Time critical condition data handling in the CMS experiment during the first data taking period

CSC 2010

Monday 30 August

Salvatore Di Guida

What are non-event data?

- Construction data;
- Equipment management data: history of all items installed at CMS:
 - Detector parts,
 - Off detector electronics;
- Configuration data: needed to bring the detector in running mode;
- Condition data: describe the state of the detector:
 - Data quality indicators (bad channels...),
 - Sub-detector settings (pedestals...);
- Calibration data: needed to calculate the physics quantities from raw data;
- Alignment data: needed to retrieve the exact position of each subdetector inside CMS.

All these data (except construction data) can be grouped by a version and the time range (IOV) in which they are valid.

Golden equation for DB during data taking

Start of the games with LHC

Game over with Condition DB

- PopCon (Populator of Condition Objects tool)
 - is an application package fully integrated in the overall CMS framework intended to store, transfer and retrieve data using Oracle-Database.
 - CMS relies on three ORACLE databases for the condition data:

- PopCon (Populator of Condition Objects tool)
 - is an application package fully integrated in the overall CMS framework intended to store, transfer and retrieve data using Oracle-Database.
 - CMS relies on three ORACLE databases for the condition data:

- PopCon (Populator of Condition Objects tool)
 - is an application package fully integrated in the overall CMS framework intended to store, transfer and retrieve data using Oracle-Database.
 - CMS relies on three ORACLE databases for the condition data:

- PopCon (Populator of Condition Objects tool)
 - is an application package fully integrated in the overall CMS framework intended to store, transfer and retrieve data using Oracle-Database.
 - CMS relies on three ORACLE databases for the condition data:

Central Population of Condition DB

Centralized account in the online network:

✓ Deploy a set of automatic jobs for each subdetector,
✓ Populate
ORCON accounts,
✓ Monitor any transactions towards them.

What is offline dropbox?

- Infrastructure that, using web applications inside Virtual Machine technology and the Python programming language, allows the automatic exportation of calibration data into the offline condition database accounts.
- Allows the automation of Calibration and Alignment procedures:
 - No need to connect to the online network;
- Simplify the end user work in case he wants to upload calibrations resulting from an offline analysis in the condition databases:
 - No need to have an online account,
 - In many cases, they cannot ask for it;
 - Base knowledge of the Condition Core software;
 - No knowledge of GPN-.CMS network communication,
 - The application is completely transparent to the end user.

Offline dropbox workflow

How the offline dropbox works?

- 1. The user uploads the SQLite and metadata files on the web repository:
 - a. Bash script that encapsulates them in compressed tar ball;
- 2. Using http_proxy and a Python script (with the standard library URLLib), the files uploaded by users are pulled from GPN to the PopCon SLC5 machine in the online network every 10 minutes;
- 3. The "run export" script performs the inspection on the exported files:
 - a. Checks the metadata values filled by users, in particular if the destination tag is part of one of the production GTs,
 - b. Checks if the mapping for the container in the SQLite file is exactly the same as the one in the destination account,
 - ✓ Avoid dangerous "ghost" mappings,
 - c. Sets the run number (Begin) from which the calibration data are valid by querying RunInfo (for hlt and express) or Tier0 DAS (for prompt),
 - ✓ If the destination tag is part of a production GT, the synchronization is forced to the GT type,
 - ✓ Ordering of SQLite files according to the run number and/or begin value;
 - d. Exports data on the online DB:
 - ✓ If requested, appends the payloads to the HLT and/or express and/or prompt tags by duplicating the IOV with synchronization to RunInfo or Tier0.
 - ✓ Possible only if you want to upload one payload!

How the offline dropbox works?

- Such a complex infrastructure was needed in order to meet the requirements of the .CMS system administrators:
 - Transferring data from GPN to .CMS is not envisaged in the online network design;
 - Strict security policy of .CMS:
 - Files cannot be copied from GPN to .CMS, but they must be pulled in the online cluster from the offline network.
- In order to maintain such tool, we need to monitor many different parts of the infrastructure:
 - Maintained by us:
 - Web service,
 - Cronjobs in the online machine;
 - Non maintained by us:
 - HTTP proxy,
 - TO Data Service, RunInfo (partially),
 - Oracle Streams.

What is PopCon monitoring?

- Open source transaction status web monitoring developed at CERN that provides:
 - Transaction status:
 - Aborted, committed, pending
 - Error monitoring reports
 - Identify any mistakes made by users, application failure, unexpected networks shutdown, etc.
 - Reports from different users' perspectives:
 - Personal view for: Oracle database administrator, CMS detector manager, sub-detector CMS manager, End user.

Why PopCon monitoring?

- We might use the existing web monitoring tool for our purpose but we need to fulfill the challenge requirements of CMS experiment:
 - Usage of CMSSW standards
 - Generic CMSSW component to feel comfortable developers and endusers in building and using new package in CMSSW.
 - Monitoring the heterogeneous software environment
 - Oracle DBs, CMSSW framework and other open source packages
 - Open source product
 - CERN Participation in Oracle Technology Beta Programs
 - We need a flexible architecture to handle unexpected error
 - Maximize the performance
 - Stress test of CMSSW infrastructure
 - Avoiding bottlenecks due to Huge Data Access (history and current data)

PopCon from differerent perspectives

Snapshot example: Table reporting

- Recent activity recorded from the Online Run Coordination point of view:
 - it is possible to see the last transactions against the DB account hosting information on run data.
- For each sub-detector, the monitoring system keeps track of all new data transfers.

Acknowledgments

 Thanks to François Fluckiger for his suggestions, comments, and feedback!

