
CMS software performance studies

Matti Kortelainen
Helsinki Institute of Physics

with P. Elmer, G. Eulisse, V. Innocente, C. Jones and L. Tuura (CMS Collaboration)

First Thematic CERN School of Computing
Split, Croatia
June 7, 2013

Adapted from slides presented in CHEP 2010

http://117.103.105.177/MaKaC/contributionDisplay.py?contribId=148&sessionId=46&confId=3

Introduction

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013–06–07 2/9

• CMS software (CMSSW)
− 2.5M lines of C++, 600k lines of python
− General-purpose event processing framework

? Same codebase for simulation, high-level trigger, reconstruction, analysis
− ∼ 500–1000 shared libraries (depending on workflow)
− Algorithms and data formats separated, “event” used as a data store

• Framework in production today is single-threaded
− Support for forking and copy-on-write added years ago
− Full multithreading being added (TBB), release expected on autumn

• Performance is monitored both continously, and as a special effort

Tools

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013–06–07 3/9

• Main workhorse is IgProf (http://igprof.sourceforge.net)
− Simple CPU/memory profiler developed in CMS

• Simple timers
− Both /usr/bin/time and instrumented

• perfmon / perf
• Intel Performance Tuning Utility (PTU)
• GOoDA (http://code.google.com/p/gooda)

− Uses perf, predefined set of PMU events, reports viewable in web browser
− Can show event counts per source line / asm instruction / basic block

(but not very precisely)
• Not just a matter of measurements, but also how to share the results to
your collaborators
− We have paid a lot of attention to web-based reports

http://igprof.sourceforge.net
http://code.google.com/p/gooda

Some challenges

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013–06–07 4/9

• Diminishing returns

of functions

0 200 400 600 800 100012001400160018002000

F
ra

c
ti
o
n
 o

f
a
ll

c
y
c
le

s

0

0.2

0.4

0.6

0.8

1

− Many, many functions
− Significant improvements need re-engineering

• Need ∼ 2× improvement after LS1 to keep same physics performance
− Fortunately, this includes algorithmic improvements

IgProf

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013–06–07 5/9

− A simple tool for measuring
? Sampling profiles
? Memory allocations
? Memory leaks

− Works in Linux (both 32 and
64 bit), no recompilation needed

− Handles shared libraries,
threads, subprocesses

− Freely available at SourceForge
− Web-based navigator for easy

browsing and sharing of
the reports

IgProf: performance profile

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013–06–07 6/9

Seconds

IgProf: memory allocations

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013–06–07 7/9

Bytes # allocs

Some observations

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013–06–07 8/9

• In the past, 20% of CPU time wasted in memory (de)allocation
• Some common causes for memory churn

− Confusion how std::vector works (excessive copying)
− Dynamic memory allocation in tight loops, numerous tiny objects
− Multiple in-memory copies, strings used in inappropriate places

• Benefitted from compiler updates, from transition to 64 bit
• Vectorization

− Autovectorization
− Explicitly implemented, in some utilities and algorithms

(geometrical vectors and rotations)
− Also via abstractions

? E.g. VDT, developed in house for fast and approximate transcendental functions
(https://svnweb.cern.ch/trac/vdt)

https://svnweb.cern.ch/trac/vdt

Some observations from PMU events

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013–06–07 9/9

• Identified functions with bad CPI, or high number of div/sqrt
• About half of cycles wasted in front-end decoder stalls

− I.e. CPU is starved from instructions
− Known for some time, exact reasons still not known
− Some known causes are

? Bad branch prediction performance
? High sensitivity to instruction cache misses

− Possible sources include
? Code size and locality, pointer chasing (incl. virtual functions)

• None of these can be seen in sampling profiles!
− PMU events allow to try to see what is really going on

