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The eye
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Eyes correlation
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Horopter
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Minimal context
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Stereo matching in HVS
I Mostly guided by ’disparity detecting neurons’
I Efficient correlation of images (edges and high gradient

spots)
I Less efficient correlation of textures

I one of reasons why looking at random dot stereograms
can be difficult

I We believe matching depends on correlation of retina
image locations with second derivative of luminance
(greatest change in signal instead of greatest signal)

I Indications of a ’fall-back’ correlation mechanism when
luminance is not enough

I Color has effect on matching (increased performance)
I Experience (and evolution) plays a big role (most

interesting comes first)
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Biofeedback

I Autonomous movement of eyes limited to high precision
refinements

I Big movements are conscious and directed by brain as
needed

I Brain can ’feel’ position and focus of eyes: approximate
distance/size of pointed object!

I Change of focus and parallax happens really often, helps
to understand positions and occlusions

I Often the whole head gets moved to get an enhanced 3D
impression

I Both displacement and rotation helpful (baseline useful
hint for distance)
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The role of the brain

Lots of processing necessary in normal life:

I Differentiate objects of interest from background

I Locate objects in space

I Eventually predict movements/hazards!

I Recognize objects and associate them with meaning

I Find relationships, physical boundaries and connections
(leaf/plants, tiger...)

I Act! (And act fast if the tiger is looking at you!)
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Illusions
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Notably, computers have eyes...

Hello, Dave!
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...which are usually Cameras
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Camera vs Eye

I CCD is not spherical

I but it has no blind spot

I retina is variable resolution (in color and light sensitivity)

I CCD is fixed constant resolution

I Eye focus is limited in range compared to camera

I Camera can even zoom and change perspective!

I Eye has integrated noise-reduction

I Retina is randomized → reduced aliasing!

I Eye can move 3D with really high precision (yes, even on
the face plane! limited, but still...)
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Geometric primitives

I 3D points: x = (x , y , z) ∈ R3 or x̃ = (x̃ , ỹ , z̃ , w̃) ∈ P3

using homogeneous coordinates in a projective space
(note x ≡ (ky , ky , kz , kw) ∀ k)

I 3D lines:
I Segment: r = (1− λ)p + λq, p,q ∈ R3

I Projective: r = µp̃ + λq̃

No elegant representation

I 3D planes:
m̃ = (a, b, c , d)⇒ x̄ · m̃ = ax + by + cz + d = 0 (where
x̄ is a normalized vector (x , y , z , 1))

24 iCSC2013 Carli S. Hellmich M. (CERN)
,



L1: Human vision and image pre-processing

2D Transformations

I Translation: x ′ = x + t or x̄′ =

[
I t

0T 1

]
x̄

I Euclidean (rotation + translation): x ′ = Rx + t or
x ′ = [R t]x̄

where R =

[
cosφ − sinφ
sinφ cosφ

]
with RRT = I and |R| = 1

I Similarity (scaled rotation): x ′ = sRx + t

I Affine: x ′ = Ax̄ where A =

 a00 a01 a02
a10 a11 a12
0 0 1


I Projective: x̃′ = H̃x̃, H̃ ∈M3×3
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2D Transformations summary

Transformation Matrix DoF preserves
translation [I t]2×3 2 orientation
euclidean [R t]2×3 3 lenghts
similarity [sR t]2×3 4 angles
affine [A]2×3 6 parallelism

projective [H̃]3×3 8 straight lines

One can begin asking himself: how difficult can be to
recognize two things are the same after transformation?
Transformation is applied by optical systems and positions!
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3D Transformations summary

Transformation Matrix DoF preserves
translation [I t]3×4 3 orientation
rigid (euclidean) [R t]3×4 6 lenghts
similarity [sR t]3×4 7 angles
affine [A]3×4 12 parallelism

projective [H̃]4×4 15 straight lines
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Projections (1)
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Projections (2)
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Projections (3)
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Projections (4)

Most used is 3D perspective:

x̄ = Pz(p) =

 x/z
y/z

1


or

x̃ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 p̃
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Camera intrinsics

Map 3D rays to 2D pixels on
sensor:

x̃s = Kpc, K ∈M3×3

K is the calibration matrix:
position of sensor relative
to lens

I Rotation

I Translation

I Scale (Sx , Sy )
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Camera intrisics and estrinsics
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Camera matrix: intrinsics + estrinsics

Adds rotation and translation of whole camera:

P = K [R t] ∈M3×4

The full rank version:

P̃ =

[
K 0
0T 1

] [
R t
0T 1

]
is invertible and maps 3D world points p̄w = (xw, yw, zw, 1) to
screen coordinates xs = (xs , ys , 1, d)

34 iCSC2013 Carli S. Hellmich M. (CERN)
,



L1: Human vision and image pre-processing

Other camera parameters

I Lens distortion (barrel, pincushion, fisheye)

I Chromatic aberration (glass index of refraction not
constant in wavelenght)

I Vignetting (brightness diminishes near borders) can be at
least partially overcome with proper camera models
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Lens distortions correction

A know pattern with as many known camera parameters as
possible is necessary for measuring lens characteristics
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Camera CCD structure

37 iCSC2013 Carli S. Hellmich M. (CERN)
,



L1: Human vision and image pre-processing

Camera image sensing pipeline
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Pixel transforms

I Operation pixel by pixel on one or more images (assumed
of the same size): g(x) = h(f0(x), ..., fn(x))

I Different operators: contrast, brightness, linear image
blend, gamma correction

I Often requires conversions between different color
spaces!
Example changing luminosity: add value to RGB of each
pixel affects contrast and hue as well; RGB → XYZ →
increase Y luminance → RGB
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Few words on color spaces

41 iCSC2013 Carli S. Hellmich M. (CERN)
,
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Histogram equalization

Problem: Determine best values for brightness, contrast, tone,
etc.
Common solution: individual color channels and luminance
histograms equalization
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Filters: linear operators

Most commonly used are linear filters:

g(i , j) =
∑
k,l

f (i − k , j − l)h(k , l) =
∑
k,l

f (k , l)h(i − k , j − l)

to obtain blurring, sharpening, smoothing, binaryzation...
Note: boundary effects usually solved with different kinds of
image padding (zero, constant, clamp, wrap...)
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Filters: nonlinear operators

I Non-linear operation: composition of filters becomes not
commutative

I May or may not maintain locality

I Can be applied iteratively

More effective than linear filters for sharpening, blur, noise
removal
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Image resolution

Often it is needed to scale up or down images:

I Match size of different images (mix/compare/match)

I Visualization (Screen, print...)

I Appropriate resolution unknown: ex. face recognition,
what’s the scale for the face?
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Interpolation and Decimation

Simplest forms:

I Linear interpolation (upsample):

g(i , j) =
∑
k,l

f (k , l)h(i − rk , j − rl)

I Linear interpolation (downsample):

g(i , j) =
1

r

∑
k,l

f (k , l)h(i − k

r
, j − l

r
)

The kernel h can be the same for interpolation and decimation!
Better results can be obtained using higher order interpolation.
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Multi-resolution representations: Pyramids

Pyramid of images at different resolution

Constructed scaling down with low-pass filter to avoid aliasing
Used in coarse to fine search operations, pattern recognition
etc.
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Geometric transformation

It may be needed to rotate/warp an image

I using any geometric transformation: affine, projection

I or mesh-based warping

I can be complicated (introduction of holes, aliasing, image
degradation)

I can be computationally expensive (to avoid degradation)

Many techniques available to overcome and optimize the
problem (vast literature)
Let’s assume we can do this efficiently on image pyramids
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Recap

I Vision is a difficult task...

I ...which requires understanding more than precision (for
real-life application as robotics)

I HVS comes from millions years of evolution aimed at
maximizing real life performance

I We see what we want (need?) to see, not what’s there!

I We have advanced mathematics able to describe 3D
world and many of sensing characteristics efficiently

I We have efficient methods to perform the basic image
handling needed for more advanced tasks

I But much more than this is needed! (useful) vision is
primarily a high level task.
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