Introduction to GPU Computing ,'

CERN
School of Computing

GPU Computing and its appllcatlons in HEP
Lecture 1

Introduction to GPU Computing

Felice Pantaleo

CERN

Inverted CERN School of Computing, 25-26 February 2013

iCSC2013, Felice Pantaleo, CERN

CERN
School of Computing

Accelerators
= Exceptional raw A, Folding@home
power wrt CPUs NVIDIA- ™. |

= Higher energy
efficiency

* Plug & Accelerate

= Massively parallel
architecture

= Low Memory/core

oye

Séhool of Computing

Introduction to GPU Computing ,'

CERN
School of Computing

Accelerators

= GPUs were traditionally used for real-time rendering. NVIDIA &
AMD main manufacturers.

= Intel introduced the coprocessor Xeon Phi (MIC)

NWVIDIA.

an F

Sehool of Computing iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing "

NVIDIA CUDA?

CERN
School of Computing

= SMX executes hundreds of threads concurrently.

= SIMT (Single-Instruction, Multiple-Thread)

* Instructions pipelined e e
= Thread-level parallelism

= |nstructions issued in order

AT st 8
Lvat SFU Core Core Core -l:‘.ere Core l:uo- st SFU
m NO Branch rediction Care Coee © vt SFU ce-cu-cun-o:m Core [:m-.nm SFU
p Core Core Cal L3t SFU Com Core Core -Cnr- Core Gﬂv- umsT SFU
LviT SFU Com Cors Coms - Com Cors Coro - LvET (SR
- - L= = . G < c LxaT SFU Com Coms Gore - Comm Cors Cone - unsT | SFU
= No speculative execution

Lot SFU Core (Core Care -i:er- Core: cw- wat [BF

waT SFU | (Com (Core Com - Core Core Corg - in

= Branch predication S Z‘ZZZZ=Z’Z -

LvaT SFU Core Core (:m-l:‘.em Core m- wumsT SFU
LvsT SFU e umsT SFU

ool of Computing iCSC2013, Felice Pantaleo, CERN

I

CERN

What is CUDA?

= CUDA Architecture
= Expose GPU parallelism for general-purpose
computing
= Retain performance

= CUDA C/C++
= Based on industry-standard C/C++
= Small set of extensions to enable heterogeneous
programming
= Straightforward APIs to manage devices, memory etc.

I
CERN

Introduction to CUDA C/C++ ™™™

= What will you learn in this lecture?
= Start from “Hello World!”
= Write and launch CUDA C/C++ kernels
= Manage GPU memory
= Manage communication and synchronization

CERN
School of Computing

Prerequisites

You (probably) need experience with C or C++

You don’t need GPU experience

You don’t need parallel programming experience

You don’t need graphics experience

Introduction to GPU Computing ,'

CERN
School of Computing

Asynchronous operation

CONCEPTS

Handling errors
Managing devices

e e e i By By M |

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing ,'

iCSC2013, Felice Pantaleo, CERN

e e e i By By M |

CERN
School of Computing

Asynchronous operation

Handling errors
Managing devices

Introduction to GPU Computing

Heterogeneous Computing

= Terminology
= Host The CPU and its memory space
= Device The GPU and its memory space

Host Device

10

iICSC2013, Felice Pantaleo, CERN

CERN
School of Computing

Introduction to GPU Computing "

Heterogeneous Computing

#include <iostream>
#include <algorithm>

CERN
School of Computing

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) { =
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadldx.x + blockldx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

JI Read input elements into shared memory
templlindex] = in[gindex];
if (threadidx.x < RADIUS) {
templ[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

/I Synchronize (ensure all the data is available)
- parallel fn

1/ Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

11 Store the result
out[gindex] = result;

void fill_ints(int *x, int n) {
fil_n(x, n, 1);

int main(void) {
int *in, *out; II'host copies of a, b, ¢
int *d_in, *d_out; 1l device copies of a, b, ¢
int size = (N + 2*RADIUS) * sizeof(int);

11 Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill__ints(out, N + 2*RADIUS);

11 Alloc space for device copies
cudaMalloc((void *)&d_in, size);
cudaMalloc((void **)&d_out, size);

- serial code

L_in, in, size, {ostToDevice);
_out, out, size, {ostToDevice);

/I Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
d_out + RADIUS);

1l Copy result back to host
d_out, size, DeviceToHost);

| parallel co

free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

- serial cod

11 iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing "

Simple Processing Flow

CERN
School of Computing

CPU Memory

1. Copy input data from CPU memory
to GPU memory

12

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing "

CERN

Simple Processing Flow e

CPU Memory

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

13 iCSCZOlg’ Felice panta|eo, CERN 4

Introduction to GPU Computing

Simple Processing Flow

CERN
School of Computing

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

3. Copy results from GPU memory to
CPU memory

14

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing

Hello World!

15

int main(void) {

printf("'"Hello World!\n');

return O;

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used
to compile programs with no device
code

iICSC2013, Felice Pantaleo, CERN

CERN
School of Computing

Output:

$ nvcc
hello world.
cu

$ a.out
Hello World!

$

Introduction to GPU Computing

Hello World! with Device Code

~_global voird mykernel(void) {
by

int main(void) {
mykernel<<<1,1>>>();
printf(""Hello World!\n');
return O;

}

= Two new syntactic elements

16

iCSC2013, Felice Pantaleo, CERN

CERN
School of Computing

CERN
School of Computing

Hello World! with Device Code

~_global vord mykernel(void) {

}

= CUDA C/C++ keyword global Indicates a function
that:
= Runs on the device
= |s called from host code

= nvcc separates source code into host and device
components
= Device functions (e.g. mykernel ()) processed by NVIDIA
compiler
= Host functions (e.g. main()) processed by standard host
compiler

17

i

CERN

Hello World! with Device Code "™

mykernel<<<1,1>>>();

= Triple angle brackets mark a call from host code to
device code

= Also called a “kernel launch”
= We'll return to the parameters (1,1) in a moment

= That’s all that is required to execute a function on the
GPU!

18

Introduction to GPU Computing ,'
CERN

Hello World! with Device Code ™™™

~global vord mykernel(void)

{

¥ Output:

int main(void) { _ $ nvee
mykernel<<<1,1>>>(); hello. cu
printf("'Hello World!\n'"); -
return 0; $ a.out

> Hello World!
¥ $

mykernel () does nothing,
somewhat anticlimactic!

19

iICSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing

Parallel Programming in CUDA
C/C++

= But walit... GPU computing is about
massive parallelism!

* We need a more interesting example...

= We’ll start by adding two integers and L
build up to vector addition

20 iCSC2013, Felice Pantaleo, CERN

CERN
School of Computing

L

CERN
School of Computing

Addition on the Device

= A simple kernel to add two integers
~_global wvoid add(int *a, int *b, Iint *c) {

*C = *a + *Db;

= As before global is a CUDA C/C++ keyword
meaning

= add() Will execute on the device
= add() Will be called from the host

21

CERN
School of Computing

Addition on the Device

= Note that we use pointers for the variables
~_global wvoid add(int *a, int *b, Iint *c) {

*C = *a + *Db;

= add() runs on the device, so a, b and ¢ must point to
device memory

= We need to allocate memory on the GPU
22

CERN
School of Computing

Memory Management

= Host and device memory are separate entities

= Device pointers point to GPU memory
May be passed to/from host code

May not be dereferenced in host code

= Host pointers point to CPU memory
May be passed to/from device code

May not be dereferenced in device code

= Simple CUDA API for handling device memory
= cudaMalloc(), cudaFree(), cudaMemcpy()
= Similar to the C equivalents malloc(), free(),
memcpy ()

23

Introduction to GPU Computing

Addition on the Device: addO

= Returning to our add() kernel

~_global wvoid add(int *a, int *b, Iint *c) {

= Let's take alook at main()...

24

iCSC2013, Felice Pantaleo, CERN

CERN
School of Computing

Introduction to GPU Computing ,'
CERN

Addition on the Device: main(™™™

int main(void) {
int a, b, c; // host copies of a, b, c
int *d_a, *d b, *d c; // device copies of a, b, c
Int size = sizeof(int);
// Allocate space for device copies of a, b, cC
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);
// Setup i1nput values
a = 2;

b =7;
25

iCSC2013, Felice Pantaleo, CERN

Addition on the Device: mainQ

26

Introduction to GPU Computing ,'

CERN
School of Computing

// Copy I1nputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d _c, size, cudaMemcpyDeviceToHost);
// Cleanup

cudaFree(d_a); cudaFree(d b); cudaFree(d c);

return O;

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing ,'

CERN
School of Computing

Asynchronous operation

Handling errors
Managing devices

e e e i By By M |

iCSC2013, Felice Pantaleo, CERN

CERN
School of Computing

Moving to Parallel

= GPU computing is about massive parallelism
= So how do we run code in parallel on the device?

add<<< 1, 1 >>>(0);

$

add<<< N, 1 >>>(0);

= Instead of executing add() once, execute N times in
parallel

28

I
CERN

VeCtor AddItIOn On the DeVICe School of Computing

= With add(Q) running in parallel we can do vector addition

= Terminology: each parallel invocation of add() is referred to
as a block

= The set of blocks is referred to as a grid
= Each invocation can refer to its block index using blocklidx.x

__global ___ void add(int *a, 1nt *b, Int *c) {
c[blockldx.x] = a[blockldx.x] + b[blockldx.x];
+

= By using blockldx.x to index into the array, each block
handles a different index

29

Introduction to GPU Computing ,'

CERN

Vector Addition on the Device * ™™

__global ___ void add(int *a, int *b, 1int *c) {

c[blockldx.x] = a[blockldx.x] + b[blockldx.x];

= On the device, each block can execute in parallel:

Block O Block 1 Block 2 Block 3

c[0]= a[0]+b[0]; M c[1]1= a[1]+b[1]; W c[2]= a[2]+b[2]; @@ c[3]1= a[3]1+b[3];

30

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing ,'

Vector Addition on the Device;
add ()

= Returning to our parallelized add() kernel

CERN
School of Computing

__global void add(int *a, Int *b, Int *c) {

c[blockldx.x] = a[blockldx.x] + b[blockldx.x];

= Let's take alook at main()...

31

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing

I
CERN

Vector Addition on the Device: ™™™

#define N 512

int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *d_a, *d b, *d c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for device copies of a, b, C
cudaMalloc((voird **)&d a, size);
cudaMalloc((voird **)&d b, size);
cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, c and
//setup 1nput values

a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);

32

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing ,'

CERN

Vector Addition on the Device: ™™™

// Copy 1nputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d _a, d b, d c);

// Copy result back to host
cudaMemcpy(c, d _c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);
cudaFree(d _a); cudaFree(d b); cudaFree(d c);
return O;

33

iCSC2013, Felice Pantaleo, CERN

34

Introduction to GPU Computing ,'

CERN
School of Computing

Asynchronous operation

Threads

Handling errors
Managing devices

e e e i By By M |

iCSC2013, Felice Pantaleo, CERN

i

CERN

CUDA Threads

= Terminology: a block can be split into parallel threads

= Let’s change add() to use parallel threads instead of
parallel blocks

~_global wvoid add(int *a, int *b, int *c)
{
c[threadldx.x] = afthreadldx.x] +

b[threadldx.x];
+

= We use threadldx.x instead of blockldx.x

= Need to make one change in mainQ)...

. I

Introduction to GPU Computing ,'

CERN

Vector Addition Using Threads: ™™™

#define N 512

int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *d_a, *d b, *d c; // device copies of a, b, c
int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMal loc((**3)&d a, size);
cudaMal loc((**3)&d b, size);
cudaMal loc((**3)&d c, size);

//Alloc space for host copies of a, b, ¢ and setup 1nput values
a = (int *malloc(size); random _ints(a, N);
b = (int *)malloc(size); random _ints(b, N);
c = (int *)malloc(size);

36

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing i
CERN

Vector Addition Using Threads: ™™™

37

// Copy i1nputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N threads
add<<<1l,N>>>(d _a, d b, d c);

// Copy result back to host
cudaMemcpy(c, d _c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);
cudaFree(d _a); cudaFree(d b); cudaFree(d c);
return O;

iCSC2013, Felice Pantaleo, CERN

38

Introduction to GPU Computing ,'

Combining Threads &

iCSC2013, Felice Pantaleo, CERN

e e e i By By M |

CERN
School of Computing

Asynchronous operation

Handling errors
Managing devices

CERN
School of Computing

Combining Blocks and Threads

= We’ve seen parallel vector addition using:
= Many blocks with one thread each
= One block with many threads

Let’'s adapt vector addition to use both blocks and threads

Why? We’ll come to that...

First let’s discuss data indexing...

39

Introduction to GPU Computing ,'

Indexing Arrays with Blocks and
Threads

= No longer as simple as using blockldx.x and threadldx.x

= Consider indexing an array with one element per thread
(8 threads/block)

CERN
School of Computing

threadldx.x threadldx.x

{ 01/2|3|4/5/6(7|0{1|2|/3|4|5|6|7

N A
Y Y

blockldx.x = 2 blockldx.x = 3

= With M threads/block a unique index for each thread is
given by:

INt 1ndex = threadldx.x + blockldx.x * M;

40

iCSC2013, Felice Pantaleo, CERN

i

CERN

Vector Addition with Blocks and ™™™
Threads

= Use the built-in variable blockDim.x for threads per
block

INt 1ndex = threadldx.x + blockldx.x * blockDim.x;

= Combined version of add() to use parallel threads
and parallel blocks
__global ___ void add(int *a, 1nt *b, Int *c) {
Int 1ndex = threadldx.x + blockldx.x *
blockDim.Xx;

c[index] = a[index] + b[index];
¥
= What changes need to be made in main()?

41

Introduction to GPU Computing

I
CERN

Addition with Blocks and Threads™ ™™

#define N (2048*2048)
#define THREADS PER BLOCK 512
int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *d_a, *d b, *d c; // device copies of a, b, c

int size = N * sizeof(int);
// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, c and setup
input values

a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);

42

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing

I
CERN

Addition with Blocks and Threads™ ™™

// Copy i1nputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS PER BLOCK,THREADS PER BLOCK>>>(d_a,
d b, d c);

// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);
cudaFree(d _a); cudaFree(d b); cudaFree(d c);
return O;

43

iCSC2013, Felice Pantaleo, CERN

I
CERN

Handling Arbitrary Vector Sizes "™

= Typical problems are not friendly multiples of brockpim.x

= Avoid accessing beyond the end of the arrays:

~global wvoid add(int *a, int *b, int *c, int n) {
int 1tndex = threadldx.x + blockldx.x * blockDim.x;
iIT (Index < n)
c[index] = a[index] + b[index];

= Update the kernel launch:
add<<<(N + M-1)/M, M >>>(d_a, d_b, d_c, N);
44

i

CERN

Why Bother with Threads?

= Threads seem unnecessary
= They add a level of complexity
= What do we gain?

= Unlike parallel blocks, threads have mechanisms to:
= Communicate
= Synchronize

= To look closer, we need a new example...

45

Introduction to GPU Computing "

CERN
School of Computing

Asynchronous operation

Handling errors
Managing devices

e e e i By By M |

iCSC2013, Felice Pantaleo, CERN

i

CERN

Sharing Data Between Threads ™™

= Terminology: within a block, threads share data via
shared memory

= Extremely fast on-chip memory, user-managed
= Declare using _ shared_, allocated per block

= Datais not visible to threads in other blocks

47

Introduction to GPU Computing "

Implementing With Shared o ot
Memo

- Cacher(}gta In shared memory
= Read (blockDim.x + 2 * radius) Input elements from
global memory to shared memory
= Compute blockDim.x output elements
= Write blockDim.x output elements to global memory

= Each block needs a halo of radius elements at each

boundary
Wadddddldldddddlldddllddd
%—/ %(—/
halo on left U halo on right

e L L
Y

elements
ERN

_ blockDim.x output
iCSC2013, Felice Pantaleo, C

48

Introduction to GPU Computing ,'

CERN
School of Computing

Stencil Kernel

~global voird stencil _1d(int *in, int *out) {
int temp[BLOCK SIZE + 2 * RADIUS]; 0 a0 0qd000l1
int gindex = threadldx.x + blockldx.x * blockDim.x;
int Tindex = threadldx.x + RADIUS;

// Read i1nput elements Into shared memory

temp[lindex] = in[gindex]; = R | |
iIT (threadldx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS]; Wl e
temp[lindex + BLOCK_SIZE] =
in[gindex + BLOCK_SI1ZE]; welwddddduu
+

49 iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing ,'

CERN
School of Computing

Stencil Kernel

// Apply the stencil
int result = O;
int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

50

iCSC2013, Felice Pantaleo, CERN

CERN
School of Computing

Data Race!

* The stencil example will not work...

= Suppose thread 15 reads the halo before thread 0 has
fetched it...

temp[lindex] = in[gindex];

iIT (threadldx.x < RADIUS) { Skipped
temp[lindex — RADIUS = in[gindex — RADIUS]; threadldx > RADIUS
temp[lindex + BLOCK _SIZE] = in[gindex + BLOCK SIZE];

+

Int result = O;

result += temp[lindex + 1];

51

CERN
School of Computing

__syncthreads()

= void __ syncthreads();

= Synchronizes all threads within a block
= Used to prevent RAW / WAR / WAW hazards

= All threads must reach the barrier

= |n conditional code, the condition must be uniform
across the block

52

Introduction to GPU Computing ,'

CERN

Ste NC | I Ke rne I School of Computing

~global wvoid stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK SIZE + 2 * RADIUS];
int gindex = threadldx.x + blockldx.x * blockDim.x;
int Iindex = threadldx.x + radius;

// Read 1nput elements 1nto shared memory
temp[lindex] = in[gindex];
IT (threadldx.x < RADIUS) {
temp[lindex — RADIUS] = in[gindex — RADIUS];
temp[lindex + BLOCK _SIZE] = in[gindex +
BLOCK SIZE];

}

// Synchronize (ensure all the data i1s available)
__syncthreads();

53

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing

Stencil Kernel

// Apply the stencil
int result = 0;

int offset = -RADIUS ; offset <= RADIUS ;

offset++)
result += temp[lindex + offset];

// Store the result
outfgindex] = result;

54 iCSC2013, Felice Pantaleo, CERN

School of Computing

i

CERN

ReV|eW (1 Of 2) School of Computing

= Launching parallel threads

= Launch N blocks with v threads per block with
kernel<<<N,M>>>(..);

= Use blockldx.x t0 access block index within grid
= Use threadldx.x to access thread index within block

= Allocate elements to threads:

Int Index = threadldx.x + blockldx.x * blockDim.x;

25

i

CERN

ReV|eW (2 Of 2) School of Computing

= Use shared__ to declare a variable/array in shared
memory

= Data Is shared between threads in a block
= Not visible to threads in other blocks

= Use syncthreads() as a barrier
= Use to prevent data hazards

56

Introduction to GPU Computing ,'

CERN
School of Computing

Asynchronous operation

Handling errors
Managing devices

e e e i By By M |

iCSC2013, Felice Pantaleo, CERN

CERN
School of Computing

Coordinating Host & Device

= Kernel launches are asynchronous
= Control returns to the CPU immediately

= CPU needs to synchronize before consuming the
results

cudaMemcpy () Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls
have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchro Blocks the CPU until all preceding CUDA calls
nize() have completed

58

CERN
School of Computing

Reporting Errors

= All CUDA API calls return an error code (cudaError_t)
= Error in the API call itself
OR
= Error in an earlier asynchronous operation (e.g. kernel)

= Get the error code for the last error:
cudakrror_t cudaGetLastError(void)

= Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

printf(C'%s\n",
- cudaGetErrorString(cudaGetLastError()));

CERN
School of Computing

Device Management

= Application can query and select GPUs
cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *device)

cudaGetDeviceProperties(cudaDeviceProp *prop, int
device)

= Multiple threads can share a device

= A single thread can manage multiple devices
cudaSetDevice(i) to select current device
cudaMemcpy(...) for peer-to-peer COpiES T

60 T requires OS and device support

Introduction to GPU Computing ,'

Compute Capability

CERN
School of Computing

= The compute capability of a device describes its architecture, e.g.
= Number of registers
= Sizes of memories
= Features & capabilities

61

iCSC2013, Felice Pantaleo, CERN

Introduction to GPU Computing "

CERN
School of Computing

IDs and Dimensions \

Device

= A kernel i1s launched as a

grid of blocks of threads
= blockldx and threadldx

are 3D

= We showed only one
dimension (x)

= Built-in variables:
= threadldx

Thread | Thread | Thread | Thread | Thread
(0,0,0) | (1,0,00 @ (2,0,0) | (3,0,00 @ (4,0,0)

= blockldx

- Thread | Thread | Thread | Thread | Thread
= blockDim 010 (11,00 (210 (310) (4.10)
= gridDim

Thread @ Thread @ Thread | Thread | Thread
(0,200 (1,200 (2,200 (3,20 @ (4,2,0)

62 iCSC2013, Felice Pantaleo, CERN

63

Introduction to GPU Computing

Questions?

iCSC2013, Felice Pantaleo, CERN

CERN
School of Computing

