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Agile Software Development ot o Camput

= 4 genereal ideas

= |Individuals and interactions over processes and tools

= Working software over comprehensive documentation
= Customer collaboration over contract negotiation
= Responding to change over following a plan

= Collection of best practices

= Working software is the principal measure of progress
= Simplicity

= Self-organizing teams

= Regular adaptation to changing circumstances
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Three IdeaS / BeSt praCUCeS School of Computing

= Code refactoring
= |Incrementally improve your code

= Test Driven Development
= test first, write code, less errors

= Pair Programming
= 4 eyes see more than 2
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Code Refactoring - Outline sl e

= Why refactor?
= What is Code Refactoring

= Examples & Techniques
= Extract / Inline Methods
= Temp variables
= Substitute Algorithm
= Encapsulate field
= Template Methods
= Use Explicit Methods
= Preserve Object
= Replace constructor with Factory Method

= Tools & IDEs
4
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= Source code ages
= Becomes ugly
= messy, cluttered, unstructured

= Coding conventions change

= Requirements change
= Always during development and maintenance
= Performance issues
= Design problems / extensibility

= New programming techniques
= Transform Java Collections to Generics
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What Is Refactoring?

= “A change made to the internal structure of software to
make it easier to understand and cheaper to modify without
changing its observable behavior.” (M. Fowler)

= Disciplined way to restructure code without changing
functional requirements

= “Deaging of software”
= Series of small changes

= See: http://refactoring.com
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Obey to coding standards o o Compting

= Code is easier to read
= Getters, setters
= For each loops

= Use common design patterns
= See iICSC 2010
= See GoF - Book

= Documentation
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= |s the lowest hanging fruit
= Java is no fortran (no implicit typing)

= Use meaningful names
= Use long names (let Code Completion help you)
= Self documenting code

= Hungarian Notation
= |n typeless languages

= Code beautification
= |ndentation & Spacing

= Replace magic numbers
= Symbolic constants & constant methods



Modern Software Engineering meets HEP

Technigue: Extract / Inline method

void printOwing() {
printBanner();
printf("name: %s" + name);
printf("age: %d" + age);

/Ibecomes:

void printOwing() {
printBanner();
printDetails(getAge());

}

void printDetails (int age) {
printf("name: " + name);
printf("amount: " + age);

o}
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Technigue: Temp variables

double basePrice = anOrder.basePrice();
return (basePrice > 1000);

/Ibecomes:

return (anOrder.basePrice() > 1000);
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Technique: Substitute Algorithm =™

String foundPerson(String[] people){ /lbecomes:
for (int 1 = 0; i < people.length; i++) {
if (people[i].equals ("Don")){ String foundPerson(String[] people){
return "Don"; List candidates = Arrays.asList(new
| String[] {"Don", "John", "Kent"});

for (int i=0; i<people.length; i++)
if (people[i].equals ("John™)){

if (candidates.contains(people[i]))
return "John";

return peoplelil;

}
return "';
if (people[i].equals ("Kent")){
}
return "Kent";
1}
return ";
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Data Encapsulation

= Use encapsulation
= for member fields

= Make own collections immutable

= Separation of concern
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Technigue: Encapsulate field

public String _name
/lbecomes:

private String _name;
public String getName() {

return _name;

public void setName(String name) {
__nhame = name;

13
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Technique:
Template
methods
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double hase = _unifs * _rate * 0.5;
double fax = baze * Site TAX_RATE * 0.2;
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Method calls

= Change method signhatures
= Parameters
= Return values
= Exceptions

Separate Query from Modifier

= getTotalAndSub5()
= getTotal()

= Sub5()

= Use explicit methods

= Preserve object

15
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Technigue: Use Explicit Methods

void setValue(String name, int value) //becomes :
{ _ .

If (name.equals("height")) { }EOId seteight(int arg)
_height = value; _height = arg;
return; }

_} void setWidth (int arg)

if (name.equals("width")) { {

_width = value; _width = arg;
return; ¥

}

Assert.shouldNeverReachHere();
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Technigue: Preserve Object

Int low = daysTempRange().getLow();
Int high = daysTempRange().getHigh();

withinPlan = plan.withinRange(low, high);

/[l becomes:

withinPlan = plan.withinRange(daysTempRange());
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Technique: Replace constructor with™ =™
Factory Method

Employee (int type) {
_type = type;
}
/Ibecomes:
static Employee create(int type) {

return new Employee(type);
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Tooling

= Automated refactoring
= Context aware
= Parameterizing option
= Menu driven assistents & wizards

= |IDE support
= Eclipse
= Photran
= Xcode
NETBEANS
IntelliJ IDEA
= Visual Studio .net
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Test driven development - Outline  **"*™™

= What is Test Driven Development?

= Red / Green / Refactor

Unit Tests
= Tools

= Possible Problems

20
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What Is Test Driven Development? *7*™"

= Design strategy
= Always produce tested code
= Less use of adebugger to hunt bugs

= Need a fast compiling, modular project
= Quick turnaround on save, compile and test the module

= Trunk always works
= At |least all tests are green

= Best used with a continuous integration build system to
regularly run tests on server

21
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Red / Green / Refactor ol o Comptin

* Red
= Write new failing test due to missing code
= Write minimal amount of code to compile test

= Green
= Write as much code as needed to satisfy test

= Refactor
= Think about missing testing scenarios

"= Repeat!
22



Unit tests

= One test class per tested class

= | eads to
= Smaller classes
= With looser coupling
= Cleaner interfaces
= Clearer responsibilities
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Tools

= Unit Tests
= Junit
= CppUnit
= googletest

= Test Coverage
= Tessy (C)
= Coverage.py
= Clover (Java)

24
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[J1] JUnit E]@E]

JUnit

Test class name:

prarescharabeils] (=] @)

[w|Reload classes every run .
————— U Junit — )y

JUnit 3.8.1 by Kent Beck and Erich Gamma
Runs: 46/46 X Errors: 16

Results:

= org.jfree.chart.labels
=1 = org.jfree.chart.labels.junit.BoxAndWhiskerToolTipGeneratorTests
i testEquals
i testCloning —
X testSerialization
3 org.jfree.chart.labels.junit.BoxandWhiskerXyToolTipGeneratorTests
3 org.jfree.chart.labels.junit.CustomXYltemLabelGeneratorTests
3 org.jfree.chart.labels.junit.HighLowltemLabelGeneratorTests -

Run

X Failures, d& Test Hierarchyi."'

java.lang.MoSuchMethodError: firsthonMullClassLoader <
at java.io.ObjectinputStream.currentLoader(ObjectinputStream. java: 818)
at java.io.ObjectinputStream.resclveClass(ObjectinputStream.java: 785)
at java.io.ObjectinputStream.readClassDescriptor{ObjectinputStream.java: 564)
at java.io.ObjectinputStream. parseContent(ObjectinputStream.java: 264)
at java.io.ObjectinputStream.readObject(ObjectinputStream.java: 142)
at java.io.ObjectinputStream. parseContent(ObjectinputStream.java: 311)
at java.io.ObjectinputStream.readObject{ObjectinputStream.java: 142)
at org.jfree.chart.labels.junit. Box&ndWhiskerTool TipGeneratorTests.testSerialization{BoxandWhiskerToolT]
at java.lang.reflect.Method.invokeMative(Mative Method) '

i ]
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Integration Tests

= Happen after unit testing but before system tests
= Unit tests cover single modules, without interaction
= Unit tests are often run against mock objects

= Use interfaces of modules, use them as black boxes

= Group several tested modules and test them in integrated
concert

= Test
= Proper integration of module associations
= Layers of modules
= |nter process communication

26
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Problems with TDD o omot

= Can lock your API quite early
= Developers do have blind spots
= Psychological mindset: plan to fail

= |f you prototype and experiment, TDD can be a lot of extra
effort

27
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Pair Programming - Outline

= What is Pair Programming?
= Advantages

= Possible Problems

28
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What is Pair Programming?

= Two people share one machine
= For programming
= Pilot / Navigator

= Change often
= Roles: every couple minutes
= Teams: every day

= Small teams

29
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= Higher code quality
= Less errors (15% less)
= Code is shorter (5 -15%)

= Low truck factor
= Everybody knows part of the code
= No more code ownership

= Mentoring
= Everybody learns

= More discipline
= Communication

= Fun!
30
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= Time
= Experienced teams need about 15% more time

= Authority
= on specific decisions

= Costs
= Steep learning curve

= Who wrote what?
= Copyrights
= Liability

= Does not scale well with too large teams
= Keep your teams small or break up into sub projects / teams

31
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My experience e T

= Introduction to pair programming

= One team leader, 5 coder
= 3 teams

= One dedicated integration team

= Six to ten small feature requests and five to ten bugs as
tasks

= Role switching every 20-30 minutes
= Team mixing every 8 to 12 hours

= Steep learning curve
= Removed code ownership

32
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Summary

= Code Refactoring

= Test Driven Development

= Pair Programming
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Thank you...

Any guestions?
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