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Introduction
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• CMS software (CMSSW)
− 2.5M lines of C++, 600k lines of python
− General-purpose event processing framework

? Same codebase for simulation, high-level trigger, reconstruction, analysis
− ∼ 500–1000 shared libraries (depending on workflow)
− Algorithms and data formats separated, “event” used as a data store

• Framework in production today is single-threaded
− Support for forking and copy-on-write added years ago
− Full multithreading being added (TBB), release expected on autumn

• Performance is monitored both continously, and as a special effort



Tools
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• Main workhorse is IgProf (http://igprof.sourceforge.net)
− Simple CPU/memory profiler developed in CMS

• Simple timers
− Both /usr/bin/time and instrumented

• perfmon / perf
• Intel Performance Tuning Utility (PTU)
• GOoDA (http://code.google.com/p/gooda)

− Uses perf, predefined set of PMU events, reports viewable in web browser
− Can show event counts per source line / asm instruction / basic block

(but not very precisely)
• Not just a matter of measurements, but also how to share the results to
your collaborators
− We have paid a lot of attention to web-based reports

http://igprof.sourceforge.net
http://code.google.com/p/gooda


Some challenges
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• Diminishing returns

# of functions
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− Many, many functions
− Significant improvements need re-engineering

• Need ∼ 2× improvement after LS1 to keep same physics performance
− Fortunately, this includes algorithmic improvements



IgProf
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− A simple tool for measuring
? Sampling profiles
? Memory allocations
? Memory leaks

− Works in Linux (both 32 and
64 bit), no recompilation needed

− Handles shared libraries,
threads, subprocesses

− Freely available at SourceForge
− Web-based navigator for easy

browsing and sharing of
the reports



IgProf: performance profile
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IgProf: memory allocations
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Some observations
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• In the past, 20% of CPU time wasted in memory (de)allocation
• Some common causes for memory churn

− Confusion how std::vector works (excessive copying)
− Dynamic memory allocation in tight loops, numerous tiny objects
− Multiple in-memory copies, strings used in inappropriate places

• Benefitted from compiler updates, from transition to 64 bit
• Vectorization

− Autovectorization
− Explicitly implemented, in some utilities and algorithms

(geometrical vectors and rotations)
− Also via abstractions

? E.g. VDT, developed in house for fast and approximate transcendental functions
(https://svnweb.cern.ch/trac/vdt)

https://svnweb.cern.ch/trac/vdt


Some observations from PMU events
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• Identified functions with bad CPI, or high number of div/sqrt
• About half of cycles wasted in front-end decoder stalls

− I.e. CPU is starved from instructions
− Known for some time, exact reasons still not known
− Some known causes are

? Bad branch prediction performance
? High sensitivity to instruction cache misses

− Possible sources include
? Code size and locality, pointer chasing (incl. virtual functions)

• None of these can be seen in sampling profiles!
− PMU events allow to try to see what is really going on


