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L2: Feature detection and 3D reconstruction

Purpose

I Detect features in input image
I Identify keypoint features (mountain peaks, building

corners, doorways...)
I Edges (profile of mountains against the sky...)
I Features usable for object classification
I Extract relevant characteristics of image

I Create keypoint and region-based descriptors usable for
matching

I Create abstract sketchy representation of subject

I Support higher level algorithms for recognition and
tracking
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Point features

I Set of corresponding locations in different images

I Easiest to find

I Not too easy to match, but easy to track in subsequent
frames

I Alignment of images

I Image mosaics

I Video stabilization

I Stereo matching

I Suitable for matching with occlusion

I Suitable for large scale and orientation changes
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L2: Feature detection and 3D reconstruction

Points and patches: example

Not all patches are born equal...
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Feature detectors

What are good features to track?

I Textureless patches: nearly impossible to track

I Large contrast changes easy to localize
I Straight line segments can only be aligned

perpendicularly to the line itself

I Best are patches with gradients in at least two directions
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Feature detection: matching criteria

Simplest possible: weighted summed square difference

EWSSD(u) =
∑
i

w(xi)[I1(xi + u)− I0(xi)]2

In image, u =
(
x
y

)
displacement vector, w(x) spatially varying

weighting function, i pixels in patch

Is a patch suitable for matching?
Auto correlation surface: self stability of EWSSD metric in
respect to small position variation ∆u

EAC (∆u) =
∑
i

w(xi)[I0(xi + ∆u)− I0(xi)]2
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L2: Feature detection and 3D reconstruction

Auto correlation surface: example

Stable, unique minimum indicates good localization
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Outline of feature detection algorithm

I Compute efficiently auto correlation surface for whole
image

I Different approaches and surface definitions possible
I Best if image-plane rotation invariant
I Usually is a matrix (defined by the image) product per

pixel

I Compute a scalar interest measure per pixel

I Find local maximum above threshold: those are feature
points!

I Some care needed in choosing local maximum to get
as-even-as-possible feature points distribution
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Which is a good feature detector?

I Repeatability: property of the detector of finding the
same keypoints within ε pixels in a transformed image
(brightness, contrast, rotation, scale, viewpoint change,
noise...)

I Scale invariance: better to search for keypoints that are
stable in both location and scale upon image
transformation

I Rotational invariance: associate to each keypoint a
dominant orientation to avoid mismatching
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Feature descriptors
I (matching) features differ by affine transformations and

colors even after a compensation is applied → need
something better than an image patch

I Many kinds of descriptors exist, gradient-based examples:
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Preliminary feature matching
Create a correspondence between features of two images

I Matching strategy is context dependent, example:
I image stitching (many well matching features)
I object recognition in cluttered scene (few matching

features)

I Matching threshold needs contextual adjustments
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Efficient matching

Create a correspondence between matching features of two or
more images

I Indexing structure: multi-dimensional search tree or
hash table

I Per-image (object search) or global (panorama)

I Match verification: geometric alignment
I global transform usually estimated on random subset of

matching features
I discard matches which do not conform to global

geometric transformation
I more matching features are added later on and

transformation gets better estimation
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L2: Feature detection and 3D reconstruction

Edges are important

I Important semantic content: object boundaries, shadows,
shapes...

I Does the edges traced under match your expectations?

I Which ones would you trace?
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Edge detection

I We define edges as regions of rapid intensity variation

J(p) = ∆I (p) =

(
∂I

∂x
,
∂I

∂y

)
(p)

I Unfortunately gradient amplifies high frequencies (noise),
necessary to smooth image before

I Smoothing must be circularly symmetric (Gaussian is the
only separable circularly symmetric filter)
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L2: Feature detection and 3D reconstruction

Scale and blur estimation

I Estimation of smoothing scale is necessary to have
relevant results

I Colors can give useful cues (iso-luminant different colors)

I Cues from brightness, different color channels and texture
can be combined to improve global performance
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L2: Feature detection and 3D reconstruction

Edge linking
I Isolated edges very useful for stereo matching...
I ...but curves can be much more useful!
I Many techniques available to link edges and form curves
I Useful to vectorize and/or scale images
I Parameterization could be used to change character of a

curve to help recognition (or to have fun)
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Lines

I Human world is full of straight lines: they can be a good
hint in many useful applications

I Curves can be approximated with segments, many
techniques available

I Segments can be grouped together into extended lines
(Algorithms available to take care of holes and missing
pieces)

I Vanishing points can be used
I to detect parallel lines in 3D
I as good hints to refine line measurements
I to estimate camera intrinsics and estrinsics parameters

I In robotics context can carry more useful information
than curves
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Segmentation
Task of finding groups of pixels that “go together”

I similar to cluster analysis in statistics, hundreds of
different algorithms available

I even in CV one of oldest and most widely studied problem
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Active contours

I Family of boundary detectors which move iteratively
towards a final solution

I Example: Snakes
I Iteratively minimize energy defined as sum of:

I External energy: minimal when snake at object
boundary position (follow image edges) [Eint ]

I Internal energy: minimal when snake has sensible
shape: prefer smooth shapes (high energy to high
curvature and elongated contours [Eext ]

I Constraint energy: minimal when snake follows
eventual user hints [Econ]
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L2: Feature detection and 3D reconstruction

Active contours: Snake example

Esnake =

∫
S

(Eint(s) + Eext(s) + Econ(s))ds
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Level Sets

I Contour represented as an
evolving signed function

I Surface function and zero
level evolved

I Often used for medical
imaging
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Split and merge

I Simplest way of segmenting (greyscale) image: set
threshold and compute connected components

I Usually not enough due to lighting and intra-object
statistical variations

I Many techniques try to overcome limitation by:
I recursive split of image in pieces based on region statistic
I merging pixels and regions in a hierarchical fashion
I merging and splitting of regions combined
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L2: Feature detection and 3D reconstruction

Split and merge: examples

Watershed segmentation:
evolve local minimum until
other bins are met

Graph-based merging
segmentation
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The simplest setup
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L2: Feature detection and 3D reconstruction

Triangulation

Dx(pl , pr ) = pl1 − pr1 = xl − xr = bf
Z

Z = bf
xl−xr
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Epipolar geometry
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L2: Feature detection and 3D reconstruction

The essential and fundamental matrices

The Essential matrix describes the relationship between the
cameras in homogeneous camera coordinates:

pTl Epr = 0

The Fundamental matrix describes the same in pixel
coordinates and is related to the fundamental one:

F = KT
l EKr

... but we must find (approximate) them!
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L2: Feature detection and 3D reconstruction

The matrix F

Canonical case:

FC =

0 0 0
0 0 c
0 −c 0


Otherwise: unknown
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How to find F

8 point matching algorithm

83 iCSC2013 Carli S. Hellmich M. (CERN)
,



L2: Feature detection and 3D reconstruction

8 points matching

Find 8 points, solve
7∑

i=0

qi fi = 0 → easy

But:

I numerical instabilities

I wrong matches

Solution:

I normalize

I more points, then least squares

I remove outliers
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The RANSAC Algorithm

85 iCSC2013 Carli S. Hellmich M. (CERN)
,



L2: Feature detection and 3D reconstruction

Constraints to simplify our life

I Epipolar contraint

I Uniqueness constraint

I Similar regional brightness
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Ordering constraint
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Feature compatibility constraint
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L2: Feature detection and 3D reconstruction

Image rectification

Wanted: canonical case

I transformation Q

I based on T

I rotation R of right camera
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Approximated triangulation
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Many options

Now we can get the rest of the points
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More choices
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Results
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Depth resolution

Z[m]/b[m] 0.1 0.5 1.0 5 10
0.05 0.000226 0.0057 0.023 0.635 2.91
0.3 0.000038 0.00094 0.0038 0.096 0.39
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Stereo calibration

Camera calibration

I Based on model

I Self-calibration

Stereo calibration

I Camera extrinsic parameters:

I Rx rotation, tx translation

I R = RlRT
r
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Stereo Vision with one camera

I Depth from motion

I Catadioptric systems

I Plenoptic cameras
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Depth from motion

I1(x , y) = I2(x + δx , y + δy)
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Catadioptric systems
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Plenoptic cameras
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Single lens stereo
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Recap

I No matter what you are going to to do...

I ... you surely want to extract features from images

I Make sure you represent features properly! (At least scale
and rotation invariance)

I Even higher lever properties (lines, curves) can be
extracted, but may require higher lever (classifiers) help

I There are methods to segment images in relevant regions,
more or less performant (application dependent)

I In theory triangulation is not a big deal...

I ...but practice is a little more complicated

I 3D vision can be achieved even with just one camera,
with different performances
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