

Lecture 2 Introduction to image feature detection and 3D reconstruction

concepts and ideas

Samuele Carli Martin Hellmich

5 febbraio 2013

CSC2013 Carli S. Hellmich M. (CERN)

Contents

Features

Edges and lines

Segmentation

Stereo vision

Features

Point features Feature detectors Feature descriptors Preliminary feature matching

Edges and lines

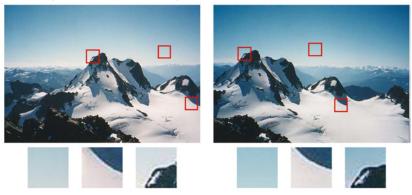
Segmentation

Stereo vision

Purpose

- Detect features in input image
 - Identify keypoint features (mountain peaks, building corners, doorways...)
 - Edges (profile of mountains against the sky...)
 - Features usable for object classification
 - Extract relevant characteristics of image
- Create keypoint and region-based descriptors usable for matching
- Create abstract sketchy representation of subject
- Support higher level algorithms for recognition and tracking

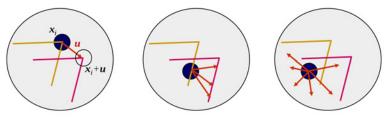
Point features



- Set of corresponding locations in different images
- Easiest to find
- Not too easy to match, but easy to track in subsequent frames
- Alignment of images
- Image mosaics
- Video stabilization
- Stereo matching
- Suitable for matching with occlusion
- Suitable for large scale and orientation changes

Points and patches: example

Not all patches are born equal...



Feature detectors

What are good features to track?

- Textureless patches: nearly impossible to track
- Large contrast changes easy to localize
 - Straight line segments can only be aligned perpendicularly to the line itself
- Best are patches with gradients in at least two directions

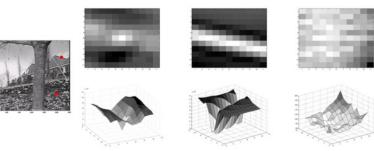
Feature detection: matching criteria

Simplest possible: weighted summed square difference

$$E_{WSSD}(u) = \sum_{i} w(x_i) [I_1(x_i + u) - I_0(x_i)]^2$$

 I_n image, $u = \begin{pmatrix} x \\ y \end{pmatrix}$ displacement vector, w(x) spatially varying weighting function, *i* pixels in patch

Is a patch suitable for matching?


Auto correlation surface: self stability of E_{WSSD} metric in respect to small position variation Δu

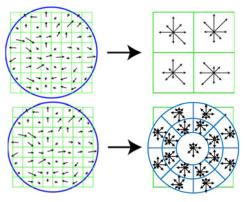
$$E_{AC}(\Delta u) = \sum_{i} w(x_i) [I_0(x_i + \Delta u) - I_0(x_i)]^2$$

Auto correlation surface: example

Stable, unique minimum indicates good localization

Outline of feature detection algorithm

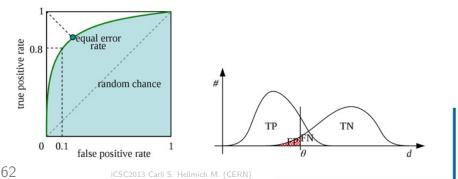
- Compute efficiently auto correlation surface for whole image
 - Different approaches and surface definitions possible
 - Best if image-plane rotation invariant
 - Usually is a matrix (defined by the image) product per pixel
- Compute a scalar interest measure per pixel
- Find local maximum above threshold: those are feature points!
 - Some care needed in choosing local maximum to get as-even-as-possible feature points distribution


Which is a good feature detector?

- Repeatability: property of the detector of finding the same keypoints within \epsilon pixels in a transformed image (brightness, contrast, rotation, scale, viewpoint change, noise...)
- Scale invariance: better to search for keypoints that are stable in both location and scale upon image transformation
- Rotational invariance: associate to each keypoint a dominant orientation to avoid mismatching

Feature descriptors

- ► (matching) features differ by affine transformations and colors even after a compensation is applied → need something better than an image patch
- Many kinds of descriptors exist, gradient-based examples:



Preliminary feature matching

Create a correspondence between features of two images

- Matching strategy is context dependent, example:
 - image stitching (many well matching features)
 - object recognition in cluttered scene (few matching features)
- Matching threshold needs contextual adjustments

Efficient matching

Create a correspondence between matching features of two or more images

- Indexing structure: multi-dimensional search tree or hash table
 - Per-image (object search) or global (panorama)
- Match verification: geometric alignment
 - global transform usually estimated on random subset of matching features
 - discard matches which do not conform to global geometric transformation
 - more matching features are added later on and transformation gets better estimation

Contents

Features

Edges and lines Edge detection Edge linking Lines

Segmentation

Stereo vision

Edges are important

- Important semantic content: object boundaries, shadows, shapes...
- Does the edges traced under match your expectations?
- Which ones would you trace?

Edge detection

► We define edges as regions of rapid intensity variation


$$J(p) = \Delta I(p) = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right)(p)$$

- Unfortunately gradient amplifies high frequencies (noise), necessary to smooth image before
 - Smoothing must be circularly symmetric (Gaussian is the only separable circularly symmetric filter)

Scale and blur estimation

 Estimation of smoothing scale is necessary to have relevant results

- Colors can give useful cues (iso-luminant different colors)
- Cues from brightness, different color channels and texture can be combined to improve global performance

Edge linking

- Isolated edges very useful for stereo matching...
- ...but curves can be much more useful!
- Many techniques available to link edges and form curves
- Useful to vectorize and/or scale images
- Parameterization could be used to change character of a curve to help recognition (or to have fun)

0 0

Lines

- Human world is full of straight lines: they can be a good hint in many useful applications
- Curves can be approximated with segments, many techniques available
- Segments can be grouped together into extended lines (Algorithms available to take care of holes and missing pieces)
- Vanishing points can be used
 - to detect parallel lines in 3D
 - as good hints to refine line measurements
 - to estimate camera intrinsics and estrinsics parameters
- In robotics context can carry more useful information than curves

Contents

Features

Edges and lines

Segmentation

Active contours Level Sets Split and merge

Stereo vision

Segmentation

Task of finding groups of pixels that "go together"

- similar to cluster analysis in statistics, hundreds of different algorithms available
- even in CV one of oldest and most widely studied problem

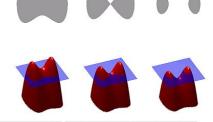
CERN School of Computing

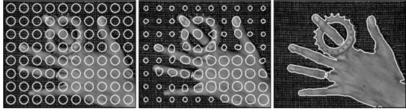
Active contours

- Family of boundary detectors which move iteratively towards a final solution
- Example: Snakes
 - Iteratively minimize energy defined as sum of:
 - External energy: minimal when snake at object boundary position (follow image edges) [E_{int}]
 - Internal energy: minimal when snake has sensible shape: prefer smooth shapes (high energy to high curvature and elongated contours [E_{ext}]
 - Constraint energy: minimal when snake follows eventual user hints [E_{con}]

Active contours: Snake example

$$E_{snake} = \int_{\mathcal{S}} (E_{int}(s) + E_{ext}(s) + E_{con}(s)) ds$$




CSC2013 Carli S. Hellmich M. (CERN)

Level Sets

- Contour represented as an evolving signed function
- Surface function and zero level evolved
- Often used for medical imaging

Split and merge

- Simplest way of segmenting (greyscale) image: set threshold and compute connected components
- Usually not enough due to lighting and intra-object statistical variations
- Many techniques try to overcome limitation by:
 - recursive split of image in pieces based on region statistic
 - merging pixels and regions in a hierarchical fashion
 - merging and splitting of regions combined

Split and merge: examples

Watershed segmentation: evolve local minimum until other bins are met

Graph-based merging segmentation

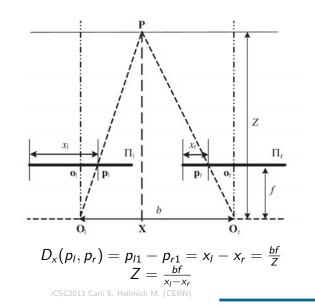
Contents

Features

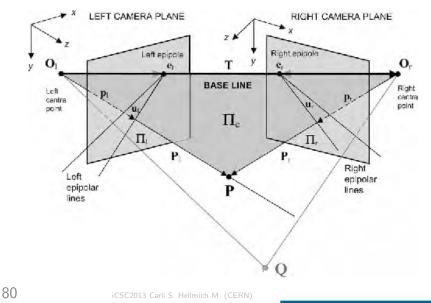
Edges and lines

Segmentation

Stereo vision



The simplest setup


Triangulation

79

Epipolar geometry

The essential and fundamental matrices

The Essential matrix describes the relationship between the cameras in homogeneous camera coordinates:

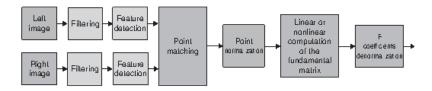
$$p_l^T \mathbf{E} p_r = 0$$

The Fundamental matrix describes the same in pixel coordinates and is related to the fundamental one:

$$\mathbf{F} = \mathbf{K}_{\mathbf{I}}^{\mathsf{T}} \mathbf{E} \mathbf{K}_{\mathbf{r}}$$

... but we must find (approximate) them!

The matrix F


Canonical case:

$$\mathbf{F}_{C} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & c \\ 0 & -c & 0 \end{bmatrix}$$

Otherwise: unknown

How to find F

8 point matching algorithm

8 points matching

Find 8 points, solve
$$\sum_{i=0}^{7} q_i f_i = 0 \rightarrow easy$$

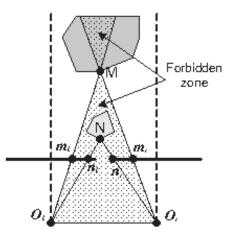
But:

- numerical instabilities
- wrong matches

Solution:

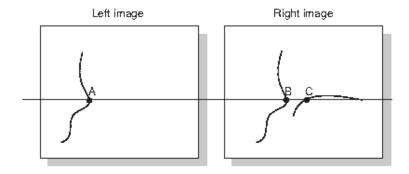
- normalize
- more points, then least squares
- remove outliers

The RANSAC Algorithm



Constraints to simplify our life

- Epipolar contraint
- Uniqueness constraint
- Similar regional brightness



Ordering constraint

Feature compatibility constraint

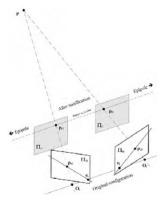
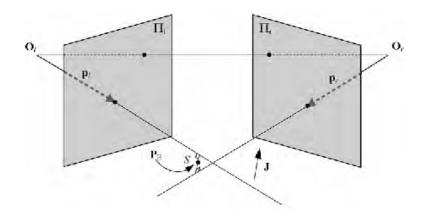
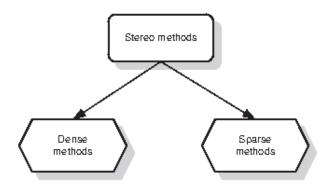

CSC2013 Carli S. Hellmich M. (CERN)

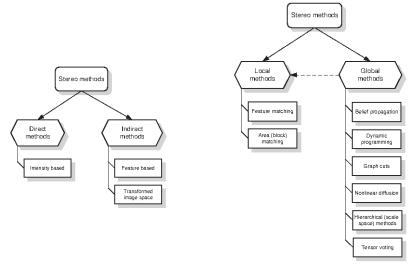
Image rectification


Wanted: canonical case

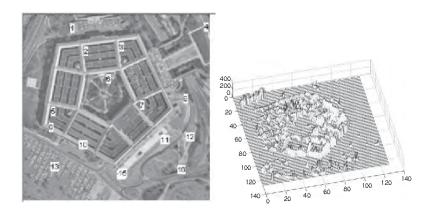
- transformation Q
- based on T
- rotation R of right camera


Approximated triangulation

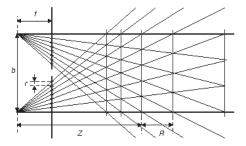
Many options



Now we can get the rest of the points



More choices


Results

Depth resolution

Z[m]/b[m]	0.1	0.5	1.0	5	10
0.05	0.000226	0.0057	0.023	0.635	2.91
0.3	0.000038	0.00094	0.0038	0.096	0.39

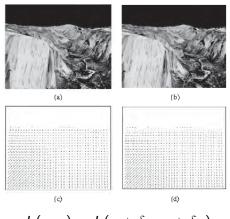
Stereo calibration

Camera calibration

- Based on model
- Self-calibration

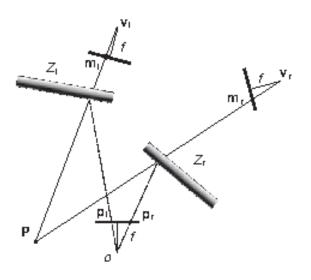
Stereo calibration

- Camera extrinsic parameters:
- $\mathbf{R}_{\mathbf{x}}$ rotation, $\mathbf{t}_{\mathbf{x}}$ translation
- $\blacktriangleright R = R_I R_r^T$



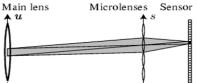
Stereo Vision with one camera

- Depth from motion
- Catadioptric systems
- Plenoptic cameras


Depth from motion

 $I_1(x,y) = I_2(x + \delta x, y + \delta y)$

Catadioptric systems


iCSC2013 Carli S. Hellmich M. (CERN)

Plenoptic cameras

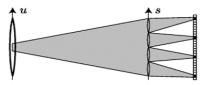
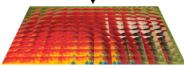
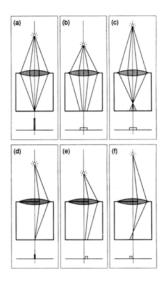
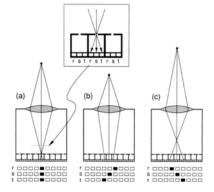


Image in focal Plane


Image captured at MA-imager

CSC2013 Carli S. Hellmich M. (CERN)

Single lens stereo

100

iCSC2013 Carli S. Hellmich M. (CERN)

Recap

- No matter what you are going to to do…
- ... you surely want to extract features from images
- Make sure you represent features properly! (At least scale and rotation invariance)
- Even higher lever properties (lines, curves) can be extracted, but may require higher lever (classifiers) help
- There are methods to segment images in relevant regions, more or less performant (application dependent)
- In theory triangulation is not a big deal...
- ...but practice is a little more complicated
- 3D vision can be achieved even with just one camera, with different performances