Modern Software Engineering meets HEP "

CERN
School of Computing

Hot Topics in Software Engineering

Lecture 5

Modern Software Development
meets HEP

Frank Volkmer, M.Sc.

Bergische Universitat Wuppertal

Inverted CERN School of Computing, 3-4 March 2011
ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

i
CERN

Agile Software Development ot o Camput

= 4 genereal ideas

= |Individuals and interactions over processes and tools

= Working software over comprehensive documentation
= Customer collaboration over contract negotiation
= Responding to change over following a plan

= Collection of best practices

= Working software is the principal measure of progress
= Simplicity

= Self-organizing teams

= Regular adaptation to changing circumstances

i
CERN

Three IdeaS / BeSt praCUCeS School of Computing

= Code refactoring
= |Incrementally improve your code

= Test Driven Development
= test first, write code, less errors

= Pair Programming
= 4 eyes see more than 2

i
CERN

Code Refactoring - Outline sl e

= Why refactor?
= What is Code Refactoring

= Examples & Techniques
= Extract / Inline Methods
= Temp variables
= Substitute Algorithm
= Encapsulate field
= Template Methods
= Use Explicit Methods
= Preserve Object
= Replace constructor with Factory Method

= Tools & IDEs
4

i
CERN

W hy refaCtO r’? School of Computing

= Source code ages
= Becomes ugly
= messy, cluttered, unstructured

= Coding conventions change

= Requirements change
= Always during development and maintenance
= Performance issues
= Design problems / extensibility

= New programming techniques
= Transform Java Collections to Generics

CERN
School of Computing

What Is Refactoring?

= “A change made to the internal structure of software to
make it easier to understand and cheaper to modify without
changing its observable behavior.” (M. Fowler)

= Disciplined way to restructure code without changing
functional requirements

= “Deaging of software”
= Series of small changes

= See: http://refactoring.com

i
CERN

Obey to coding standards o o Compting

= Code is easier to read
= Getters, setters
= For each loops

= Use common design patterns
= See iICSC 2010
= See GoF - Book

= Documentation

i
CERN

R eNnam | N g School of Computing

= |s the lowest hanging fruit
= Java is no fortran (no implicit typing)

= Use meaningful names
= Use long names (let Code Completion help you)
= Self documenting code

= Hungarian Notation
= |n typeless languages

= Code beautification
= |ndentation & Spacing

= Replace magic numbers
= Symbolic constants & constant methods

Modern Software Engineering meets HEP

Technigue: Extract / Inline method

void printOwing() {
printBanner();
printf("name: %s" + name);
printf("age: %d" + age);

/Ibecomes:

void printOwing() {
printBanner();
printDetails(getAge());

}

void printDetails (int age) {
printf("name: " + name);
printf("amount: " + age);

o}

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

CERN
School of Computing

Modern Software Engineering meets HEP

Technigue: Temp variables

double basePrice = anOrder.basePrice();
return (basePrice > 1000);

/Ibecomes:

return (anOrder.basePrice() > 1000);

10

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

CERN
School of Computing

i
CERN

Technique: Substitute Algorithm =™

String foundPerson(String[] people){ /lbecomes:
for (int 1 = 0; i < people.length; i++) {
if (people[i].equals ("Don")){ String foundPerson(String[] people){
return "Don"; List candidates = Arrays.asList(new
| String[] {"Don", "John", "Kent"});

for (int i=0; i<people.length; i++)
if (people[i].equals ("John™)){

if (candidates.contains(people[i]))
return "John";

return peoplelil;

}
return "';
if (people[i].equals ("Kent")){
}
return "Kent";
1}
return ";

Modern Software Engineering meets HEP

Data Encapsulation

= Use encapsulation
= for member fields

= Make own collections immutable

= Separation of concern

12

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

CERN
School of Computing

Modern Software Engineering meets HEP

Technigue: Encapsulate field

public String _name
/lbecomes:

private String _name;
public String getName() {

return _name;

public void setName(String name) {
__nhame = name;

13

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

CERN
School of Computing

Technique:
Template
methods

14

CERN
School of Computing

double hase = _unifs * _rate * 0.5;
double fax = baze * Site TAX_RATE * 0.2;

A retum base +1ax;

v

Residential Site

Lifeline Site /

geiBillableAmount O]

o,

K,
getBillable Amount O/

[

—
—_—

double baze = _units * _rate;
double tax = base * Site. TAX_RATE;
retum baze +1ax;

Site

getBillablefmount o
getSasedrmoun ™
get TaxAmount T ~—

T

A retum gelDazefmount() + getTaxAmount); Iﬁ

Residential Sibe LifelineSite
g etBazeAmount getBazedmount
g etTaxAmount getTaxAmourt

Method calls

= Change method signhatures
= Parameters
= Return values
= Exceptions

Separate Query from Modifier

= getTotalAndSub5()
= getTotal()

= Sub5()

= Use explicit methods

= Preserve object

15

CERN
School of Computing

Technigue: Use Explicit Methods

void setValue(String name, int value) //becomes :
{ _ .

If (name.equals("height")) { }EOId seteight(int arg)
_height = value; _height = arg;
return; }

_} void setWidth (int arg)

if (name.equals("width")) { {

_width = value; _width = arg;
return; ¥

}

Assert.shouldNeverReachHere();

16

CERN
School of Computing

Technigue: Preserve Object

Int low = daysTempRange().getLow();
Int high = daysTempRange().getHigh();

withinPlan = plan.withinRange(low, high);

/[l becomes:

withinPlan = plan.withinRange(daysTempRange());

17

CERN
School of Computing

Modern Software Engineering meets HEP ,‘

CERN

Technique: Replace constructor with™ =™
Factory Method

Employee (int type) {
_type = type;
}
/Ibecomes:
static Employee create(int type) {

return new Employee(type);

18

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

Tooling

= Automated refactoring
= Context aware
= Parameterizing option
= Menu driven assistents & wizards

= |IDE support
= Eclipse
= Photran
= Xcode
NETBEANS
IntelliJ IDEA
= Visual Studio .net

19

CERN
School of Computing

Modern Software Engineering meets HEP

i
CERN

Test driven development - Outline **"*™™

= What is Test Driven Development?

= Red / Green / Refactor

Unit Tests
= Tools

= Possible Problems

20

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

i
CERN

What Is Test Driven Development? *7*™"

= Design strategy
= Always produce tested code
= Less use of adebugger to hunt bugs

= Need a fast compiling, modular project
= Quick turnaround on save, compile and test the module

= Trunk always works
= At |least all tests are green

= Best used with a continuous integration build system to
regularly run tests on server

21

i
CERN

Red / Green / Refactor ol o Comptin

* Red
= Write new failing test due to missing code
= Write minimal amount of code to compile test

= Green
= Write as much code as needed to satisfy test

= Refactor
= Think about missing testing scenarios

"= Repeat!
22

Unit tests

= One test class per tested class

= | eads to
= Smaller classes
= With looser coupling
= Cleaner interfaces
= Clearer responsibilities

23

CERN
School of Computing

Modern Software Engineering meets HEP

Tools

= Unit Tests
= Junit
= CppUnit
= googletest

= Test Coverage
= Tessy (C)
= Coverage.py
= Clover (Java)

24

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

CERN
School of Computing

Modern Software Engineering meets HEP "
CERN

‘J U n it School of Computing

»

[J1] JUnit E]@E]

JUnit

Test class name:

prarescharabeils] (=] @)

[w|Reload classes every run .
————— U Junit —)y

JUnit 3.8.1 by Kent Beck and Erich Gamma
Runs: 46/46 X Errors: 16

Results:

= org.jfree.chart.labels
=1 = org.jfree.chart.labels.junit.BoxAndWhiskerToolTipGeneratorTests
i testEquals
i testCloning —
X testSerialization
3 org.jfree.chart.labels.junit.BoxandWhiskerXyToolTipGeneratorTests
3 org.jfree.chart.labels.junit.CustomXYltemLabelGeneratorTests
3 org.jfree.chart.labels.junit.HighLowltemLabelGeneratorTests -

Run

X Failures, d& Test Hierarchyi."'

java.lang.MoSuchMethodError: firsthonMullClassLoader <
at java.io.ObjectinputStream.currentLoader(ObjectinputStream. java: 818)
at java.io.ObjectinputStream.resclveClass(ObjectinputStream.java: 785)
at java.io.ObjectinputStream.readClassDescriptor{ObjectinputStream.java: 564)
at java.io.ObjectinputStream. parseContent(ObjectinputStream.java: 264)
at java.io.ObjectinputStream.readObject(ObjectinputStream.java: 142)
at java.io.ObjectinputStream. parseContent(ObjectinputStream.java: 311)
at java.io.ObjectinputStream.readObject{ObjectinputStream.java: 142)
at org.jfree.chart.labels.junit. Box&ndWhiskerTool TipGeneratorTests.testSerialization{BoxandWhiskerToolT]
at java.lang.reflect.Method.invokeMative(Mative Method) '

i]

25

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

CERN
School of Computing

Integration Tests

= Happen after unit testing but before system tests
= Unit tests cover single modules, without interaction
= Unit tests are often run against mock objects

= Use interfaces of modules, use them as black boxes

= Group several tested modules and test them in integrated
concert

= Test
= Proper integration of module associations
= Layers of modules
= |nter process communication

26

i
CERN

Problems with TDD o omot

= Can lock your API quite early
= Developers do have blind spots
= Psychological mindset: plan to fail

= |f you prototype and experiment, TDD can be a lot of extra
effort

27

Modern Software Engineering meets HEP

Pair Programming - Outline

= What is Pair Programming?
= Advantages

= Possible Problems

28

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

CERN
School of Computing

What is Pair Programming?

= Two people share one machine
= For programming
= Pilot / Navigator

= Change often
= Roles: every couple minutes
= Teams: every day

= Small teams

29

CERN
School of Computing

i
CERN

Ad Vantag es School of Computing

= Higher code quality
= Less errors (15% less)
= Code is shorter (5 -15%)

= Low truck factor
= Everybody knows part of the code
= No more code ownership

= Mentoring
= Everybody learns

= More discipline
= Communication

= Fun!
30

i
CERN

P ro b I ems School of Computing

= Time
= Experienced teams need about 15% more time

= Authority
= on specific decisions

= Costs
= Steep learning curve

= Who wrote what?
= Copyrights
= Liability

= Does not scale well with too large teams
= Keep your teams small or break up into sub projects / teams

31

i
CERN

My experience e T

= Introduction to pair programming

= One team leader, 5 coder
= 3 teams

= One dedicated integration team

= Six to ten small feature requests and five to ten bugs as
tasks

= Role switching every 20-30 minutes
= Team mixing every 8 to 12 hours

= Steep learning curve
= Removed code ownership

32

Modern Software Engineering meets HEP

Summary

= Code Refactoring

= Test Driven Development

= Pair Programming

33

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

CERN
School of Computing

Modern Software Engineering meets HEP

Thank you...

Any guestions?

34

ICSC2011, Frank Volkmer, Bergische Universitat Wuppertal

CERN
School of Computing

