

Image segmentation in Volunter Computing Framework (BOINC)

Alberto Resco Pérez

Image segmentation in BOINC

- Image segmentation
 - ISRG algorithm
- BOINC
- Adapt image segmentation to BOINC
- Examples

Image segmentation

- Image Segmentation is the partitioning of an image into multiple regions (sets of pixels) according to a given criterion.
- There are different methods of segmentation:
 - Edge-based techniques.
 - Region-based techniques.
 - Deformable models.
 - Global optimization approaches.

- One of the most robust region-based techniques is the Improved Seeded Region Growing algorithm (Mehnert and Jackway, 1997).
- It takes an image and a set of seeds (individual points or connected components) as inputs.
- The algorithm grows the seed regions in an iterative process. At each iteration all those pixels that border the growing regions are examined.

-01

5	5	5	9	9		5	5
5	5	5	9	9	5	5 °	5
3	3	3	1	1	3 4	3 4	3
3	7	3	1	1	3 4		3
3	3	3	1	1	3 4	3 4	3
3 2	3 2	5 ° 5 °	0 1	0	3 2	3 2	3
3 4		3			3 4		2
	Contraction of the local division of the loc						3

- An efficient implementation of the ISRG algorithm utilizes an ascending priority queue (PQ), and several LIFO queues.
- The PQ is ordered from the smallest to largest. In this case the value is δ that is the difference between the intensity of the pixel (measured in grey or RGB values) and the mean all of its neighbours.

But there is an inconvenience...

A)

B)

BOINC

- Volunteer Computing is... "an arrangement in which so called volunteers, provide computing resources to projects, which use the resources to do distributed computing and/or storage".
- **BOINC** is a Distributed Computing software designed to use volunteer resources.
- But...We do not want Volunteers...We want dedicated Workers!!!

What I need to adapt?

- The program to execute in the volunteers will not have a lot of changes. Only the management of the files and 2 calls to the BOINC API (start, finish, and if we want, a checkpoint every X iterations).
- A work generator that sends the images to segment.
- An assimilator that gets the segmentation and can:
 - Takes the best segmentation of each image.
 - Applies a merge algorithm.
 - Deletes everything...

What I need to adapt?

- The ISRG algorimth needs the input of the initial seeds to start the algorithm.
 - A waste of data transmission.
 - So, send only the number of the max regions we want and generate them randomly.

More info

- BOINC official site: http://boinc.berkeley.edu
- BOINC unofficial wiki: <u>http://www.boinc-</u> wiki.info/
- Linux packages: boinc-manager & boinc-client

Image segmentation in Volunter Computing Framework (BOINC)

Alberto Resco Pérez