

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Back to July 4th – Discovery of a Higgs boson at the Large Hadron Collider

Arnaud Ferrari

Department of Physics and Astronomy Uppsala University, Sweden

CSC Opening Session, Uppsala, 13 August 2012

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Outline

Recipe for a Universe

2 Searches for the Higgs boson at the LHC

Arnaud Ferrari

Recipe for a Universe

Searches for the

The Universe from a chemist's point of view

		GROUP		PF	ERI	OD	OIC	TA	BL	E ()F	TH	EF	EF	M	EN.	ΓS		
				~							http://www.ktf.snlit.hr/neriodni/en/ 18 VIIIA								
0	-1	1 1.0079			PELATO	ATOMIC A	100 m				111		7			Purso per			2 4.0026
RIO	1	н	1		ALLAN				etal 🚺	Semimetal	Nonm	stal	-						He
PE	_	HYDROGEN	2 110	GRC	GROUP IUPAC GROUP CAS				Alkaŭ metal St Chalcogens element			· 🔨	13 111A 14 1/4 15 VA 16 VIA 17 VIIA HEUW						
	_1	3 6.941 4 9.0122 ATOMIC NL			UMBER 5	10.811			uanne earth m	6331	17 Halog	ans erement		5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
	2	Ti	Ro		WMDOI _	P		1 -	Lasthaside	•	IN NOOR	gas		B	C	N	0	F	No
		LI	De	/		10000			Actinide	No	- 016	Fe - solid	(°3)		-	11		E. LAND	110
	4	11 22,990	12 24.305	· · · · ·		1		/ 	-	Ga	- liquid	% - synthet	tic	13 26.982	14 28.086	15 30.974	16 32.065	17 35 453	18 39.948
	3	No	Ma		ELE	MENT NAME					1	/	_	41	C:	D	e	CI	A
	·	INA	IVIG			- /-	1 APP	-		VIIIB -				AI	51	I	3	CI	AI
	4	19 30.098	20 40 078	21 44 956	22 47 867	23 50 942	24 51 996	25 54 938	26 55 845	27 58 933	28 58 693	29 63 546	30 65 39	31 69 723	32 72.64	33 74 922	34 78.95	35 79 904	36 83.80
	4	V	Co	Se	T	V	C	Ma	Fo	Co	NI	C	7.	Co	Co	4.0	e.	Du	Va
	1	r	Ca	SC	11	v	Cr	WIII	ге	CO	INI	Cu	ZII	Ga	Ge	AS	se	DI	KI
		27 95 409	CALCIUM	30 se coe	10 01 224	41 02 000	42 OF M	MANGANESE	IRON 44 101.07	COBALT	NICKEL	COPPER 47 107 87	ZINC 49 412 41	GALLIUM	GERMANIUM	ARSENIC 61 401 70	SELENIUM	SROMINE	KRYPTON
		DL	C	\$7	7	AT SESOU	34-	PTP-	D	DL	DJ		CJ	T	G	CL	TT-	T	N.
	1	KD	Sr	r	Zr	IND	IVIO	ПС	Ru	КП	Pa	Ag	Ca	In	Sn	SD	Ie	1	ле
	- 1	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NOBIUM	NOLYEDEMUM	TECHNETIUM	RUTHENUM	RHODIUM	PALLADIUM	SILVER	CADMUM	INDIUM	TIN	ANTMONY	TELLURIUM	KODINE	XENON
	1	05 132.91	50 137.33	57-71	12 1/8.49	73 180.95	74 183.84	75 186.21	76 190.23	11 192.22	76 195.08	/9 196.97	80 200.59	61 204.38	82 207.2	85 208.98	04 (209)	85 (210)	80 (222)
	<u> </u>	Cs	ва	La-Lu	HI	Ia	w	ке	Os	Ir	Pt	Au	Hg	11	PD	BI	Po	At	Rn
		CAESIUM	BARIUM	Lanchanide	HAFNUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
	.	87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (265)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)		114 (289)				
	1	Fr	Ra	Ac-Lr	IKI	IDP	Sg	IBIN	IHIS	IMIC	Uum	Uuu	Uub		Quq				
		FRANCIUM	RADIUM	Acumue	RUTHERFORDIUM	DUBNUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM	· · · ·	UNUNCURDUM				S.
					LANTHAN	IDE											Comment 0 10	98-2003 EwiG /	ord films. It still have
(1)	Pure	re Appl. Chem., 73. No. 4, 667-683 (2001) lative atomic mass is shown with five nificant/figures. For elements have no stable			57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97
	Relati				Ia	Co	Dr	Nd	TIDIng	Sm	Fn	Cd	Th	Dv	Ho	Fr	Tm	Vh	In
nuclides, the val- indicates the mass			a enclosed in unber of the los	ngest-lived	La	CC		ITU	11 1001	SIII	Eu	Gu	TU	Dy	110	CODING	THI	1 U	Lu
	Howe	vor three such	element, o such elements (Th. Pa, and U)		ACTINIDE	- CLIGON	The contract	14200 THION	THOME THOM	0.000000	CONCE TO M	GREGEREEN	TENDON		THOLMHOM	CHURCH	1100.001	THEIDION	COLLING
composition, and for the tabulatod.			characteristic senestrial isotopic , and for these an atomic weight is		89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
					Ac	Th	Pa	U	NID	TPnn	Am	Cm	TBIK	Cf	TES	TRam	Mid	No	TL.TP
	Editor	lawa	n informer	Erry com)	ACTINUM	THORIUM	PROTACTINUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURUM	BERKELIUM	CALIFORNIUM	EINSTEINUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

cles	u	C	t
oarti	d	S	b
ter	е	μ	τ
mat	\mathcal{V}_{e}	$\mathbf{v}_{\!\!\!\mu}$	$ v_{\tau} $

The Universe from a physicist's point of view

All matter consists of 3 families of fermions, divided into quarks and leptons.

Six quarks:

- fractional electric charge:
- $-\frac{1}{3}$ for d, s, b and $+\frac{2}{3}$ for u, c, t.
- color charge (blue, green, red). As only colorless objects can be observed, quarks stick together!

Six leptons:

- three are charged: e^- , μ^- , τ^- .
- three neutrinos: very light, pass through everything and oscillate.

Stable matter (the world around us) mostly has fermions from the first family, the lighest one.

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

What holds matter together?

The

The Universe exists because fundamental particles interact. The four fundamental interactions include attractive/repulsive forces, decays and annihilations. Each of them has its own force carrier (boson).

TYPE	INTENSITY OF FORCES	BINDING PARTICLE (FIELD QUANTUM)	OCCURS IN :
STRONG NUCLEAR FORCE	~ 1	GLUONS (NO MASS)	ATOMIC NUCLEUS
ELECTRO -MAGNETIC FORCE	~ 10 ⁻³	PHOTONS (NO MASS)	ATOMIC SHELL ELECTROTECHNIQU
WEAK NUCLEAR FORCE	~ 10 ⁻⁵	BOSONS Z ^e , W+, W- (HEAVY)	RADIOACTIVE BET DESINTEGRATION
GRAVITATION	~ 10 ⁻³⁸	GRAVITONS (?)	HEAVENLY BODIES
		2.5	

CERN AC _Z04_ V25/8/199

The Standard Model (1)

Discovery of a Higgs boson at the Large Hadron Collider

Arnaud Ferrari

Recipe for a Universe

Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS

FERMIONS matter constituents

Lep	tons spin =1/	Quarks spin =1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge		
K Ightest restrice*	(0+0.13)×10 ⁻⁹	0	u up	0.002	2/3		
electron	0.000511	-1	d down	0.005	-1/3		
B restino.	(0.009+0.13)×10 ⁻⁹	0	C charm	1.3	2/3		
(H) mon	0.106	-1	S starge	0.1	-1/3		
The restrict	(0.04-0.14)<10-9	0	10	173	2/3		
2 DU	1.777	-1	botom	4.2	-1/3		

tricle type there is a corresponding antiparticle type, denoted by a particle symbol (unless + or – charge is shown). Particle and ave identical mass and spin but opposite charges. Some

Particle Processes

Properties of the Interactions

Property	Gravitational Interaction	Weak Electromagnetic Interaction (Electroweak) Interaction		Strong Interaction	
Acts on:	Mass - Energy	Flavor	Electric Charge	Color Charge	
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons	
Particles mediating:	(not yet observed)	W* W- Z ⁰	Ŷ	Gluons	
Character at [10-10-00	10-41	0.8	1	25	
Sattern and Sattern	10-41	10-4	1	60	

Unified Electroweak spin = 1 Strong (color) spin =1 Mass Electric Gel//rg2 charges Color Charge 80.39 91.188

Unsolved Mysteries

BOSONS force carriers

Mass

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

The Standard Model (2)

The Standard Model is based on quantum field theory and, as such, must obey some rules (symmetries).

Unfortunately, any mass-like term breaks these rules: in its minimal version, the Standard Model can only have massless fermions and bosons!

In 1964, Higgs and Brout & Engler proposed to add a new scalar (spin 0) field into the Standard Model, which would give mass to fermions, as well as to the W and Z bosons, leaving the photon and gluon massless.

This Higgs mechanism predicts the existence of a new boson, with an unknown mass... It just took 48 years to discover it!

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

What is mass?

Mass is NOT an intrisic property of the fermions! It results from its coupling to a Higgs field that fills up vacuum.

What about the Higgs boson?

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

How to detect the Higgs boson?

The Higgs boson, like most of the heavy fundamental particles, decays as soon as it is produced. So, one needs to look for the decay products:

- *WW* or *ZZ*, where each *W*/*Z* decays into quarks, electrons, muons and neutrinos,
- a pair of *b*-quarks, very difficult to detect (large background at hadron colliders),
- a pair of *τ*-leptons,
- a pair of photons.

To complicate things, we didn't know the Higgs boson mass, so we didn't know "where" to look for it!

Having identified the decay products of the Higgs boson, one normally has enough information to compute the mass of the mother particle.

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

The Large Hadron Collider in one slide

- Circumference = 27 km
- Proton revolutions per second = 11245.5
- Beam energy = 3.5 TeV in 2011, 4 TeV in 2012
- Delivered luminosity = 5.6/fb in 2011 and 10.5/fb (so far) in 2012, up to August 9th

The LHC is colder than the outer space... but also the hottest spot in the galaxy (the proton-proton collisions generate temperatures more than 100,000 times hotter than in the heart of the Sun).

The LHC is also the emptiest space in the Solar System as the beams must travel in an ultra-high vacuum.

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

The LHC experiments

Two general purpose experiments (ATLAS and CMS), one dedicated to studies of *b*-quarks (LHCb) and one dedicated to studies of quark-gluon plasma (ALICE).

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Data-analysis: signal and background

 \rightarrow Compare the LHC data with the **predictions** of the Standard Model with or without the Higgs boson.

some parameter

- black points close to the green curve: evidence for the Higgs boson (or new physics),
- black points on or below the dashed black curve (i.e. background): no evidence for a Higgs boson, which might be ruled out at the corresponding mass.

Discovery of a Higgs boson at the Large Hadron Collider

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Cross section = likelihood of a collision event of a particular type to occur.

Discovery of a Higgs boson at the Large Hadron Collider

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Vertical axis \rightarrow Excluded Higgs boson cross section, divided by the one predicted by the Standard Model.

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Data-analysis: exclusion plot

Solid black line \rightarrow Exclusion with a 95% certainty that a Higgs boson with the given mass does not exist.

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Data-analysis: exclusion plot

Dotted black line \rightarrow Expected limit in the absence of a Higgs boson (derived from simulation).

Discovery of a Higgs boson at the Large Hadron Collider

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Green and yellow bands \rightarrow 68% and 95% certainty on the value of the expected limit.

Discovery of a Higgs boson at the Large Hadron Collider

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Deficit \rightarrow Less data than the expected background. The observed limit is below the expected limit.

Discovery of a Higgs boson at the Large Hadron Collider

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

 $\mathsf{Excess} \to \mathsf{More}$ data than the expected background. The observed limit is above the expected limit.

Discovery of a Higgs boson at the Large Hadron Collider

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

White vertical bands = non-excluded Higgs boson masses... but it does not mean discovery!

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Recipe for a Higgs boson discovery

What is needed in order to discover a Higgs boson?

- the solid black line must be above 1.0 (no exclusion),
- the solid black line must be above the dotted black line (excess of data with respect to the background).

For a given mass, if the solid black line is at the upper edge of the yellow band, there is 95% certainty that the observed data exceed the background expectations. So, there is still a 5% chance that background processes or systematic errors in the detector are not well understood.

For a discovery, we want the chance that the observed data come from background fluctuations or systematic errors to be less than one in a million: 0.0001%!

ATLAS results (1)

Discovery of a Higgs boson at the Large Hadron Collider

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

These two plots show real ATLAS events:

- two photons (left, mass = 126.6 GeV)
- 2 electrons + 2 muons (right, mass = 124.3 GeV).

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

ATLAS results (2)

Excess of events in the reconstructed mass spectra of the $\gamma\gamma$ and $ZZ \rightarrow 4\ell$ final states:

An excess of events is also observed in the $WW \rightarrow e\nu\mu\nu$ channel, but the direct reconstruction of the Higgs boson mass is not possible due to the escaping neutrinos.

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

ATLAS results (3)

The excess of events clearly appears in the exclusion plots and, in order to assess their compatibility with the background-only hypothesis, p0-values are computed:

Clear evidence for the production of a new neutral boson with a measured mass of 126.0 GeV corresponding to a background fluctuation probability of 1.7×10^{-9} (5.9 σ), compatible with a production and decay of the Standard Model Higgs boson.

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

CMS results (1)

Excess of events in the reconstructed mass spectra of the $\gamma\gamma$ and $ZZ \rightarrow 4\ell$ final states:

Low mass resolution channels (*WW*, *ZZ* with neutrinos, $\tau\tau$, *bb* in association with *W* or *Z*) were also analyzed but they are much less sensitive...

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

CMS results (2)

Excess of events above the expected background, with a local significance of 4.9 σ for a Higgs boson mass around 125 GeV. The evidence is strongest in the two final states with the best mass resolution, giving a local significance of 5.0 σ .

Arnaud Ferrari

Recipe for a Universe

Searches for the Higgs boson at the LHC

Conclusion

The Standard Model of elementary particles has been confirmed by experimental data with great precision.

Up to a few weeks ago, the only missing piece of that puzzle was the Higgs boson, which is at the core of the mechanism providing mass to all particles.

A new neutral boson has been observed by both ATLAS and CMS at the LHC, with a mass of 125–126 GeV. The remaining mass range is meanwhile excluded with a high confidence level.

One should also investigate whether this is **THE** Standard Model Higgs boson, or **A** Higgs boson, e.g. by studying all decay channels (more data is needed).

Some theories beyond the Standard Model predict five Higgs bosons, three neutral and two charged.