Testing on large scale distributed systems "

CERN
School of Computing

Testing methods and tools for large
scale distributed systems

Ramon Medrano Llamas
CERN

Inverted CERN School of Computing, 25-26 February 2013
iCSC2013, Ramon Medrano Llamas, CERN

Testing on large scale distributed systems l'

CERN

D i S Cl a i m e r School of Computing

iCSC2013, Ramon Medrano Llamas, CERN

Testing on large scale distributed systems "

CERN
School of Computing

Crafting (good) software

Life of a distributed system

iCSC2013, Ramon Medrano Llamas, CERN

Testing on large scale distributed systems l‘

CERN

We were so happy in the 80s... o ot

= One platform.
= One codebase.

= One viewport.

= Release cycles of year(s).

iCSC2013, Ramon Medrano Llamas, CERN

i
CERN

And then, some day N School of Computing

Vﬂﬁéﬂ{- .:h* LA S - .
-

‘ CERN DD/OC

= 2.4 billion users rem—"—l

Tim Bemers-Lee, GEry,

o Information Management: A Proposal
= 566% growth YoY
This proposal concerns the management of general information ahout accelerators and experiments at
u : ! O O O _: 2 O 1 2 CERN. W discusses the problems of loss of information about complex evolving systems and derives a
tricval, Informatien m

solution based on a distributed hypertext sytstem.

= Zillions of devices
= 10 bn by 2016
= |Mobile| > |Desktop|

= 260 EiB/year
= 66 bn DVDs

“Information Management: A Propsal”,

Source: CERN, W3C, Cisco Tim Berners-Lee, March 1989
. .

i
CERN

The rlse Of dIStrIbUted School of Computing

= Computer networks vs. distributed systems.
= Latency vs. throughput.

= Batch vs. real-time.

= Highly vs. loosely coupled.

= Committee vs. de facto standard.

= Over architected vs. simple.

i
CERN

Sadly, we. .. School of Computing

= As programmers:
= We are not smart enough...
= We are lazy...
= We tend to not think globally...
= We don'’t speak with others...
= We don't like to learn new stuff...
= We love politics so damn much...

= Thus, we cannot exploit all the computing resources we have.
= Neither we can make software run reliably

CERN
School of Computing

Wait a minute...

= |f we are too bad:
= How the LHC can generate aprox. 15 PiB/year?
= How Gmail can have 425 million users?
= How Facebook can have 1.01 billion users?
= How BOINC could averaged 7.28 PFLOPS in 20127

= Obviously, we can do nifty stuff.
= But we are far, by a long shot, from being efficient.
= Also, quality is a huge concern.

Source: CERN, Google, Facebook
8

i
CERN

Introduction to software testing e Eompites

= A bug can be proof, but not the absence of it.

= Wait...
= | believe that | studied this at the university...

= So, why you don’t test your stuff?

CERN
School of Computing

Quality

= What the f**k is quality?

= “Quality can have two meanings:
a) The characteristics of a product or service that bear on its ability to
satisfy stated or implied needs

b) A product or service free of deficiencies.”
American Society for Quality

= Quality # Test

= “Get it right from the beginning or you've created a permanent
mess.”
James Whittaker

= Measurement

= “A science is as mature as its measurement tools.”
Louis Pasteur

10

i
CERN

Quality management School of Computing

= Quality management must target:
= Reliability.
= Efficiency.
= Security.
= Maintainability.

= Quality must be measured:
= Make something subjective objective.
= |f you cannot measure, you cannot optimize.

= Some standard methods:
= [SO/IEC 9000 - ISO/IEC 25000:2005
= |TIL
= QFD, 60, ERD...

11

i
CERN

S Q u a R E School of Computing

1ISO25000: Software QUAIity Requirements and Evaluation

2501n: Quality model:
= What is quality?
= External: client’s perception of the product.
* Internal: business process improvements.

2502n: Quality measurement:
= What to measure?
= Mathematical definition of quality.

2504n: Quality evaluation:
= How to measure a software product?

12

QFD / 66/ ERD

= |terative process improvement:
= Statistical, predictive models - minimize variability
= |ntroduce quality from the beginning.
= Release early, release often™

VERIFY DESIGN

ANALYZE MEASURE

DESIGN
13

CERN
School of Computing

ITIL

* Running a service is complex:
= How to coordinate suppliers and clients?
= How to define expected service levels?
= How to react to change?

= ITIL is yet another standard for this:
= Service Operation.
= Service Levels.
= Change management.

14

CERN
School of Computing

15

Testing on large scale distributed systems

Methodologies. Wat?

Life of a bug

iCSC2013, Ramon Medrano Llamas, CERN

CERN
School of Computing

A good old friend

Testing on large scale distributed systems l'

CERN
School of Computing

Implementation

/

16

iCSC2013, Ramon Medrano Llamas, CERN

Verification

Source: Wikipedia

A new method

17

CERN
School of Computing

Let engineers be engineers Get Shit Done™
= No bureaucracy. = We love to build stuff.
= Focus on the user = Do one thing

= And the rest will follow. = And do it well.
= Good is never enough. = And to ship it.

2. Build stuff
1. Plan.
2. Build.
3. Goto1.1.

Test Driven Development

= Sounds harder than it is:
= Just make tests first...
= And you get the best contracts for the software.
= Less coupling and nicer designs.
= Requires testing automation.

1. Choose a component.
Write a test.
Make sure that it fails.

Fix the stuff.

a ~ Db

Eliminate redundancies.

18

CERN
School of Computing

i
CERN

The perfect team oo

= Feature development:
= Owned by software engineers.

= Unit testing:
= Owned by software engineers. Yes.

= Testing infrastructure and testability:
= Software engineers dedicated to this task.
= Roughly 1 or 2 per team.

= Test management, analysis and planning:
= Test manager (this guy is a software engineer as well).
= Coordinates all the larger scale testing.
= Might be the previous role.

19

The perfect team

= Quality comes from solid engineering
= Stop talking and go build things.
= No meetings.

= Don’t hire too many testers
= Testing is owned by the entire team.
= |s a culture, not a process.
= Testers are software engineers. Yes.

= There is not place to mediocrity
= Hiring good people is the base.
= And keeping them challenged.

20

CERN
School of Computing

The Agile wave

= |tis just a formalization of some old principles:
= We are humans.
= Software that works.
= Client matters.
= Change happens.

= Look at:
= SCRUM,
= Kanban,
= Lean manufacturing.

= Also
= Code and fix.

21

CERN
School of Computing

SCRUM

* Incremental development:
= Backlogs.
= Scrum Master vs. Product Owner.

= Sprints:
= Produce something usable.

= Testing in this scenario:
= Can be interleaved in each sprint.
= |ntegration tests should be built incrementally.
= Regression tests are fundamental.

22

CERN
School of Computing

i
CERN

TOOIS fOr Spn nt| ng School of Computing

= Post-it + whiteboard:
= Very simple.
= More powerful than one might expect.

= JIRA + Greenhopper:
= CERN'’s choice.
= |ntegrated with issue collection and SCM.
= Custom workflows allow the integration of test and review.
= |ntegration with Bamboo - Automatic deployments.

= Microsoft Project:
= There is a plugin for SCRUM.

23

i
CERN

How to nail testing? Pelios i Compi

= Attribute, Component, Capability.

= This is a method to create:
= The design document.
= Test plan.
= Risk analysis.

* In one process of 30 minutes:
= Should be done in a quick meeting.
= |deally, integrated in the backlog of the product.
* You just need a spreadsheet for this.

24

CERN
School of Computing

About the Design Document

= |t is the encyclopedia of your software:
= |nvolve testing and testers from the beginning.

= Just do this document.

= Avoid prose, this is not a novel:
= Just bulleted lists and tables.

= Make it worth to keep it updated.

25

Testing on large scale distributed systems ,‘

CERN

Attributes, Components, Capabilities™" ™"

= An attribute:
= Sales people and managers have them.
= They are... attributes.

= e.g. A batch system:
= Reliable.

= Easy.
= Generic.
= Scalable.

26

iCSC2013, Ramon Medrano Llamas, CERN

Testing on large scale distributed systems ,‘

CERN

Attributes, Components, Capabilities™" ™"

= A component:
= Engineers have them.
= They are nouns.

= e.g. A batch system:
= Scheduler.

= \Worker node.

= Job.
= Queue.

27

iCSC2013, Ramon Medrano Llamas, CERN

i
CERN

Attributes, Components, Capabilities™ ™"

= Capabilities:
= A subset of the AxC product.
= They are verbs.
= Looks like a nice description of requirements.

= e.g. A batch system:
= {Generic, Worker node}: Enables different types of jobs in each WN.

= {Easy, Job}: Users are abstracted of the infrastructure.
= {Reliable, Scheduler}: Supports n failures on the infrastructure.
= {Scalable, Queue}: Allows O(x) users in parallel.

28

i
CERN

Attributes, Components, Capabilities™ ™"

= Risk analysis:
= You will test capabillities.
= But not everything at once.
= Add:

= Impact € {Minimal, Some, Considerable, Fatal}
= Frequency € {Rarely, Seldom, Occasionally, Often}
= And you have a risk assessment.

Risk,) = Z Impact, ¢) Frequency g c)
C

29

Testing on large scale distributed systems "

CERN

Attributes, Components, Capabilities™" ™"

mn

Easy

Scalable

30

iCSC2013, Ramon Medrano Llamas, CERN

i
CERN

Case study: AliEn mocking o o Camput

* Implements the full submit queue:
= Every changeset triggers a build
= And a test pass.

= The interesting thing at this poing is in the mocking:

= The systems sets up a entire grid in a node for testing:
= A Storage Element

= A Computing Element
= Even central services.

31

Legacy management

= Legacy:
= Has its value.
= Cost is rising quickly.

= People don’t know how it works.

= |t is not always easy:
= Try to move things up.
= Virtualization can help...
= Don'’t stack shit if possible.
= Pay the technical debt:

= |ntegrate on test strategies.
= |ntegrate on deployment systems.

32

CERN
School of Computing

Test certification

33

How do you progress on testing:

= Set some milestones in the form of levels.

Level 1:
= Continuous integration in place.

Level 2:
= Pre-commit smoke testing.

Level 3:
= All features covered by integration tests.

Level 4:
= No-nondeterministic testing.

CERN
School of Computing

34

Testing on large scale distributed systems

Test automation

Life of a changeset

iCSC2013, Ramon Medrano Llamas, CERN

CERN
School of Computing

i
CERN

Test automation oo

= A testing infrastructure must:
= Allow developers to get a unit test results immediately.
= Allow developer to run all unit tests in one go.
= Allow running tests for only the changed components.
= Allow code coverage calculations.
= Allow running unit tests for the changesets submitted.
= Show dashboards of testing evolution.

35

Test types

= Unit test:
= Executes in less than 100 ms.
= Test just a module.

= Integration tests:
= Executes in less than 1 minute.
= Test interaction between few modules.

= System tests:
= Execute as quickly as possible.

= You can test a functionality with mock data.

36

CERN
School of Computing

CERN
School of Computing

Developing code

1. Build the feature in a set of files that compile.
2. Build it as library target.

3. Write unit tests for that.
4

. Automate the unit testing
1. A make rule...
2. A Cl profile...

5. Run static analysis tools.
6. Now you can define a binary target and run the thing.

7. Send the changeset for review.

37

Pre-commit

= SCM is not optional:
= |t is the base of any test automation.

= Subversion vs. Git.
= They are both good.

= No flames, please.

= The pre-commit checks:
= A subset of the unit tests (“smoke tests”).
= Never allow a commit without smoke compliance.

38

CERN
School of Computing

i
CERN

The Code Review e romne

= The code review is well established in large companies:
= Other’s view on your work.
= Maximize readability.
= Keeps code reusable and self-contained.

39

Code review tools

= Rietveld:
= A version of Mondrian.
= Couples with Subversion.

= Gerrit:
= Written in Java.
= Couples with Git.

= GitHub’s pull requests:

= A distributed model based on Git.

= More:
= Review Board, Mavelich

40

CERN
School of Computing

Submit queue

= The submit queue runs all the tests in each commit:
= Starts on a clean working copy.
= Applies the changeset.

= Runs the tests.
= All of this in parallel with other change submissions.

= |f everything green:
= Deploy.

41

CERN
School of Computing

Release

= Use different release channels:
= Canary

= Nightly builds, for engineers and testers.

= Alpha and Beta

= For engaged users.
= Make feedback submission easy for them!

= Stable

= Release for production.

= This pipeline has to be autonomous.

42

CERN
School of Computing

i
CERN

COntanOUS Integ rathn School of Computing

= A Cl system helps implementing this:
= Jenkins
= Travis

= Bamboo
= Integrated with JIRA & Co.

= |Interesting for CERN'’s case.

= GitHub’s HUBOT: .
= Control all your procedures on the. chat ol
= Set of CoffeScript scripts to interface serwces
= From builds to deployments =

43

Case study: LHCbDirac

= Using Jenkins for each build
= Automated build with dependency detection

= Passes tests automatically
= After build succeeds

= Static analysis through Coverity
= Automatic test coverage analysis
= And static analysis checks

44

CERN
School of Computing

Test analysis

= Who to blame in case of bug:
= The entire team has failed.

= Statistics:
= Detect background bugs.
= Code coverage analysis.

= Provide dashboards:

= Needed to control the automation.

43

CERN
School of Computing

Case study: CORAL/COOL

= Functional testing:
= Automatic unit testing

= On production platforms
= GNU/Linux + OS X

= Non-functional testing:
= Performance probes against the Oracle DB
= Code coverage measured with Coverity

46

CERN
School of Computing

Testing on large scale distributed systems ,‘

CERN

Compatibility labs eI e

47

iCSC2013, Ramon Medrano Llamas, CERN

i
CERN

UX teStlng automatlon School of Computing

= Should be automated:
= |n order to be regressed.

= Selenium:
= JS testing on the browser.

= WebDriver:
= A proposal of a API to automate testing.

= Bots:
= Google’s approach for validation of Chrome.

48

i
CERN

C rOWd SOuU rC| N g School of Computing

= Release a beta version:
= People love them.
= Make easy to send feedback.

= |nstantly, free testing:
= Real environments,

= real use cases,
= more difficult to repeat.

= Use the proper channels.

= Amazon’s Mechanical Turk
= Used by Twitter for search quality.

49

50

Testing on large scale distributed systems

Autonomic Computing

Life of an issue

iCSC2013, Ramon Medrano Llamas, CERN

CERN
School of Computing

i
CERN

AU tO Nnom | C SySte ms School of Computing

= If every time things break the same way:
= Just make the system auto recover.
= |f you run on an laaS, you have much already done.

= Autonomic Computing:
= A vision from IBM Research.
= 2003!

= Systems:
= Self-configure.
= Self-heal.
= Self-optimize.
= Self-protect.

51

i
CERN

S e If— con f| g ure School of Computing

= Automatic application of configurations.
= Automatic configuration of software.

= Automatic integration in network environments.

= Just set some policies and the rest follows.

52

Self-heal

= Automatic recovery of failures.
= Automatic fail-over on upgrades.

= Automatic diagnose.

= Systems react to problems automatically.

53

CERN
School of Computing

Self-optimize

= Automatic performance tuning.
= Automatic clean up.

= Automatic update.

= Learning and monitoring for machines, not humans.

54

CERN
School of Computing

i
CERN

S e If— p rOte Ct School of Computing

= Automatic protection against large-scale attacks.

= Anticipation of problems.

= Not only security issues, but failures of components...

55

Testing on large scale distributed systems "

CERN

The orchestrator e omne

Autonomic manager

Policies Know-how

Sensors Actuators

Managed element

56

iCSC2013, Ramon Medrano Llamas, CERN

i
CERN

Case study: The Agile Infrastructure "™

= Renovation of tools at CERN:
= Go with the industry...
= |f they manage O(1,000,000)* machines, why not us?

= A case of study for operations and development.
= A step closer to an autonomic system.

= Automation of operations via:
= Self-configuration.
= Self-optimization.

= |n theatres this spring.

* The Big O notation is clearly wrongly
used here, but you get the idea.

57

i
CERN

The DevOps way s

= Usually, there was a problem:
= Developers and operations were two like water and oll.

= DevOps shifts responsibilities:
= Built quality into product first.
= The team is responsible of project success, not some areas.
= Break down barriers between departments.
= Remember the Test-enabled team?

= Requirements: CAMS
= Culture
= Automation
= Measurement
= Sharing

58

Implications

= Reduced changes, more often.
= Tighter collaboration between stakeholders.

= Less risk on each deployment.
= |deally, there are no deployments.
= Makes the Autonomic Process closer.

= Developers are in control. And operators.

59

CERN
School of Computing

Testing on large scale distributed systems "

CERN

Tools for Culture Change oo fompuis

SCHNEIDER

st)) | })
X ((stuneier) ; 20x05|
DA\ WEISSE S/

‘g =
|

i nE
I

60

iCSC2013, Ramon Medrano Llamas, CERN

i
CERN

Tools for Self-configuration & i

= Puppet:
= Very high momentum.

= Chef:
= Very similar to Puppet.

= The Foreman:
= A frontend for Puppet.
= Can provision bare metal and cloud resources.

= Marionette Collective:
= Orchestrator tool for Puppet.

61

i
CERN

O p en S ta C k School of Computing

= |s a cloud engine (laaS).

Started by RackSpace:
= Managing 79,000 machines as of 2011.

= Offers:
= Compute: nova.
= Object storage: swift, cinder.
= Virtual networking: quantum.
= Many more modules.

CERN’s choice.
= And NASA’s, HP’s, Wikimedia’s, Canonical’s, Intel’s...
= There are other options: CloudStack, OpenNebula...

62

Tools for measurement

= Puppet reports.
= Splunk, New Relic, Logstash...

= Graphite:
= |ntegrate monitoring data from different sources.

Old friends:
= Nagios, Ganglia.

= But #monitoringsucks.
= Clunky interfaces
= Host centric
= Tied hands

63

CERN
School of Computing

Case study: perfsonar

= While accessing data:
= Collect metrics of network performance.
= Deploy point-to-point monitoring.
= iperf
= Detect slowness

= Allows the introduction of Software Defined Network
= Self-optimization!

64

CERN
School of Computing

65

Testing on large scale distributed systems

Live testing

Life of a distributed system (2)

iCSC2013, Ramon Medrano Llamas, CERN

CERN
School of Computing

Live testing

66

= Testing does not end on release:
= These systems need to be monitored,
= and checked for availability.
= The only way to do it is with active testing.
= And it is a requirement of self-healing.
= And can play a big role in self-optimization.

= Approximations:
= Profiling, probing.
= Monitoring.
= Either case: be carful! You are playing in production.

CERN
School of Computing

System wide profiling

= Profile everything on production:
= There is an overhead of profiling.
= But it is worth.

* Procedure:
= |nstrument the software to emit performance metrics.
= Collect them and start gathering statistics.
= Apply machine learning techniques to predict.

67

CERN
School of Computing

Probing

= Simulate the end user:
= Send real jobs and look

= This is a kind of system testing,
= But on real infrastructure

= Collect data as on SWP.
= Apply the same techniques for data mining.

68

CERN
School of Computing

i
CERN

#monitoringsucks ool f Camputn

= Monitoring is so old-fashioned:
= You have to look at stuff.
= et the system work for you.

= The true power of SWP comes:
= When the machines are able to auto tune.

= When, based on load, the infrastructure changes:
= To cope with it,

= To save power,

69

Case study: DDM autoexclusion

= Excludes storage sites based on:
= Metrics of free space available: SRM spacecollector.
= Scheduled downtimes from AGIS.
= SAM testing (Nagios).

= With this, it produces exclusions automatically:
= No operators needed.
= Self-configuration!

70

CERN
School of Computing

Case study: HammerCloud

= [t can be submitted to something?
= Then it can be tested with HammerCloud
= Mainly batch systems and laaS.

= Stress testing:
= Measure the resources
= Analyse,
= Tune
= (Looks like QFD...)

= Functional testing
= The live testing.

71

CERN
School of Computing

i
CERN

HC’s Functional testing oot Computs

= Monitors:
= Availability
= Functional quality
= User-seen performance.

= HC is always submitting probes everywhere.
= And collects data.

= 50,000,000 probes/year
= Offers monitoring
= And actions.

72

i
CERN

HC's Infrastructure probing oot Computs

= HC can test anything with an API.

= For instance, cloud resources:
= VM life cycle duty.

= Site performance:
= Network,

= CPU overhead.

= Tested resources on several clouds:
= T-Systems, CloudSigma, Atos, RackSpace, Google...
= More than 40,000 CPU hours.

73

74

Testing on large scale distributed systems

Testing distributed systems

Ramon Medrano Llamas
CERN

Inverted CERN School of Computing, 25-26 February 2013
iCSC2013, Ramon Medrano Llamas, CERN

CERN
School of Computing

References

* The Art of Software Testing
= Glenn Myers

= Testing Computer Software
= Cem Kaner

*= Test-Driven Development by Example
= Kent Beck

= How Google Tests Software
= James Whittaker, Jason Arbon and Jeff Carollo

75

CERN
School of Computing

Acknowlegments

= José Garcia Fanjul,
= Professor and researcher on testing
= University of Oviedo

= All the people at IT-ES for the input
= James Whittaker for awesome books
= Teams at Google for releasing awesome tools

= Teams at Heroku and GitHub for Getting Shit Done™

76

CERN
School of Computing

Testing on large scale distributed systems "

CERN

Android’s submit queue ™™

Author sets up

Case study

< Android Open Source Project
Contribution Workflow

[Author
[l Author's local environment
Author submiits EI Approver
i mm D Verifier
. Verifier's local environment
I:l Automatic process

Verifier sets the
“verified” bit in
Gerrit and submits
the change commit
NO Verifier unsets the
“code looks good™ Gerrit merges
bit, adds commit with
comments & public depot.
notifies author
Approver adds
notifies
author
T:dmd. NO Did the merge
Jooks good” go through without
bits are unset conflicts?
Gerrit notifies the
verifier to merge
changes manually
Verifier manually
merges files or
notifies the author e
to merge &
resubmit

77

iCSC2013, Ramon Medrano Llamas, CERN

