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Outline of the lectures

 Introduction

 Event Filtering

 Calibration and alignment

 Event Reconstruction

 Event Simulation

 Physics Analysis

 Data Flow and Computing Resources
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What is Physics Computing?

 Input: A few petabytes of data

 Output: A few hundred physics papers

 Data reduction factor of 107 to 108 !!

 How is it done?

</Digression>

<Digression>
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It’s simple … is it?

Paper paper15

Data higgsdata

...

paper15=make_paper(higgsdata)

...
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At LHC we need…

 Millions of lines of code (C++,Python, …)

 Hundreds of neural networks (BNNs, not 
ANNs) 

 Large infrastructure 
 Customized hardware

 PC farms

 Database and storage systems

 Distributed analysis facilities

 The grid
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What happens to the data?

 Event filtering, tagging and storage

 Calibration, alignment

 Event reconstruction

 Persistency

 Event simulation

 Physics analyses
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Step by step

 Each step involves some data reduction
 data are ignored or thrown away (online) 

 data are compressed (offline) 

 In each step the data get closer to be 

interpretable in physical terms

 Some steps are repeated many times until 

the output is satisfactory
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The technical challenge 

 Very high event rate (40 Mhz)

 Large event size (>1MB)

 Large background of uninteresting events

 Large background in each event
 many interactions in each beam crossing

 many low-momentum particles
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The technical challenge (ctd)
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The social challenge 

 Large number of physicists doing analysis
 CMS:  183 institutes in 39 countries

 High pressure, competitive spirit
 Important discoveries to be made

 Fast turnaround required

CMS and ATLAS chasing the Higgs
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Online vs Offline computing

 Online
 In real time, fast! 

 Decisions are irreversible

 Data cannot be recovered

 Offline
 From almost real time to long 

delays

 Decisions can be reconsidered 

 Data can be (and frequently are) 

reprocessed

Physicist reconsidering
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Online processing

 Trigger: event selection
 Needs only a small subset of the detector data

 Fast, very little dead-time

 Gives “green” or “red” light to the data acquisition 
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Online processing (ctd)

 Data acquisition
 Interfaces to detector hardware 

 Builds complete events from fragments

 Sends them to the higher level event filter(s)

 Writes accepted events to mass storage

 Very complex system
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Complexity of Data acquisition
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Online processing (ctd)

 Monitoring
 Detector status

 Data acquisition performance

 Trigger performance

 Data quality check

 Control
 Configure systems

 Start/stop data taking

 Initiate special runs (calibration, alignment)

 Upload trigger tables, calibration constants, …
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Event selection 

 Primary collision rate: 40 Megahertz

 Recording rate: 100 Hertz

 How is this achieved?
 Multilevel trigger – chain of yes/no decisions

 Very fast first level: (Programmable) hardware

 Slower higher level(s): Software on specialized or 

commodity processors
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Event selection (ctd)

 Reliable
 Rejected data are lost forever

 Continuous monitoring

 Cautious
 Do not lose new physics

 Versatile
 Many different trigger channels run in 

parallel

 Trigger conditions can be changed 
quickly
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Multilevel selection

 Dead-time has to be minimized

 Many events can be discarded very quickly 

– Fast Level 1 Trigger

 Only the surviving ones are scrutinized 

more carefully – High Level Filter(s)

 Triggers are tailored to specific physics 

channels (Higgs, top, WW, ZZ, …)
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Example: CMS
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Trigger/DAQ layout
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What CMS subdetectors measure

 Inner tracker (pixels+strips)
 Momentum and position of charged tracks

 Electromagnetic calorimeter
 Energy of photons, electrons and positrons

 Hadron calorimeter
 Energy of charged and neutral hadrons

 Muon system
 Momentum and position of muons
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What CMS subdetectors measure
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CMS L1 trigger

 Input rate: 40 MHz

 Output rate: 30 – 100 kHz

 Latency: 3.2 s (128 BX)

 Pipelined, dead-time < 1%

 Available time for calculations: 1.25 s

 2 detector systems: muons/calorimeters

 3 main steps: local/regional/global
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CMS L1 calorimeter trigger

 Calorimeter trigger:
 Two types of calorimeters: hadronic, electromagnetic

 Local: Computes energy deposits

 Regional: Finds candidates for electrons, photons, jets, 

isolated hadrons; computes transverse energy sums

 Global: Sorts candidates in all categories, does total 

and missing transverse energy sums, computes jet 

multiplicities for different thresholds
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CMS L1 muon trigger

 Muon trigger:
 Three types of muon detectors

 Local: Finds track segments

 Regional: Finds tracks

 Global: Combines information from all regional triggers, 

selects best four muons, provides energy and direction
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Efficiency of global muon trigger
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CMS L1 global trigger

 Global trigger:
 Final decision logic

 28 input channels (muons, jets, electrons, photons, 

total/missing ET)

 128 trigger algorithms running in parallel

 128 decision bits

 Apply conditions (thresholds, windows, deltas)

 Check isolation bits

 Apply topology criteria (close/opposite)
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CMS L1 trigger
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CMS L1 trigger example

 back-to-back opposite sign isolated muons



Introduction to Physics Computing

CSC 2009
Rudi Frühwirth, HEPHY Vienna

30

CMS L1 trigger software

 Algorithms are developed in C++

 They are tested by extensive simulation 

studies ( Event Simulation)

 Manual translation into VHDL (Very high 

speed integrated circuit Hardware 

Description Language)

 Comparison with C++ implementation
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High level filter

 Further data selection:
 30 – 100 kilohertz input rate

 100-150 Hertz output rate

 Event tagging:
 Reconstruct physics objects

 Mark events having interesting features

 Facilitates quick access later
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High level filter (ctd)

 More detailed analysis of event and 

underlying physics

 Runs on standard processors (commodity 

PCs) 

 CMS: 1 stage

 ATLAS: 2 stages (LVL2,Event filter)
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CMS High level trigger

 Has to keep pace with the 

L1 Output 

 Solution: massive parallelism

 Filter farm
 720 PCs with dual quad-core Intel Harpertown 

@2.6 GHz, 16 GB RAM

 Up to 200 events/s per PC

 Decision time: ~ 40 ms

This L1 is

Really fast!
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CMS High level trigger (ctd)

 Same software framework as in “offline” 

reconstruction

 Transparent exchange of algorithms

with off-line code

 Regional reconstruction
 Concentrates on region(s) found by Level 1

 Partial reconstruction
 Stop as soon specific questions are answered
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CMS HLT farm – schema …
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… and reality
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Output of the high level trigger

 Raw data are sent to Tier-0 farm
 Detector data (zero compressed)

 Trigger information + some physics objects

 O(50) primary datasets, depending on trigger

history, O(10) online streams

 Physics: 1.5 MB @ 150 Hertz = 225 

MB/sec

 Alignment/Calibration: 100 MB/sec 
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Output of the high level trigger (ctd)

 Total: 325 MB/s ( ~ 1/6th of maximum 

bandwidth)

 LHC runs for 107 sec/year

 >3 PB per year!
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Tier-0 Processing

 Archive raw data on mass storage

 First event reconstruction without or with a 
small delay

 Archive reconstructed data on mass storage
 200 to 800 MByte/event, depending on physics

 Reconstructed objects (hits/clusters, tracks, vertices, jets, 
electrons, muons)

 Send raw and processed data to Tier-1
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Offline Processing

 Calibration
 Convert raw data to physical quantities

 Alignment
 Find out precise detector positions

 Event reconstruction
 Reconstruct particle tracks and vertices

(interaction points)

 Identify particle types and decays

 Impose physics constraints (energy and momentum 
conservation)
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Offline Processing (ctd)

 Simulation
 Generate artificial events resembling real data as closely 

as possible

 Needed for background studies, corrections, error 

estimation, …

Monte Carlo Method



Introduction to Physics Computing

CSC 2009
Rudi Frühwirth, HEPHY Vienna

42

Offline Processing (ctd)

 Physics analysis
 Extract physics signals from

background

 Compute masses,
cross-sections, 
branching ratios,
discovery limits, …

 Requires sophisticated multivariate techniques

 Series of lectures and exercises on
data analysis methods later in this track
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Calibration: From bits to GeV and cm

 Raw data are mostly ADC or TDC counts

 They have to be converted to physical 

quantities like energy or position

 Very detector dependent

 Every detector needs calibration

 Calibration constants need to be updated 

and stored
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Silicon Tracker calibration

 Incoming particle creates electric charge in 

strips or pixels

Incoming particle
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Silicon Tracker calibration (ctd)

 Charge distribution depends on location of 

crossing point and crossing angle

 Solve inverse problem: reconstruct crossing 

point from charge distribution and crossing 

angle

 Test beam, real data
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Drift tube calibration

Charged track

Anode wire

Tube wall (cathode)

Drifting electrons
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Drift tube calibration (ctd)

 Incoming particle ionizes gas in tube

 Electrons/ions drift to anode/cathode

 Drift time is measured

 Must be converted to drift distance

 Time/distance relation must be determined 

(not always linear)

 Test beam, real data
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Alignment: Where are the detectors?

 Tracking detectors are very precise 

instruments

 Silicon strip detector: ~ 50 m

 Pixel detector: ~ 10 m

 Drift tube: ~ 100 m

 Position needs to be known to a similar or 

better precision
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Example: CMS tracker

Wow, I will have to 

realign this…
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Alignment

 Mechanical alignment

 Measurements taken before assembly

 Switching on the magnetic field

 Laser alignment

 Alignment with charged tracks from 

collisions, beam halo and cosmic rays
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Alignment (ctd)

 Difficult because of huge number of 

parameters to be estimated (≈ 100000)

 Continuous process

 Alignment constants need to be updated and 

stored
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Environmental data

 Calibration data 

 Alignment data

 Temperatures, gas pressures, … 

 Machine parameters

 Need to be made persistent
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Detector related software

 Configuration
 Load trigger files, set thresholds, set HV, set amplifier 

gains, … 

 Slow control
 Measure and adjust temperature, gas pressure, dark 

currents, …

 Monitoring
 Check trigger rates, detector efficiency, cluster sizes, 

wire maps, …
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Event reconstruction

 Find out which particles have been created 

where and with which momentum

 Some of them are short-lived and have to 

be reconstructed from their decay products

 Some of them (neutrinos) escape without 

leaving any trace
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Event reconstruction (ctd)

 Reconstruct charged particles

 Reconstruct neutral particles

 Identify type of particles

 Reconstruct vertices (interaction points)

 Reconstruct kinematics of the interaction

 Not trivial, very time-consuming … 
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CMS: Higgs decay into two jets
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Charged particles

 Charged particles are detected by tracker 

and calorimeters

 Muons also reach the muon system

 Very high number of low-momentum 

charged particles

 Select by threshold on transverse 

momentum
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Charged particles (ctd)
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Neutral particles

 Neutral particles are detected mainly by 

calorimeters (e.g. photons, neutrons)

 They should deposit their entire energy

 Some of them decay into two (or more) 

charged tracks which are detected by the 

tracker (e.g. K0 )

 Some of them escape without leaving a 

trace (neutrinos)
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Neutral particles (ctd)
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Reconstruction of charged particles

 Trajectory is curved because of the 

magnetic field

 Position is measured in a number of places 

–“hits”

 Determine track parameters (location, 

direction, momentum) plus errors from the 

position measurements

 Data compression
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The difficulties

 Assignment of hits to particles is unknown

 Huge background from low-momentum 

tracks

 Additional background from other 

interactions in the same beam crossing and 

from adjacent beam crossings
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More difficulties

 Charged particles interact with all the 

material, not only the sensitive parts

 Multiple Coulomb scattering 
 Changes direction, but not momentum

 Energy loss by ionization
 All charged particles

 Energy loss by bremsstrahlung
 Mainly electrons and positrons
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Tracks only 
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Tracks with hits 
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Hits only 

?
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Decomposition of the problem

 Pattern Recognition or Track Finding
 Assign hits to track candidates

 Parameter estimation or Track Fit
 Determine track parameters + covariance matrix

 Test of the track hypothesis
 Check chi-square, residuals, remove outliers
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Track finding

 Depends a lot on the properties of the 

detector:
 Geometry, configuration

 Magnetic field

 Precision

 Occupancy

 Many solutions available

 No general recipe
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A few track finding algorithms 

 Track following 

 Kalman filter

 Combinatorial

Kalman filter

 Hough transform

 Artificial neural

network
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Track fit

 Determine track parameters

 Determine errors (covariance matrix)

 Test track hypothesis

 Reject outliers
 Distorted hits

 Extraneous hits

 Electronic noise
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Ingredients

 Magnetic field
 Constant or variable

 Track model
 Solution of the equation of motion

 Analytic (explicit) or numerical

 Error model
 Observations errors

 Process noise
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Estimation of track parameters

 Most estimators minimize a least-squares 

objective function

 Least-squares estimation
 Linear regression

 Kalman filter

 Robust estimation
 Adaptive filter
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Reconstruction of neutral particles

 Neutral particles are only seen by the 

calorimeters

 Photons are absorbed in the electromagnetic 

calorimeter

 Neutral hadrons are absorbed in the hadronic 

calorimeter

 Neutrinos are not detected directly
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Shower finding 

 An incident particle produces a shower in the 

calorimeter 

 A shower is a cluster of cells with energy 

deposit above threshold



Introduction to Physics Computing

CSC 2009
Rudi Frühwirth, HEPHY Vienna

75

Shower finding (ctd) 

 Overlapping clusters must be separated

 Various clustering techniques are used to find 

showers

 The algorithms depend on various 

characteristics of the calorimeter
 Type (electromagnetic or hadronic)

 Technology (homogeneous or sampling)

 Cell geometry, Granularity
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Particle identification 

 Determining the type of a particle

 Dedicated detectors
 Type (electromagnetic or hadronic)

 Threshold Cherenkov

 Ring imaging Cherenkov (RICH)

 Transition radiation detector

 Ionization measurements
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Particle identification (ctd)

 Combining information from several detectors
 Shower in electro-magnetic calorimeter 

+ no matching track in tracker photon

 Shower in electro-magnetic calorimeter 

+ matching track in tracker electron/positron

 Shower in hadronic calorimeter 

+ matching track in tracker charged hadron

 Track in muon system 

+ matching track in tracker muon
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Vertex reconstruction

 Primary vertex: interaction of the two 

beam particles – easy

 Secondary vertices: decay vertices of unstable 

particles – difficult

 Emphasis on short-lived unstable particles 

which decay before reaching the tracker

 Data compression



Introduction to Physics Computing

CSC 2009
Rudi Frühwirth, HEPHY Vienna

79

Primary and secondary tracks

Primary tracks

Secondary tracks
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The difficulties

 Association of tracks to vertices is unknown

 Secondary tracks may pass very close to 

the primary vertex
 Especially if decay length is small

 Track reconstruction may be less than 

perfect
 Outliers, distortions, incorrect errors



Introduction to Physics Computing

CSC 2009
Rudi Frühwirth, HEPHY Vienna

81

Decomposition of the problem

 Pattern Recognition or Vertex Finding
 Assign tracks to vertex candidates

 Parameter estimation or Vertex Fit
 Determine vertex location + covariance matrix, update 

track parameters

 Test of the vertex hypothesis
 Check chi-square, residuals, remove outliers
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Vertex finding

 Almost independent of the detector geometry

 Secondary vertex finding may depend on the 

physic channel under investigation

 Essentially a clustering problem

 Many solutions available
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A few vertex finding algorithms 

 Hierarchical clustering
 Single linkage, complete linkage,…

 Non-hierarchical clustering
 k-means, robust location (mode) estimation, iterated 

vertex fit

 Neural network/physics inspired
 Competitive learning, deterministic annealing, 

superparamagnetic clustering, quantum clustering,…
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Vertex fitting

 Most estimators minimize a least-squares 

objective function

 Least-squares estimation
 Linear regression

 Kalman filter

 Robust estimation
 Adaptive filter
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Persistency

 Event reconstruction produces 

physics objects
 Tracks

 Vertices

 Identified particles

 Jets

 Tags

 Need to be made persistent
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Persistency (ctd)

 Physics objects depend on
 Alignment

 Calibration

 Version of the reconstruction program

 Algorithm parameters

 Must be made persistent as well

 Tools: ROOT, POOL
 Series of lectures and exercises later in this track
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Simulation

 Why do we need simulation?
 Optimization of detector in design phase

 Testing, validation and optimization of trigger and 

reconstruction algorithms

 Computation of trigger and reconstruction efficiency

 Computation of acceptance corrections

 Background studies

 Systematic error studies
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Simulation steps

 Physics generation
 Generate particles according to specific physics 

processes

 Event simulation
 Track particles through the detector, using detector 

geometry and magnetic field

 Simulate interaction of particles with matter

 Generate signals in sensitive volumes

 Simulate digitization process (ADC or TDC)

 Simulate trigger response
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Simulation steps (ctd)

 Reconstruction
 Treat simulated events exactly as real events

 Keep (some) truth information: association of hits to 

tracks, association of tracks to vertices, true track 

parameters, true vertex parameters, …

 Make everything persistent
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Physics generation packages

 General purpose event generators
 Hadron-hadron, hadron-lepton, lepton-lepton collisions

 PYTHIA/JETSET, also known as “Lund Monte Carlo”

 Herwig++, Hadron Emission Reactions With Interfering 

Gluons

 PANDORA, event generator for linear collider studies, 

collisions of electrons, positrons and photons

 Specialized generators
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Event simulation 

 Was frequently (and still sometimes is) 

experiment-specific

 Now there is a widely used standard: GEANT
 GEANT3: procedural, FORTRAN

 GEANT4 : object oriented, C++
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Detector description

 Geometry
 Shape

 Placement relative to mother volume

 Symmetries

 Material
 Composition

 Density

 Radiation length, interaction length, …
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An example detector model
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Physics analysis

 Event selection
 Multidimensional criteria

 Statistics, neural networks, genetic algorithms, …

 Signal extraction
 Study background

 Determine significance of signal 

 Corrections
 Detector acceptance, reconstruction efficiency, …

 From simulated data
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Physics analysis (ctd)

 Computation of physical quantities
 Cross sections, branching rations, masses, 

lifetimes, …

 … and of their errors
 Statistical errors: uncertainty because of limited number of 

observations

 Systematic errors: uncertainty because of limited 

knowledge of key assumptions (beam energy, calibration, 

alignment, magnetic field, theoretical values, background 

channels, …)
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Analysis tools

 Need versatile tools for
 Multidimensional selection

 Event display and interactive reprocessing

 Histogramming

 Plotting

 Fitting of curves and models

 Point estimation, confidence intervals, limits

 …
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Analysis tools (ctd)

 ROOT
 Data analysis and persistency, but also detector 

description, simulation, data acquisition, …

 Series of lectures and exercises later in this track

 JAS
 Java Analysis Studio (SLAC)

 WIRED
 Platform independent event display (Java, SLAC)
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JAS screenshot
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And finally …
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Well, actually …
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Distributed analysis

 Physics analysis will take place in many labs 

all over the world

 Physicists need fast access to event data and 

corresponding calibration, alignment and 

bookkeeping data … and to simulated data

 We need the grid!
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The LHC Computing Grid

 Global collaboration of more than 140 

computing centers in 34 countries

 Four-tiered model

 Data storage and analysis infrastructure

 O(105) CPUs

 >25 PByte disk storage (tiers 0 and 1)
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Data management

 Dataset bookeeping
 Which data exist?

 Dataset locations service
 Where are the data?

 Data placement and transfer system
 Tier-0 → Tier-1 → Tier-2

 Data access and storage
 Long-term storage, direct access
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Datasets in CMS

 RAW: Raw data (1-1.5 MB)
 Detector data, L1 trigger results, HLT results,

reconstructed HLT objects

 RECO: Reconstructed data (200-800 kB)
 Reconstructed objects (hits, clusters, tracks, 

vertices, muons, electrons, jets)

 AOD: Analysis object data (50-100 kB)
 High-level reconstructed objects (tracks, 

vertices, muons, electrons, jets)
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Datasets in CMS (ctd)

 TAG: Tagging data (10 kB)
 Run/event number, some high-level physics objects

 Non-event data
 Construction data (information on sub-detectors)

 Equipment management data (detector geometry, 

electronics)

 Configuration data (front-end electronics)

 Conditions data (run conditions, calibration, alignment)



Introduction to Physics Computing

CSC 2009
Rudi Frühwirth, HEPHY Vienna

106

Data flow in CMS
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Tiered resources

 Tier-0 (CERN)
 First pass of reconstruction

 Primary archive on mass storage

 Tier-1 (~10 centers)
 Global and local services

 (Only) copies of certain samples

 Reconstruction

 Monte Carlo production
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Tiered resources (ctd)

 Tier-2 (~25 centers)
 Associated to a particular Tier-1 centre

 Local use

 CMS controlled use

 Opportunistic use

 Tier-3 (~100 centers)
 Coordination with a specific Tier-2 centre

 Local use

 No guaranteed support, no guaranteed availability
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Additional resources

 CMS-CAF (CERN Analysis Facility)
 Ready access to RAW and RECO data

 Short turnaround

 Operation critical tasks: detector diagnostics,

calibrations for HLT, trigger optimization, 

testing of new trigger algorithms

 Main repository for software and documentation
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Summary

 Physics computing involves:
 Event filtering with multilevel trigger

 Persistency of raw data

 Calibration and alignment

 Persistency of calibration, alignment and environmental 

data

 Event reconstruction

 Persistency of reconstruction objects and metadata
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Summary (ctd)

 Physics computing involves:
 Simulation of many million events

 Persistency of simulated raw data and truth information

 Reconstruction of simulated events

 Persistency of reconstruction object and truth information

 Distributed physics analysis and event viewing

 Persistency of high-level physics objects
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Outlook on the track

 ROOT
 3 hours of lectures (A. Naumann, B. Bellenot)

 3 hours of exercises (A. Naumann, B. Bellenot)

 Data analysis
 4 hours of lectures (A. Heikkinen, I. Puljak)

 4 hours of exercises (A. Heikkinen, I. Puljak)
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The End


