

TN interface
[\ —\‘ PersonnelRecord l

dependency | 1@xID))
employmentHistory

sala .
Y ISecurelnformation

Rational Software Corporatio

Bob Jacobsen, UC Berkeley

22

Example Class Diagrams

ROOT:
Histogram classes

LHC++/Anaphe:

Event structure as defined in DDL
file for populateDb exercise

—>

TH1

THIC TH1S THiF THID

10015 al'lu VICUOUS LEClulc o

Cluster

phi : double
theta : double
energy : double

getPhi() : double
getTheta() : double
getEnergy() : double

0..# clusters

clusters

1

s

School of Computing

Track

phi : double
theta : double
pt : double

getPhi() : double
getTheta() : double
getPt() : double

0.4 tracks

tracks

1

Calo
I clusters : integer

getNoOfClusters() : integer

Tracker
[tracks : integer

getNoOfTracks() : integer

TH3 TH2 TPrcfile
'IFI' |ﬁ\ 1 I“‘
1
calo tracker
: . : : : ’
TH3C TH3S THzF TH3D THzC THz25 THzF THzD Event
A eventNo : integer
getEventNo() : integer
TPictile2D

Bob Jacobsen, UC Berkeley

23

Sequence Diagram

10015 al'lu VICUOUS LEClulc o 9
CERN

School of Computing

Captures dynamic behavior (time-oriented)

*Model flow of control
e [llustrate typical scenarios

object

Interaction

\4 t: Thread

: Toolkit

o lifeline
1

al:run(3 i
/. [run() ' callbackLoop()
sequence] creation
label /. e
message ! create !
call ——————Pp» p: Peer
focus of control —_ | handleExposeg :
e recursion —_|
- .":“::—-—:-return
Kd%tr?’. ; ::

24 Bob Jacobsen, UC Berkeley

1 [

destruction Rational Software Corporatio

10015 alll vieu1OUs LeClule o
Example Sequence diagram §C

School of Computing

LHC++/Anaphe: scenario for createTag exercise with 1 event and 2 tracks

myApp:CreateTagsApp evil:Event trk1:Track trk2: Track

run() :
—_— eventNo:=getEvent

getPlus(phiPlus,ptPlus}
phiMinus,ptMinus) [| getPt()
getPhi()
’D getPt()
| getPhi()
create(eventNo,phiPriJ_&ptPlus,
- phiMinus,ptMirus) {tag1:Tag

25 Bob Jacobsen, UC Berkeley

10015 al'lu VICUOUS LEClulc o 9
CERN

Collaboration Diagram o mawito
Captures dynamic behavior (message-oriented)

*Model flow of control
*[llustrate coordination of object structure and control

¢ : Client

collaboration diagram

1: «create»
link — e | 2:setActions(a, d, 0)
3: «destroy»

c<|:j|:a| H] / message
L | ¥
. Transaction | global p : ODBDProxy
{transient}

object 2.1 : setValues(d, 3.4)
2.2 : setValues(a, "CQO")

Rational Software Corporation

26 Bob Jacobsen, UC Berkeley

10015 al'lu Iviet10uUs LeCululie oS
Example Collaboration Diagram @

School of Computing

LHC++/Anaphe: messages between classes for CreateTag exercise

run(): integer

'

‘CreateTagsApp |-1" for all events:
getPlus(phiPlus,ptPlus, :Event

phiMinus,ptMinus);
eventNo := getEventNo()

3* for all events:
create(phiPlus,ptPlus,phiMinus,

otMinus,eventNo) 2* for all tracks: getPt(); getPhi()

:Tag ‘Track \

27 Bob Jacobsen, UC Berkeley

10015 al'lu VICUOUS LEClulc o

“These are complicated” §C

School of Computing

“So is field theory”
*Which is physicist-speak for “I don'’t get it either, so I'll call it ‘trivial™”
“It’s just notation”

*The notation is complicated because it's representing a complicated
tlﬁinn

THIS NEXT TRANSPARENCY
IS AN INCOMPREHENSIGLE
TUMBLE OF COMPLERITY

AND UNDEFINED
ACRONYMS.
SKLLLS.

s, |

“Yes, and how do we know they’re right?”
* That’s the key question.

FRAMNKLY, ITS BECAUSE T
LIKE MAKING COMPLEX
PLCTURES MORE THAN

I LIKE YOU.

YOU MIGHT LJONDER
LHY TM GOING TO
SHOW IT TOYOU SINCE
THE ONLY POSSIBLE RESULT
15 TO LOWER YOUR,
OPIMIOMN OF My
COMMUNICATION

5 AAIMAS E-mail: SCOTTADAMESADL.COM

""I";"' @ RS United Fasbare Syndicats, Inc. (MY C)

28 Bob Jacobsen, UC Berkeley

10015 alll vieu1OUs LeClule o
Example: Linear Algebra @

School of Computing

Physics code contains lots of linear algebra: A*X+B
*Where A, X and B are more than just numbers: vectors, matrices

Complicated operations:

*Only some operations are OK
Can’t add, dot-product vectors of different sizes
Dimensions must agree for vector-matrix multiplication

* But within those rules, users don’t want to care about
restrictions

A measurement might be a 1D, 2D or 3D constraint, but same formula
to use it

What are the trade-offs for a “linear algebra library”? For users?
Time & space of the linear algebra code
«Ease of use
*Time & space of the using code
«Correctness of answers

29 Bob Jacobsen, UC Berkeley

30

10015 alll vieu1OUs LeClule o
Implementation: Vector3, Matrix32 @

School of Computing

class Vector3 { class Matrix33 {

float values[3]; float values[3,3];

float dotWith(Vector3 v) {...} Vector3 multiply(Vector3 v) {...}
Vector3 add(Vector3 v) {...} Matrix33 add(Matrix33 v) {...}

} }

Does the job

*Once you’ve created one of these, you can just string together
operations

*Code to implement each method is quite simple

«Almost can’t resist operator overloading to A*X+B

Bob Jacobsen, UC Berkeley

10015 al'lu VICUOUS LEClulc o 9
CERN

School of Computing

Does the job

*Once you’ve created one of these, you can just string together
operations

*Code to implement each method is quite simple

But needs lots and lots and lots of methods

*Vector3 can multiply Matrix32, Matrix33, Matrix34, Matrix35,
Matrix36, ...

« Similar numbers for matrix multiplication
«Large amount of duplicated code to make a general library

Can we get smarter with inheritance?
« Matrix class, with Matrix32, Matrix33, Matrix34 as subclasses
*Methods then take and return Matrix objects

Problem: Implementation of methods still needs to know

*Methods require size information, access to individual elements

Different size internal arrays need to be accessed, compiler wants to
know

*Lots of work to get those

1 b Jacob en UC Berkeley
3 e And methods stﬁf need to caEif ‘new Ma

10015 alll vieu1OUs LeClule o
General Implementation: Vector, Matrix 6C

School of Computing

class Vector { class Matrix {

int dim: int dim1, dim2;

float *values[dim]; float *values[dim1, dim2];
float dotWith(Vector v) {...} Vector multiply(Vector v) {...}
Vector add(Vector v) {...} Matrix add(Matrix v) {...}

} }

Again does the job

*Once you’ve created one of these, you can just string together
operations

*Code to implement each method is almost as simple

«“Just has to” keep track of index dimensions, and do one
indirection

* Return types are fixed, so only need to handle one “new”

Strong, general approach for a library, but at what cost?

32 Bob Jacobsen, UC Berkeley

33

10015 al'lu VICUOUS LEClulc o

Costs:

Type checking at runtime, not compile time
Memory allocation from heap (“new”) always, not stack or static

Extra indirection to access any element

It’s an experimental question whether these matter!

Bob Jacobsen, UC Berkeley

=X

School of Computing

Tradeoffs:

Direct structure

Minimal memory use:

Compiler handles limits, allocates
data as part of object

Fast allocate/deallocate:

Vector[5] is just one long allocation &
5 ctor calls

More complicated user code:

You have to explicitly specify classes
for intermediate variables, etc; can’t
pass common super-types

10015 al'lu VICUOUS LEClulc o 9
CERN

School of Computing

Indirect structure

More memory needed:
Virtual table pointer

Length values

Pointer to memory
Allocate/deallocate is more
work:

Vector[5] is one allocation, 5 ctor calls,
then 5 more allocations

User code simple, general:
All objects are same basic type

Code can be written without reference
to specific sizes

When there’s no perfect answer, you’re in the realm of tradeoffs

Start with the general, and replace with specific when needed?

34 Bob Jacobsen, UC Berkeley

