CERN
School o Computing

Hot Topics in Software Engineering

Lecture 5

Modern Software Development
meets HEP

Frank Volkmer, M.Sc.

Bergische Universitat Wuppertal

1 Inverted CERN School of Computing, 3-4 March 2011

i -

CERN

Ag'le SOftware Development School o Computing

= 4 genereal ideas
= Individuals and interactions over processes and tools
= Working software over comprehensive documentation
= Customer collaboration over contract negotiation
= Responding to change over following a plan

= Collection of best practices
= Working software is the principal measure of progress
= Simplicity
= Self-organizing teams
= Regular adaptation to changing circumstances

i -

CERN

Three ideas / Best practices - A

= Code refactoring
= Incrementally improve your code

= Test Driven Development
= test first, write code, less errors

= Pair Programming
= 4 eyes see more than 2

ICSC 2011 3.4 March 2011, CERN

i -

CERN

Code Refactoring - Outline FomEcan

= Why refactor?
= What is Code Refactoring

= Examples & Techniques
= Extract/ Inline Methods
= Temp variables
= Substitute Algorithm
= Encapsulate field
Template Methods
= Use Explicit Methods
Preserve Object
= Replace constructor with Factory Method

= Tools & IDEs
4

Software Engineering Lecture 5

iC\C iC\C
CERN CERN
Why refactor? o What is Refactoring? o
= Source code ages = “A change made to the internal structure of software to
= Becomes ugly make it easier to understand and cheaper to modify without
= messy, cluttered, unstructured changing its observable behavior.” (M. Fowler)
= Coding conventions change
= Requirements change = Disciplined way to restructure code without changing
= Always during development and maintenance functional requirements
= Performance issues = “Deaging of software”
= Design problems / extensibility = Series of small changes
= New programming techniques
= Transform Java Collections to Generics = See: http://refactoring.com
5 6
iC\C iC\C
: Schoot of Computing : School of Computing
Obey to coding standards Renaming
= Code is easier to read = Is the lowest hanging fruit
= Getters, setters = Java is no fortran (no implicit typing)

= For each loops .
= Use meaningful names

= Use long names (let Code Completion help you)

) = Self documenting code
= Use common design patterns

= See iCSC 2010 = Hungarian Notation
= See GoF - Book = |n typeless languages

= Code beautification

. = Indentation & Spacin
= Documentation P 9

= Replace magic numbers
= Symbolic constants & constant methods

ICSC 2011 3.4 March 2011, CERN Software Engineering Lecture 5

dern Software Engineering meets HEP I;

Technique: Extract / Inline method

CERN
School o Computing

void printOwing() {
printBanner();
printf(“name: %s" + name);
printf("age: %d" + age);

/lbecomes:

void printOwing() {
printBanner();
printDetails(getAge());

}

void printDetails (int age) {
printf(“name: " + name);
printf(*amount: " + age);

9}

>SC2011, F k Volkmer, Bergische Univers; Wuppe!

dern Software Engineering meets HEP I;

CERN
School o Computing

Technique: Temp variables

double basePrice = anOrder.basePrice();
return (basePrice > 1000);

/lbecomes:

return (anOrder.basePrice() > 1000);

10

dern Software Engineering meets HEF i

Technique: Substitute Algorithm

CERN
School o Computing

String foundPerson(String[] people){ Ilbecomes:
for (inti=0; i < people.length; i++) {
if (peopleli].equals ("Don")){ String foundPerson(String[] people){

return "Don"; List candidates = Arrays.asList(new
) String[] {"Don", "John", "Kent"});
for (int i=0; i<people.length; i++)
if (people[i].equals ("John"))}{
if (candidates.contains(people[i]))
return "John";
return peoplefi];

}
if (peopleli].equals ("Kent")){

return ™;

return "Kent";

1

return "";

11

C2011, F k Volkmer, Bergische Univers; Wuppe!

ydern Software Engineering meets HEP i
Data Encapsulation S oF o

= Use encapsulation
= for member fields

= Make own collections immutable

= Separation of concern

12

C2011, Frank Volkmer, Bergische Universitat Wuppertz

ICSC 2011 3.4 March 2011, CERN

Software Engineering Lecture 5

Technique: Encapsulate field

public String _name
/lbecomes:

private String _name;
public String getName() {

return _name;

}

public void setName(String name) {
_name = name;

}

13

|i -

CERN
School f Camputing

Technique:
Template Ja

|i -
CERN

odble base = nln® uln® 0; 7 School o Computing

obba e m une * BB TAN_RATE 402,
FULm b +10

methods—1 '

4

Reskdoutal M [T=T™ /

[R— [r——r——

-~

)

ol bose - ks * res;
b foet = boso ¥ . TAM_NATH;
T bare 4w

14

Method calls

= Change method signatures
= Parameters
= Return values
= Exceptions

= Separate Query from Modifier
= getTotalAndSub5()
= getTotal()
= Sub5()

= Use explicit methods

= Preserve object

15

CERN
School f Camputing

Technique: Use Explicit Methods

void setValue(String name, int value)
{
if (name.equals("height")) {
_height = value;
return;
}
if (name.equals("width")) {
_width = value;
return;
}
Assert.shouldNeverReachHere();

}

16

|i -

CERN
School f Camputing

Ilbecomes :
void setHeight(int arg)

_height = arg;

void setWidth (int arg)

_width = arg;
}

ICSC 2011 3.4 March 2011, CERN

Software

Engineering Lecture 5

] &
Technique: Preserve Object e Technique: Replace constructor with*="«
Factory Method

int low = daysTempRange().getLow();

int high = daysTempRange().getHigh(); Employee (int type) {
withinPlan = plan.withinRange(low, high); type = type;

}
/I'becomes: Ilbecomes:

static Employee create(int type) {

withinPlan = plan.withinRange(daysTempRange()); return new Employee(type):
}
17 18
(!l'l:- (!l'l:-
Tooling B Test driven development - Outline =™
= Automated refactoring = What is Test Driven Development?

= Context aware
= Parameterizing option
= Menu driven assistents & wizards = Unit Tests

= Red / Green / Refactor

= IDE support = Tools
= Eclipse .
= Photran = Possible Problems
= Xcode
= NETBEANS
= IntelliJ IDEA
= Visual Studio .net

19 20

ICSC 2011 3.4 March 2011, CERN Software Engineering Lecture 5

i ~
What is Test Driven Development? * ™

= Design strategy
= Always produce tested code
= Less use of adebugger to hunt bugs

= Need a fast compiling, modular project
= Quick turnaround on save, compile and test the module

= Trunk always works
= At least all tests are green

= Best used with a continuous integration build system to
regularly run tests on server

21

i -

CERN

Red / Green / Refactor Hins ot Cnpuy

= Red

= Write new failing test due to missing code
= Write minimal amount of code to compile test

= Green

= Write as much code as needed to satisfy test

= Refactor

= Think about missing testing scenarios

= Repeat!
22

i -

CERN

Unlt teStS School « Computing

= One test class per tested class

= Leadsto
= Smaller classes
= With looser coupling
= Cleaner interfaces
= Clearer responsibilities

23

Tools

= Unit Tests
= Junit
= CppUnit
= googletest

= Test Coverage
= Tessy (C)
= Coverage.py
= Clover (Java)

24

CERN
School « Camputing

ICSC 2011 3.4 March 2011, CERN

Software Engineering Lecture 5

Modern Software Engineering meets HEP "

CERN

I nteg ratlo n TeStS School - Computing

= Happen after unit testing but before system tests
= Unit tests cover single modules, without interaction
= Unit tests are often run against mock objects

= Use interfaces of modules, use them as black boxes

= Group several tested modules and test them in integrated
concert

= Test
= Proper integration of module associations
= Layers of modules
= Inter process communication

26

CSC2011, Frank Volkmer, Bergische Universitat Wupperta

CERN

= Can lock your API quite early
= Developers do have blind spots
= Psychological mindset: plan to fail

= If you prototype and experiment, TDD can be a lot of extra
effort

27

Modern Software Engineering meets HEP "
CERN
J U n It School of Computing
[] Junit. —[ox]
Junit
Test class name:
orgffree.chart.labelz] =) | .. Huni
[“Reland classes every run .
Ju JUnit =
Junit 3.8.1 by Kent Beck and Erich Gamma =
Buns: 4645 * Errors: 16 -
Resuls: [ase]
[org firas.chart lanals T=] [Run]

F @ ergifree.chart.labels, junit. DBordndWhiskerTooMipGeneratorTests |
testEquals |
testCloning

* fastSerialzation

&0 org.jfres.chart. abals.junit BaxAndWhisker O TooMpGeneratorTests

102 org.jfras.chan. sbals. junit CustemiEamLabalGanaraterTasts

#03 orgifree.chart.labels. junit.HighlowitemlabeldeneratorTests =]

* Fallures g Test Hierarchy

|3va lang HosichMathodError: firsthoANUICIassLaader al

3t java.io.Objactinp eurrarL jaeting]

at javaio. Obpcting hoeCl i TO5)

1 javaio.Obectinput Stresm readClassDescriptor Objectinouts

at javaio P n parsed pectings n

at java. o Objecting i, PUSEreaM, |- 1 42

at java. 0. Objecting o parsel bjecting . java 311

at java.io.Objectinput Stream.readObject{Objectinput Stream. java:1 42)

At org fres. chart. Labalsjunk. Tests. i Toal_

A.1302 -
[Bt
25 CSC2011, Frank Volkmer, Bergische Universitat Wupperta
Modern Software Engineering meets HEP "

Problems with TDD Savot - Camputing

CSC2011, Frank Volkmer, Bergische Universitat Wuppertz

ICSC 2011 3.4 March 2011, CERN

Modern Software Engineering meets HEP "
CERN

Pair Programming - Outline et ot

= What is Pair Programming?
= Advantages

= Possible Problems

28

CSC2011, Frank Volkmer, Bergische Universitat Wupperta

Software Engineering Lecture 5

What is Pair Programming?

= Two people share one machine
= For programming
= Pilot / Navigator

= Change often
= Roles: every couple minutes
= Teams: every day

= Small teams

29

CERN
School - Computing

i -

CERN

Advantages Sho 7o

30

Higher code quality
= Less errors (15% less)
= Code is shorter (5 -15%)

Low truck factor
= Everybody knows part of the code
= No more code ownership

Mentoring
= Everybody learns

More discipline
= Communication

Fun!

Problems

= Time
= Experienced teams need about 15% more time

= Authority
= on specific decisions

= Costs
= Steep learning curve

Who wrote what?
= Copyrights
= Liability

= Does not scale well with too large teams

31

CERN
School f Computing

= Keep your teams small or break up into sub projects / teams

My experience

32

CERN
School f Computing

Introduction to pair programming

= One team leader, 5 coder
= 3 teams

= One dedicated integration team

Six to ten small feature requests and five to ten bugs as
tasks

Role switching every 20-30 minutes
Team mixing every 8 to 12 hours

Steep learning curve
= Removed code ownership

ICSC 2011 3.4 March 2011, CERN

Software Engineering Lecture 5

Summary

= Code Refactoring

= Test Driven Development

= Pair Programming

33

>SC2011, F k Volkmer, Bergische Univers|

CERN
School o Computing

ICSC 2011 3.4 March 2011, CERN

i
CERN

Thank you... St ot

Any questions?

34

°SC2011, Frank Volkmer, Bergische Univers

Software Engineering Lecture 5

