CMS,

CMS software performance studies

Matti Kortelainen
Helsinki Institute of Physics

with P. Elmer, G. Eulisse, V. Innocente, C. Jones and L. Tuura (CMS Collaboration)

First Thematic CERN School of Computing
Split, Croatia
June 7, 2013

Adapted from slides presented in CHEP 2010

http://117.103.105.177/MaKaC/contributionDisplay.py?contribId=148&sessionId=46&confId=3

Introduction CAIS,

e CMS software (CMSSW)

— 2.5M lines of C++4, 600k lines of python
— General-purpose event processing framework
* Same codebase for simulation, high-level trigger, reconstruction, analysis
— ~ 500-1000 shared libraries (depending on workflow)
— Algorithms and data formats separated, “event” used as a data store

e Framework in production today is single-threaded
— Support for forking and copy-on-write added years ago
— Full multithreading being added (TBB), release expected on autumn
e Performance is monitored both continously, and as a special effort

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013-06-07 2/9

Tools NS,

e Main workhorse is IgProf (http://igprof.sourceforge.net)
— Simple CPU/memory profiler developed in CMS
e Simple timers
— Both /usr/bin/time and instrumented
e perfmon / perf
e Intel Performance Tuning Ultility (PTU)
e GOoDA (http://code.google.com/p/gooda)
— Uses perf, predefined set of PMU events, reports viewable in web browser

— Can show event counts per source line / asm instruction / basic block
(but not very precisely)

e Not just a matter of measurements, but also how to share the results to
your collaborators
— We have paid a lot of attention to web-based reports

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013-06-07 3/9

http://igprof.sourceforge.net
http://code.google.com/p/gooda

Some challenges NS,

e Diminishing returns

—_
L

0.
0 200 400 600 800 100012001400160018002000
of functions

Fraction of all cycles
o o o
T T T

o

— Many, many functions
— Significant improvements need re-engineering
e Need ~ 2x improvement after LS1 to keep same physics performance

— Fortunately, this includes algorithmic improvements
Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013-06-07 4/9

— A simple tool for measuring

* Sampling profiles
* Memory allocations
* Memory leaks

Works in Linux (both 32 and

64 bit), no recompilation needed
Handles shared libraries,
threads, subprocesses

Freely available at SourceForge
Web-based navigator for easy
browsing and sharing of

lgProf

CNIS,

IgProf, The Ignominous Profiler

Top | Downloads | Bugs | Project

Welcome to IgProf, the Ignominous Profiler. IgProf
is a simple nice tool for measuring and analysing
application memory and performance
characteristics. IgProf requires no changes to the
application or the build process. It currently works
on Linux (ia32, x86_64). Eons ago it worled also on
Mac OS X (ppc).

IgProf is fast, light weight and correctly handles
dynamically loaded shared libraries, threads and
sub-processes started by the application. We have
used it routinely with large C++ applications
consisting of many hundreds of shared libraries
and thousands of symbols from millions of source
lines of code, It requires no special privieges to
run. The performance reports provide full
navigable call stacks and can be customised by
applying filters. Results from any number of
profiling runs can be included. This means you can
both dig into the details and see the big picture
from combined worlkloads.

IgProf can be run in one of three modes: as a
performance profiler, as a memory profiler, or in
instrumentation mode. When used as a

Quick start

» |ntroduction

& Building and Installin
lgProf

* Running igprof

* Producing profile reports

* Advanced options
* Release notes

Details and more

e HTML profile reports

e ASCI| profile reports

* Profile statistics output file
format

* The lgHook tapping librar

e Papers and documents
* Authors

* Famous users

o History

e License

the reports

performance profiler it provides statistical sampling based performance profiles of the
annlicatinm When 1iced ac a memaory nrafilar infarmatinn ahon it hoth memony lealkes ancd

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013-06-07 5/9

IlgProf: performance profile CMS

Seconds
o Counts | |p:th5
Rank total t":hfir:"" Total n:hl;ldl?gTutal Symbol name
parent

74.07 (gfé.gﬂ 13.91 2 2 | edm::WorkerT<edm.:EDProducers=; ;implDoBegin (edm: : Ev
[16] | 74.07 ZIS.EE) 2 2 | edm::EDProducer: :doEvent (edm: :EventPrincipal &, edn
17. 46 SéTQB 50, 43 2 2 | cms::CkfTrackCandidateMakerBase: :produceBase (edm: :
11.99 34,83 34,63 2 2 | ConversionTrackCandidateProducer: :produce (edm: :Eve
4. 96 14,33 14,33 2 2 | MuonIdProducer::produce(edm::Event&, edm::EventSet
4,76 13.74 13.74 2 2 | GsfTrackProducer: :produce(edm: :Event&. edm.:.Events
4,66 13.47 13,47 2 2 | TrackProducer::produce(edm::Event&, edm::EventSeti
2.80 8.10 8.10 2 2 | SeedGeneratorFromRegionHitsECProducer: ;produce (edn
1.65 4,76 4. 76 2 2 | SiStripRecHitConverter::produce (edm: : Event&, edm::
1.64 4,74 4,74 2 2 | EcalUncalibRecHitProducer: :produce(edm::Event&, ec
1.64 4,74 4,74 2 2 | PrimaryVertexProducer: :produce(edm: :Event&, edm::E
1. 38 3.98 3.98 2 2 | GoodSeedProducer::produce (edm::Event&, edm::Event
1.37 3.85 3.85 2 2 | CaloTowersCreator::produce (edm: :Event&, edm::Event
1.24 3.59 3.58 2 2 | CosmicMuonProducer::produce(edm: :Event&, edm::Ever
0,92 2.65 2.65 2 2 | PRELecTkProducer: :produce (edm: :Event&. edm.:Events
0.91 2.62 2.62 2 2 | PEBlockProducer: . produce (edm: :Event&, edm::EventSe
0.80 2.30 2.30 2 2 | SecondaryVertexProducer: :produce (edm: :Event&. edm:

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013-06-07 6/9

lgProf: memory allocations CN1S,
Bytes # allocs
% Counts Calls ||.Faths
Rank total tutfhfirsum Total tui..:"hfirsum Total n:hlilld";g Total SymbOI name
parent
87.50 | 40,063,717,931 40,063,717,931 | 265,883,752 265,883,752 4 4 | edm::WorkerT<edm: :E
[161 | 87.50 0 40,063,717,931 0 265,883,752 4 4 | edm::EDProducer: :do
18.24 | 8,352,884,389 8,352,884,389 | 61,183,471 61,183,471 2 2 | cms::CkfTrackCandid
16.54 | 7,573,767,686 7,573,767,686 | 37,888,574 37,888,574 2 2 | ConversionTrackCand
7.03 | 3,216,447,860 3,216,447,860 | 20,888,236 20,888,236 2 2 | GsfTrackProducer::p
6.33 | 2,899,892,520 2,899,892,529 2,910,740 2,510,740 2 2 | 5iStripRecHitConver
§.22 | 2,848,508,108 2,848,508,108 | 11,970,216 11,970,216 2 2 | SeedGeneratorFromRe
4,05 | 1,852,820,570 1,852,820,570 7,827,912 7,827,912 2 2 | TrackProducer::prod
2,89 | 1,321,908,244 1,321,908, 244 6,932, 668 6,932, 668 2 2 | PrimaryVertexProduc
2,69 | 1,231,376,825 1,231,375,825 8,419,371 8,419,371 2 2 | GoodSeedProducer::p
1.64 752,137,339 752,137,339 | 10,328,177 10,328,177 2 2 | MuonIdProducer::pro
1.57 720,185, 219 720,185,219 | 11,214,313 11,214,313 2 2 | JetPlusTrackProduce
1.36 621,227,344 621,227, 344 7,594, 458 7,594, 459 2 2 | caloTowersCreator: :|
1.35 616, 394, 6580 616, 394, 630 2,792,145 2,792,145 2 2 | PEElecTkProducer::p
1.16 531, 244, 964 531, 244, 964 4,501,777 4,501,777 2 2 | SecondaryVertexProd
1.11 507, 228, 642 507, 228, 642 6,084,587 6,084,587 2 2 | PFRecHitProducer::p
1.00 457,500, 032 457,500, 032 3,623,841 3,623,841 2 2 | virtualJetProducer:
0.97 444,230, 330 444,230, 330 4,036, 250 4,036, 259 2 2 | reco::modules::Anal
0.95 436, 926, 779 436,926, 779 3,280,413 3,280,413 2 2 | PFDisplacedVertexPr
0.92 419,294,139 419,294,139 2,072,230 2,072,230 2 2 | PixelTrackProducer:

Matti Kortelainen (HIP), CMS software performance studies

tCSC2013, 2013-06-07

719

Some observations CMS,

e In the past, 20% of CPU time wasted in memory (de)allocation
e Some common causes for memory churn

— Confusion how std: :vector works (excessive copying)

— Dynamic memory allocation in tight loops, numerous tiny objects

— Multiple in-memory copies, strings used in inappropriate places
e Benefitted from compiler updates, from transition to 64 bit
e Vectorization

— Autovectorization

— Explicitly implemented, in some utilities and algorithms

(geometrical vectors and rotations)
— Also via abstractions

* E.g. VDT, developed in house for fast and approximate transcendental functions
(https://svnweb.cern.ch/trac/vdt)

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013-06-07

8/9

https://svnweb.cern.ch/trac/vdt

Some observations from PMU events NS,

e |dentified functions with bad CPI, or high number of div/sqrt
e About half of cycles wasted in front-end decoder stalls

— lL.e. CPU is starved from instructions
— Known for some time, exact reasons still not known
— Some known causes are
* Bad branch prediction performance
* High sensitivity to instruction cache misses
— Possible sources include
* Code size and locality, pointer chasing (incl. virtual functions)
e None of these can be seen in sampling profiles!

— PMU events allow to try to see what is really going on

Matti Kortelainen (HIP), CMS software performance studies tCSC2013, 2013-06-07 9/9

