

Welcome to **iCSC2008**, the third edition of the Inverted School, *"Where Students turn into Teachers"*.

iCSC is an idea that was experimented for the first time in 2005.

The idea of **iCSC**s comes from the observation that at regular CSCs it is common to find someone in the room who knows more on a particular – usually advanced - topic than the lecturer. So why not to try and exploit this?

CSC2006 and CSC2007 students made proposals via an electronic discussion forum, from which a programme was designed by the CSC track coordinators.

This year's programme focuses on a timely, challenging topic: *Reconfigurable High-Performance Computing.* This is the first time at CERN that a complete ten-hour programme is dedicated to the subject. It is complemented by a short session on two special topics.

I would like to thank all those who developed proposals and those actually lecturing. This is their school and I am confident all will go very well. As this is only the third edition, do not hesitate to comment and advise us on how to improve it.

Enjoy the school.

François Fluckiger Director of the CERN School of Computing

© CERN and the iCSC2008 lecturers, 2008

iCSC2008 Programme Overview

The programme has one major theme lasting 2 days: <u>Towards Reconfigurable High-Performance Computing</u>. It is followed by a short session on special topics. The programme results from selected proposals developed by students through an electronic forum.

	Towards Reconfigurable High-Performance Computi	ng		Special to	pics
4 hours	 L1 Basics L5 Multicores at work: The CELL Processor L7 Reconfigurable HPC I - Introduction L10 Summary: Hybrid Platforms, Hybrid Programming? 	Iris Christadler Leibniz Super- Computing Centre - Germany	1 hour	- L1 Overview of advanced aspects of data analysis software	Alfio Lazzaro University of Milan and INFN, Milan - Italy
3 hours	 L6 Platforms III - Programmable Logic L8 Reconfigurable HPC II - HW Design Methodology, Theory & Tools L9 Advanced and Emerging Parallel Programming Paradigms 	Manfred Muecke University of Vienna - Austria	1.5 hours	- L2 Scalable Image and Video coding	Jose Dana Perez CERN, Geneva
3 hours	 L2 Multicore Architectures L3 Platforms I: Advanced Architectural Features L4 Platforms II: Special-Purpose Accelerators 	Andrzej Nowak CERN, Geneva			
10 hours			2.5 hours		
	Monday 3 & Tuesday 4 March 2008 10:15 - 17:30 Bld 31- 3rd floor IT Amphitheatre		Wed	nesday 5 M 09:00 - 12 Bld 31- 3rd IT Amphithe	arch 2008 :00 floor eatre

iCSC2008 Schedule

Monday 3 March 2008 IT Auditorium, Bld 31		Tuesday 4 March 2008 IT Auditorium, Bld 31			Wednesday 5 March 2008 IT Auditorium, Bld 31		
Tov I	Towards Reconfigurable High- Performance Computing		Towards Reconfigurable High- Performance Computing		Special topics		
		09:00- 09:55	Platforms III - Programmable Logic Manfred Muecke	09:00- 10:00	Overview of advanced aspects of data analysis software Alfio Lazzaro		
10:15- 10:30	School opening	10:05- 11:00	Reconfigurable HPC I - Introduction	10:00- 10:30	Coffee		
10:30- 11:25	Basics Iris Christadler		Iris Christadler	10:30- 12:00	Scalable Image and Video coding Jose Dana Perez		
		11:00- 11:30	Coffee Break				
11:35- 12:30	Multicore Architectures Andrzej Nowak	11:30- 12:25	Reconfigurable HPC II - HW Design Methodology, Theory & Tools Manfred Muecke	12:00	Adjourn		
12:30- 14:00	Lunch		Lunch				
14:00- 14:55	Platforms I: Advanced Architectural Features Andrzej Nowak	14:00- 14:55	Advanced and Emerging Parallel Programming Paradigms Manfred Muecke				
15:05- 16:00	Platforms II: Special-Purpose Accelerators Andrzej Nowak	15:05- 16:00	Summary: Hybrid Platforms, Hybrid Programming? Iris Christadler				
16:00- 16:30	Coffee Break	16:10- 16:25	Transition to Data Analysis topic Alfio Lazzaro				
16:30- 17:25	Multicores at work: The CELL Processor Iris Christadler	16:30	Adjourn				
17:30	Adjourn						
19:00	Dinner with iCSC2008 lecturers (TBC) (*)						

(*): as well as with former CSC2007 participants who registered for the dinner

iCSC 2008 Lecturer Biographies

Iris CHRISTADLER

Leibniz Supercomputing Centre - Germany

I am a member of the grid and the user support teams at LRZ. We operate a 9728 core SGI Altix 4700 and a heterogeneous Linux-Cluster with 800 cores. Together with the MPG a cluster with 800 cores and 350 TB disc space is part of LCG as a Tier-2 Center. In addition to LCG, LRZ is also a member of the DEISA/eDEISA grid infrastructure. My work involves porting of applications to different platforms, optimization, debugging and grid enablement, which is currently limited to DEISA but should be expanded to LCG as well.

Jose Miguel DANA PEREZ

CERN, Geneva - Switzerland

Jose M. Dana studied at University of Almeria (Spain) where he obtained a M.Sc. degree in Computer Science and worked for the "Computer Architecture and Electronics" department for the last two years of his degree. Moreover, he is member of the "Supercomputing: Algorithms" research group of his University since 2004. During his collaboration he has written several papers about scalable image and video coding. He was a CERN Summer Student in 2005 and he worked in compiler optimization related tasks (in CERN openlab). In October 2006 he re-joined CERN openlab as a Fellow working this time in Grid deployment and virtualization subjects. Right now, he is combining his work in CERN openlab with his PhD studies.

Alfio LAZZARO

University of Milan and INFN, Milan - Italy

I am a postdoc in University of Milan, department of Physics, and I'm a member of the BaBar Collaboration and recently a new member of Atlas Collaboration. BaBar is an experiment of High Energy Physics running at SLAC, Menlo Park, CA. Currently I'm the Physics Software Coordinator of the Collaboration. The activity is finalized to develop and maintain the code used for event reconstruction and data analysis. My research is on physics analysis and software used for data analysis. In particular, I study the charmless decays of B mesons to final states containing an eta or eta' meson. For all these studies I have developed a fitting program (maximum likelihood fits) in C++ language on Linux/UNIX platform. This program, called MiFit, uses ROOT and RooFit classes. I use several other techniques, like Fisher Discriminant, Neural Network, Decision Tree.

Manfred MUECKE

University of Vienna - Austria

I studied electrical engineering with emphasis on telecommunication and computer architectures. I am interested in design and implementation of languages and compilers to enable more efficient description and synthesis of complex FPGA-based computing systems.

I wrote my PhD thesis at CERN, focusing on design methodologies for digital signal processing on FPGAs. All LHC experiments use FPGAs in their data acquisition systems at medium trigger levels. It was therefore a most exciting work environment. Currently, I am working on the optimization of molecular dynamics simulations.

Andrzej NOWAK

CERN, Geneva - Switzerland

Andrzej Nowak has been working at CERN openlab, a partnership between CERN and the industry (Intel, HP, Oracle), since 2007. His early research concerned operating systems security, mobile systems security, and wireless technologies. During his studies in 2005 and 2006, Andrzej worked at Intel, where he researched custom performance optimizations of the Linux kernel and took part in developing one of the first 802.16e (WiMax Mobile) wireless MAN networking standard implementations. Soon after obtaining his diploma, he joined openlab in January 2007. Andrzej deals mostly with multi- and many-core architectures and parallel processing. Another significant area of his work is platform optimization and performance assessment.

Towards Reconfigurable High-Performance Computing

iCSC2008: Towards Reconfigurable High-Performance Computing

Lecturers:

Iris Christadler - Leibniz Supercomputing Centre - Germany Manfred Muecke - University of Vienna - Austria Andrzej Nowak - CERN, Geneva

Moore's law still holds and provides us with unprecedented device integration, resulting in abundant logic resources even on commodity computing platforms. However, computing has failed to take advantage of this gift and **increase in computing performance is constantly lagging behind the increase in logic resources**.

In short: semiconductor technology has overtaken chip designers, computer scientists and programmers on the right. This is strongly felt in high-performance computing (HPC) where **most applications can no longer take advantage of the many cores** provided by current supercomputers. Stalling cores nevertheless take up energy and in HPC power consumption is becoming an important issue. Among the more promising future solutions to these problems is **reconfigurable computing** (computing on flexible fabrics). In this series of lectures, we want to explore the reasoning behind reconfigurable HPC, its prospects, implications and issues.

We will discuss **different hardware architectures** and their respective requirements and implications to the model of computation applied (or the mismatch thereof). We will **compare** them, **sketch their potential** for HPC and introduce a more **unified view on** them.

We will show that the dominant problem in HPC is not hardware but software. Especially the fact that **our programming models do not match current technology** is the root of much inefficiency.

Reconfigurable Computing is **challenging**, because it asks many questions at the same time. But it is also most **rewarding**, because it forces us to rethink the way we design computers, interconnects, compilers and applications.

The lectures aim at qualifying students to understand **where and why** reconfigurable computing can be expected to have a **considerable impa**ct on tomorrows high-performance computing landscape, and where not.

A few questions

- What will tomorrow's supercomputers look like?
- What are the expected changes in commodity PC hardware and why should we care about them?
- What should I do to use tomorrow's supercomputers efficiently?
- How to port your application to GPUs (without porting it)?.
- Why thinking parallel will make all the difference?
- Shall we think in local or global address spaces?
- Do we need data stream processing to cope efficiently with many-core CPUs?
- What to think of the new programming languages ... Fortress, Chapel, X10, UPC, Co-Array Fortran?
- Do you need to learn VHDL when using FPGAs?
- How to define an FPGA's peak performance? (and how to cheat doing so?)
- How can FPGAs running at 100MHz outperform CPUs running at 3GHz
- Does C-to-Hardware work?
- Have you ever wondered what the acronyms DEISA/PRACE/HPCS mean?
- Can your playstation save the world?
- Why should supercomputers care about the climate change?
- Do you still believe that Roadrunner is just a bird and Maxwell is a Scottish physicist?

All the answers in the Computational Intelligence at **iCSC**

Overview

Slot	Lecture	Description	Lecturer			
	Monday 3 March 2008					
10:15- 10:30		School opening - Introduction				
10:30- 11:25	Lecture 1	Basics	Iris Christadler			
11:35- 12:30	Lecture 2	Multicore Architectures	Andrzej Nowak			
12:30- 14:00		Lunch				
14:00- 14:55	Lecture 3	Platforms I: Advanced Architectural Features	Andrzej Nowak			
15:05- 16:00	Lecture 4	Platforms II: Special-Purpose Accelerators	Andrzej Nowak			
16:00- 16:30		Coffee break				
16:30- 17:25	Lecture 5	Multicores at work: The CELL Processor	Iris Christadler			
17:30		Adjourn				
	Tuesday 4 March 2008					
09:00- 09:55	Lecture 6	Platforms III - Programmable Logic	Manfred Muecke			
10:05- 11:00	Lecture 7	Reconfigurable HPC I - Introduction	Iris Christadler			
11:00- 11:30		Coffee break				
11:30- 12:25	Lecture 8	Reconfigurable HPC II - HW Design Methodology, Theory & Tools	Manfred Muecke			
12:30- 14:00		Lunch				
14:00- 14:55	Lecture 9	Advanced and Emerging Parallel Programming Paradigms	Manfred Muecke			
15:05- 16:00	Lecture 10	Summary: Hybrid Platforms, Hybrid Programming?	Iris Christadler			
16:10- 16:25	Theme closing	Transition between HPC and Data Analysis themes: Using HPC concepts in data analysis software (short session)	Alfio Lazzaro			
16:30		Adjourn				

LECTURE 1

Basics

	Monday 3 March 2008
10:30 11:25	Lecture 1 This lecture will give an overview of the state-of-the-art, developments and research topics in High-Performance Computing. Christadler
	Important topics:
	HPC applications
	HPC platforms
	HPC users
	Preparations for the Petascale Area
	The motivation of alternative architectures to commodity platforms for HPC users will be addressed.
	Audience The lecture targets all participants with interest in HPC.
	Pre-requisite No prerequisite is necessary.The Data Analysis Process

Towards Reconfigurable HPC Basics

Lecture 1

iCSC 2008 3-5 March 2008, CERN

Rasics

Towards Reconfigurable HPC Basics

Lecture 1

CERN

School of Comm

Number of Processors / Per November 2007	rformance	
2049-4096	1025-2048 Processor Gener Nover	ation / Performance nber 2007
4k-8k	32k-64k -513-1024 Zeon 53xx (Clovertown)	Xeon 51xx (Woodcr
	Opteron Dual Core	Others Xeon EM64T Pentium 4 Xeon

Т	The actual top5						
	No	Site	System	#Proc	Peak Perf	Linpack	Efficen.
	1	LLNL, USA	IBM Blue Gene/L	212992	596378	478200	80%
	2	FZJ, Germany	IBM Blue Gene/P	65536	222822	167300	75%
	3	NMCAC, USA	SGI Altix ICE 8200	14336	172032	126900	74%
	4	India	Cluster Platform, HP	14240	170880	117900	69%
	5	Sweden	Cluster Platform, HP	13728	146430	102800	70%
	15	LRZ, Germany	SGI Altix 4700	9728	62259	56520	91%
	16	Japan	Sun + ClearSpeed	11664	102021	56430	55%
	17	EPCC, UK	HECToR, Cray XT4	11328	63436	54648	86%
11		iCSC2008, Iris C	Christadler, Leibniz Supercomput	ting Centre			

Towards Reconfigurable HPC Basics

	CPU	EPGA	ClearSpeed	Coll
Price	\$	\$\$-\$\$\$	sss	\$-\$\$\$
Power	hiah	low	medium	medium
Good at	graphics, 32bit	integer	64bit	graphics, 32bit
64bit?	no	yes	yes	yes
64bit Perf.	-	low	high	high in 2008
IEEE-754	no	no	ves	expensive

Towards Reconfigurable HPC Basics

LECTURE 2

Multicore Architectures

		Monday 3 March 2008
11:35 12:30	Lecture 2	This lecture will explain why multi-core architectures have become so popular and why parallelism is such a good bet for the near Nowak future.
		Important topics:
		Scalability and parallelism
		General multi-core architecture characteristics
		Multi-core caveats and trade-offs
		In particular, the changes in computing landscape will be discussed, as well as the impact that modern hardware has on software.
		Audience - Pre-requisite Listeners don't need to have advanced knowledge about parallel computing.

Common ways to imp level	prove the performance of a	CPU on the hardware
Technique	Advantages	Disadvantages
Frequency scaling	Nearly no design overhead, immediate scaling	Some manufacturing process overhead, leakage problems
Architectural changes	Increased versatility, performance	Huge design and manufacturing overhead minor (20%) speedups
Simultaneous multi- threading	Medium design overhead, up to 30% performance improvement	Requires more memory, single thread performan hit (~10-15%)
Cloning chips (MCP)	Minimal design overhead	Requires parallel softwar & more memory, inter-cl communication difficult
Adding processing cores	Small design overhead, easy to scale, 50%+ performance improvement	Requires parallel softwar or more memory

Multi-core Architectures

in

Lecture 2

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC Multi-core Architectures

Multi-core Architectures

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC Multi-core Architectures

Multi-core Architectures

iCSC 2008 3-5 March 2008, CERN

Lecture 2

Towards Reconfigurable HPC Multi-core Architectures

Amdahl's Law (2)

Baking a delicious cake

38

C, C++:

 "External" threading libraries – posix threads, linux threads, windows threads

Multi-core Architectures

- Java, C#:
 - Native threading
 - Some higher level tools
- Python:
 - Threading modules dependent on the underlying OS
- Common traits:
 - manual synchronization needed, low level, fine grained control
- all of the techniques from the previous slide have to be implemented and controlled manually
 - iCSC2008, Andrzej Nowak, CERN openlab

Towards Reconfigurable HPC Multi-core Architectures

ics

School of Comp

CERN

Multi-core Architectures

Towards Reconfigurable HPC Multi-core Architectures

_

LECTURE 3

Platforms I: Advanced Architectural Features

		Monday 3 March 2008	
14:00 14:55	Lecture 3	This lecture describes some advanced architectural features of modern and upcoming CPU designs. It also addresses the problems of effective coding, especially for parallel and distributed environments.	Andrzej Nowak
		Important topics:	
		Hardware extensions	
		Language extensions	
		 New and experimental languages and compilers 	
		 Interesting current and upcoming hardware designs 	
		The highlight of this lecture is the way that software relates to hardware, especially when new computational hardware comes into play.	
		Audience Lecture 3 targets listeners who need to follow developments in the hardware and compiler domains.	
		Pre-requisite It is recommended that the listeners follow Lecture 2 before attending this one, but it is not required.	

Towards Reconfigurable HPC Platforms I: Advanced Architectural Features

MMX

- Intel's first attempt at adding SIMD capabilities to their CPUs; introduced in 1997
- Packet data type concept
 - 64 bits = 2x 32bits = 4x 16bits = 8x 8bits
- 8 "new" 64bit integer registers MM0 ... MM7 (mapped onto x87 the stack)
- Major flaws:

8

- floating point and SIMD could not be used at the same time
- integer operations only
- Embedded XScale CPUs (ARM family) use iwMMXt Intel Wireless MMX Technology

iCSC2008, Andrzej Nowak, CERN openlab

- 64 bit packed data type
- 16 data regs, 8 control regs

Towards Reconfigurable HPC Platforms I: Advanced Architectural Features

Advanced Architectural Features ics CERN SSE3, SSSE3 SSE3 introduced in 2004 in the Pentium 4 ("Prescott" hence the a.k.a. name "PNI") SSE3 Technical details: Horizontal operations portfolio expanded, i.e. add/subtract elements in a single vector Improved misaligned data loading • FP -> Int conversion simplified SSSE3 is really a new iteration, introduced in Intel Core chips 16 new instructions – some packed and horizontal operations No new registers Operates on MMX or XMM registers Unsupported in AMD chips 12 iCSC2008, Andrzei Nowak, CERN openlat

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC Platforms I: Advanced Architectural Features

Lecture 3

Towards Reconfigurable HPC Platforms I: Advanced Architectural Features

Advanced Architectural Features							
	Port 0 Port 1		Port 2	Port 3	Port 4	Port 5	
	Integer ALU	Integer ALU	Integer Load	Store Address	Store Data	Integer ALU	
	Int. SIMD ALU	Int. SIMD MUL	FP Load			Int. SIMD ALU	
	SSE FP MUL	FP ADD				FSS Move & Logic	
	80 bit FP MUL					Shuffle	
	FSS Move & Logic	FSS Move & Logic	FP – Floating Point exec unit		1		
	64 bit shuffle	64 bit shuffle	MUL - Multiply				
20	20 ICSC2008, Andrzej Nowak, CERN openiab						

Platforms I: Advanced Architectural Features

In: C++ c ASM (Advanced Architectural Features Advanced Architectural Features Instruction layout (Core 2) C++ code: if (abs(point[0] - origin[0]) > xhalfsz) return FALSE; ASM code: movsd 16(%rsi), %xmm0 subsd 48(%rdi), %xmm0 andpd _2ilofloatpacket.1(%rip), %xmm0 comisd 24(%rdi), %xmm0 // load and co jbeB5.3 # Prob 43% // jump if FAL					tract mask ompare LSE		
	Cycle	Port 0	Port 1	Port 2	Port 3	Port 4	Port 5	
	1			load point[0]				
	2			load origin[0]				
	3							
	4							
	5							
	6		subsd	load float-packet				
	7							
	8			load xhalfsz				Jarp
	9							e e
	10	andpd						Sver
	11							e: o
	12	comisd						nag
21	13						jbe	
41			iCSC2008, And	drzej Nowak, CERN openla	b			

Shared memory only

22

iCSC2008, Andrzej Nowak, CERN openlal

Lecture 3

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC Platforms I: Advanced Architectural Features

Lecture **3**

Platforms I: Advanced Architectural Features

Platforms I: Advanced Architectural Features

Lecture 3

Platforms I: Advanced Architectural Features

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC Platforms I: Advanced Architectural Features

LECTURE 4

Platforms II: Special-Purpose Accelerators

		Monday 3 March 2008	
15:05 16:00	Lecture 4	This lecture aims to familiarize the listeners with special-purpose hardware accelerators and processing units which have become popular in recent times.	Andrzej Nowak
		Important topics:	
		Hardware acceleration concepts and philosophy	
		GPUs and gaming hardware	
		 Future directions for hardware accelerators, future scenario discussion 	
		This lecture will stress the tradeoffs which users face when reaching for ultra-fast special purpose hardware, such as GPUs.	
		Audience Lecture 4 targets listeners who are interested in hardware acceleration using off-the-shelf hardware.	
		Pre-requisite It is advisable to follow Lecture 3 before attending this one.	

Lecture 4

Towards Reconfigurable HPC Platforms ii: Special Purpose Accelerators

Towards Reconfigurable HPC

Lecture 4

Platforms ii: Special Purpose Accelerators

Towards Reconfigurable HPC Platforms ii: Special Purpose Accelerators

Towards Reconfigurable HPC Platforms ii: Special Purpose Accelerators

CERN

Lecture 4

Platforms ii: Special Purpose Accelerators

Towards Reconfigurable HPC Platforms ii: Special Purpose Accelerators

LECTURE 5

Multicores at work: The CELL Processor

		Monday 3 March 2008
16:30 17:25	Lecture 5	This lecture will give a deeper insight into one of the special- Iris purpose accelerators, the CELL processor, that is actively being Christadler investigated for HPC.
		Important topics:
		(Ab)Using your Playstation
		Cell Clusters
		The Roadrunner Project
		This lecture will show the basic steps to CELL programming in a simple and easy to follow manner such that no prerequisite is necessary to follow the lecture.
		Audience - Pre-requisite The aim is to show the practical realization of theoretical concepts introduced in lectures 2, 3 and 4.

Multicores at Work: the CELL Processor

Towards Reconfigurable HPC Multicores at Work: the CELL Processor

Towards Reconfigurable HPC Multicores at Work: the CELL Processor

Towards Reconfigurable HPC Multicores at Work: the CELL Processor

LECTURE 6

Platforms III - Programmable Logic

		Tuesday 4 March 2008	
09:00 09:55	Lecture 6	This lecture introduces programmable logic from a hardware point of view (with a bias towards their potential use in HPC).	Manfred Muecke
		Important topics:	
		Introduction to FPGAs.	
		Hardware Description Languages.	
		Understanding FPGA performance figures.	
		 Gap between potential computing performance and programmer productivity. 	
		Audience - Pre-requisite The lecture is designed for students with no prior knowledge in programmable logic.	
		It does not build upon any of the preceding lectures. It is however the basis for all further lectures and is highly recommended to all students including ones having prior knowledge in programmable logic.	

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC Platforms III Programmable Logic

Lecture 6

Towards Reconfigurable HPC Platforms III Programmable Logic

Towards Reconfigurable HPC Platforms III Programmable Logic

Lecture 6

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC Platforms III Programmable Logic

Lecture 6

Towards Reconfigurable HPC Platforms III Programmable Logic

Lecture 6

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC Platforms III Programmable Logic

_

LECTURE 7

Reconfigurable HPC I - Introduction

		Tuesday 4 March 2008
10:05 11:00	Lecture 7	This lecture introduces Reconfigurable High-Performance Iris Computing. The reason behind the limited numbers of Christadler Reconfigurable Computing (RC) systems in HPC is discussed. It shows the fields where RC is mostly used and the lessons that can be learned.
		Important topics:
		Introduction to RHPC
		Hybrid supercomputers
		Areas in which RC is already used
		Areas in which RC might be beneficial
		Participants should have attended Lecture 4, Platforms II - Special Purpose Accelerators, and Lecture 6, Platforms III Programmable Logic, or have equivalent knowledge.
		Audience - Pre-requisite Participants should have attended Lecture 4, Platforms II - Special Purpose Accelerators, and Lecture 6, Platforms III Programmable Logic, or have equivalent knowledge.

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC Reconfigurable HPC I - Introduction

LECTURE 8

Reconfigurable HPC II - HW Design Methodology, Theory & Tools

		Tuesday 4 March 2008
11:30 12:25	Lecture 8	This lecture will first focus on existing tools for making use of FPGAs as number crunchers and will give examples of existing solutions. It will then discuss limitations and how they could be overcome. Important topics: • Old attempts and current tools
		About levels of HW abstraction
		What is higher-level synthesis?
		Examples from HPC and HEP
		Audience This lecture is intended for students seeking deeper understanding of hardware design description issues in general and when using FPGAs as number crunchers – understanding of programming languages and basic compiler technology will be helpful.
		Pre-requisite This lecture builds upon the preceding lectures "6. Platforms III - Programmable Logic" and "7. Reconfigurable HPC I - Introduction". While not necessarily being a required prerequisite for lecture 9 and 10, it motivates why going beyond existing tools is important.

iCSC 2008 3-5 March 2008, CERN

esis	
s cifying your problem, than the hardware"	
Mücke, University of Vienna	

Log	ic Synthesis	gurable HPC II		
 Digital Systems ⇒ Logic Synthesis 				
Lo ab	 Logic synthesis = Inferring an implementation from a more abstract description 			
 Already a*b is far from straightforward: 				
	FPGA	CPU		
	How many bits?	Fixed data paths		
	Power budget?	Fixed	1	
	How fast?	Given clock	1	
	How much area?	Fixed]	
	redesign often, make perfect match	Design once, use many vears	_	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Lecture 8

Lecture 8

Lecture 8

		0
F		CERN School of Computing
۱.	 Edwards, S. A., The challenges of synthesizing hardware from languages. 2006. IEEE Design & Test of Computers 23 (5), 375-3 URL http://dx.doi.org/10.1109/MDT.2006.134 	C-like 86.
1	 Dehon, A., The density advantage of configurable computing. A Computer 33 (4), 41-49. URL http://portal.acm.org/citation.cfm?id=621452 	April 2000.
1	 Wirth, N., Hardware compilation: Translating programs into circ 1998. Computer 31 (6), 25-31. URL http://dx.doi.org/10.1109/2.683004/ 	cuits.
1	 Bryan Bowyer (Mentor Graphics), Just What is Algorithmic Synth 2006. FPGA Journal http://www.fpgajournal.com/articles_2005/20051206_mentor.htm 	nesis?
1	 El-Araby, E., Nosum, P., El-Ghazawi, T., Productivity of high-leve languages on reconfigurable computers: An HPC perspective. Field-Programmable Technology, 2007. ICFPT 2007. International Conference on. pp. 257-260. <u>http://dx.doi.org/10.1109/FPT.2007.4</u>- 	el 2007. In: <u>439260</u>

33

iCSC2008, Manfred Mücke, University of Vienna

LECTURE 9

Advanced and Emerging Parallel Programming Paradigms

		Tuesday 4 March 2008
14:00 14:55	Lecture 9	This lecture will present some parallel programming paradigms and will explain why they map so well on reconfigurable hardware. It will then focus on hardware-independent programming and motivate why this is important and how it can be achieved. Current developments will be discussed.
		Important topics:
		Explicit and implicit parallelism
		 On granularity of parallelism and matching hardware architectures
		 On cross-compiling of HPC applications (prospects and issues)
		Parallel programming languages in the making
		Audience This lecture is more theoretic than preceding lectures and is thought for students seeking a more general understanding on how a programming paradigm affects implementation and performance of languages and tools for reconfigurable HPC.
		Pre-requisite As this lecture is based on issues and conclusions collected from all preceding lectures, having followed as many as possible is certainly helpful. The most helpful prerequisites are possibly
		 lecture "6. Platforms III - Programmable Logic" and
		 lecture "8. Reconfigurable HPC II - HW Design Methodology, Theory & Tools"

Towards Reconfigurable HPC Lecture 9 Advanced & Emerging Parallel Programming Paradigms

iCSC 2008 3-5 March 2008, CERN

Concurrency and Parallelism

Advanced and Emerging Parallel Programming Paradigms

CERN School of Computing

Lecture 9 **Towards Reconfigurable HPC** Advanced & Emerging Parallel Programming Paradigms

Advanced and Emerging I	Parallel Programming Paradigm	School of Computing
Our world is not sequential!		
The more concurrency a program contains,	Concurrency ⇒	Algorithm
 the more parallel instructions/threads/tasks can be extracted <i>reliably</i> by (suitable) compilers and 	Parallel Exec.⇒	Source HW
 the better the automatic mapping on distributed hardware architectures. 		
12 ICSC2008. Manfred Mücke		

Explicit vs. Implicit	rogramming Paradigms	CERN School of Computing
 Explicit specifications allow the programmer to guide the implementation, but pollute the code with (low-level) details. 	float a, b, c; x = (a + b) + c	
 Implicit specifications give more freedom to the compiler, but make hand- tuning difficult 	smallfloat a, b; biggerfloat c; x = a + b + c;	
	Decomposition	×
 Explicit specifications define well the 	Mapping	×
level of abstraction provided.	Communication	×
	Synchronization	×
10 iCSC2008, Manfred Mücke		

LECTURE 10

Summary: Hybrid Platforms, Hybrid Programming?

		Tuesday 4 March 2008
15:00 16:00	Lecture 10	This lecture will address future prospects of hybrid platforms. It Iris will specify what is necessary to make Reconfigurable HPC a Christadler success.
		Important topics:
		Existing hybrid platforms
		Existing hybrid programming models
		Future programming models
		Necessary tools
		Audience and Pre-requisite This lecture is both a summary and an outlook. It addresses participants who attended Lectures 7 and 8 about "Reconfigurable HPC" and Lecture 9, Advanced and Emerging Parallel Programming Paradigms.

Towards Reconfigurable HPC Summary: Hybrid Platforms, Hybrid Programming?

Lecture **10**

- GPGPU is still a niche
 - Partly because of the lack of proper tools
 - Partly because other custom solutions with a large overhead offer better FLOP/Watt performance

Hybrid Platforms, Hybrid Programming?

- Graphics processing hardware will continue to evolve at a rapid pace
 - New designs

7

- Cores might get "heavier"
- Graphics processing chip makers are listening to the scientific community
- Following developments in this area should be worthwhile

ICSC2008

⇒ This might be an enabling development for: HPC on GRID HPC on GPUs/FPGAs

10502008

Towards Reconfigurable HPCLecture 10Summary: Hybrid Platforms, Hybrid Programming?

Towards Reconfigurable HPCLecture 10Summary: Hybrid Platforms, Hybrid Programming?

Towards Reconfigurable HPCLecture 10Summary: Hybrid Platforms, Hybrid Programming?

Hybrid Platforms, Hybrid Programming?	
 General purpose development kit for the G80 chip 	
C supported, Open64 based compiler	
 Includes BLAS and FFT libraries 	
 Deviations from the IEEE floating point standard 	
Programming loadable kernels	
General example:	
<pre>int * dvalues; CUDA_SAFE_CALL(cudaMalloc((void**)&dvalues, sizeof(int) * NUM)); CUDA_SAFE_CALL(cudaMemcpy(dvalues, values, sizeof(int) * NUM,</pre>	
<pre>bitonicSort<<<1, NUM, sizeof(int) * NUM>>>(dvalues);</pre>	
20 iCSC2008	

Lecture 10

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC Summary: Hybrid Platforms, Hybrid Programming?

Towards Reconfigurable HPC Lecture 10 Summary: Hybrid Platforms, Hybrid Programming?

Towards Reconfigurable HPC Summary: Hybrid Platforms, Hybrid Programming?

Lecture 10

Lecture **10**

Summary: Hybrid Platforms, Hybrid Programming?

Towards Reconfigurable HPC Summary: Hybrid Platforms, Hybrid Programming?

Lecture 10

CERN

School of Comput

Special Topics: Fundamentals and Best Practices

iCSC2008 Special Topics: Fundamentals and Best Practices

Lecturers:

Jose Dana Perez - CERN Alfio Lazzaro - University of Milan and INFN, Milan – Italy

To complement the iCSC2008's main theme, two special topics though different have been selected. Each of them may attract a specific attendance interested in the latest development of these two domains.

The two special topics:

- Overview of advanced aspects of data analysis software and techniques
- Scalable Image and Video coding

A few questions

- Do Do you know how to speed up the execution of your data analysis program?
- Do you want to improve your data analysis technique for signal/background discrimination?
- Do you know the last applications of advanced data analysis techniques (Neural Network, Decision Tree,...) in High Energy Physics?

All the answers at **iCSC**

Overview

Slot	Lecture	Description	Lecturer
Wednesday 5 March 2008			
09:00 - 10:00	Lecture 1	Overview of advanced aspects of data analysis software and techniques	Alfio Lazzaro
10:00- 10:30		Coffee	
10:30 - 12:00	Lecture 2	Scalable Image and Video coding	Jose Dana Perez
12:00		Adjourn	

LECTURE 1

Overview of advanced aspects of data analysis software and techniques

		Wednesday 5 march 2008	
09:00 09:55	Lecture 1	In this lecture we give an overview of the advanced data analysis techniques based on multivariate techniques, which are recently used in many High Energy Physics data analysis. The topic is relevant to many Particle Physics analyses, as well as in several other fields. We will give an over view on the different techniques and their relative merits.	Alfio Lazzaro
		Audience This lecture targets an audience with experience in data analysis, in particular interested in techniques of signal/background discrimination	
		Pre-requisite This lecture can be reasonably followed without having attended to the other lecturers of this school	
		Keywords	
		 Data analysis Parallel processing Signal Background Separation Maximum Likelihood Artificial Neural Network Decision Tree 	

Details

In the past years, many advanced techniques in statistical data analysis have been used in High Energy Physics (such as maximum likelihood fits, Neural Networks, and Decision Trees). In the past, the most common technique was the simple cut and count analysis. This technique consists in the following steps: several cuts are applied on well studied discriminating variables, background estimation is performed using Monte Carlo simulation samples or events outside the signal region, and then the final measurement is done counting the events after cuts minus the estimated background events.

This simple technique is hampered by its low efficiency (defined as ratio between the number events after and before the cuts) and does not provide a good discrimination between signal and background events. For this reason it was replaced by more sophisticated techniques, such as the multivariate maximum likelihood for the measurements done at the BaBar experiment, running at Stanford Linear Accelerator Center (SLAC) in California.

The maximum likelihood (ML) technique permits to achieve higher efficiency, the possibility to take in account errors with better precisions, and consider correlations between the discriminating variables used in the analysis. Anyway, in future experiments, like LHC experiments at CERN, it may be crucial to have better discrimination between signal and background events to discover new phenomenas, which suffer higher background. Neural Networks and Decision Trees are good techniques to reach this goal. Another important issue to take into account lies in the fact that these techniques are in most cases very CPU-time consuming. It is possible to speed them up using concepts of High Performance Computing (HPC).

In this lecture we will give an overview of the advanced data analysis techniques mentioned above, introducing some software packages commonly used in HEP. This will be preceded by a short session at the end of the previous theme, giving briefly examples of possible HPC optimizations.

Lecture 1

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC

Lecture 1

Lecture 1

Lecture 1

Lecture 1

Lecture 1

ICSC 2008 3-5 March 2008, CERN

Overview of advanced aspects of data analysis software

Towards Reconfigurable HPC

Towards Reconfigurable HPC

Lecture 1

- In case of NLL function, it requires the calculation of the function for each free parameter in each minimization step
 - Many free parameters means slow calculation
 - Remember the definition of NLL

$$NLL = \ln\left(\sum_{j=1}^{s} n_j\right) - \sum_{i=1}^{N} \left(\ln\sum_{j=1}^{s} n_j \mathcal{P}_j^i\right)$$

The computational cost scales with the N number of events in the input sample

- Note, also, that P_j need to be normalized (calculation of the integral) for each iteration, which can be a very slow procedure if we don't have an analytical function
- In BaBar experiment we run fits which take several hours (or days)!
 - Usually you have to run several fits for your tests

51 iCSC2008, Alfio Lazzaro, Università degli Studi and INFN, Milano

iCSC 2008 3-5 March 2008, CERN

Towards Reconfigurable HPC

Lecture 1

Towards Reconfigurable HPC

Lecture 1

School of Computin

LECTURE 2

Scalable Image and Video coding

		Wednesday 5 march 2008	
10:30	Lecture2	The aim of this lecture is to describe the basis of image and video coding and compression, with a special emphasis on the latest developments. We will see how to encode and compress this particular type of data using lossy algorithms that take advantage of the limitations of the human visual system. We will focus on scalable image and video coding, which is a cutting-edge area of research, an area were few fully recognized standards have emerged yet. Sometimes, specialized developers need to design systems which require an image or video (de)coder. Understanding the internals of some coding systems may help them in to select the most appropriate approach (streaming systems, pattern recognition systems, etc.) and algorithm (JPEG, JPEG2000, MPEG-2, MPEG-4, WMV, etc.). We will present techniques used in well-known algorithms and the audience will have the opportunity to learn the fundamentals through practical examples. Audience The lecture targets all participants with interest in image, video coding and compression.	Jose Dana Perez

V	Scalable Image and Video Coding Why do we need compression?							
	Multimedia Data	Size/Duration	Bits/Pixel or Bits/Sample	Uncompressed size	Transmission bandwidth			
	A page of text	11" x 8.5"	Varying resolution	4-8 KB	32-64 Kb/page			
	Telephone quality speech	10 sec	8 bps	80 KB	64 Kb/sec			
	Grayscale image	512 x 512	8 bpp	262 KB	2.1 Mb/image			
	Color image	512 x 512	24 bpp	786 KB	6.29 Mb/image			
	Medical image	2048 x 1680	12 bpp	5.16 MB	41.3 Mb/image			
	SHD image	2048 x 2048	24 bpp	12.58 MB	100 Mb/image			
	Full-motion video	640 x 480 1 min (30 fps)	24 bpp	1.66 GB	221 Mb/sec			
5		iCSC2008	3, José M. Dana, CERN					

iCSC 2008 3-5 March 2008, CERN

Temporal scalability (FSVC)								CERN School of Computing		
	Impre 0	Image 1	Interna 2	A Group Of Pic	tures (GOP)	Image E	lman 6	Image 7	Image 9	
Temporal Resolution Level 0	Reference Image	B B	Reference Image	B B B B B B B B B B B B B B B B B B	Reference Image	B B	Reference Image	B B B B B B B B B B B B B B B B B B	Reference Image	
Temporal Resolution Level 1	Reference Image		B B B B B B B B B B B B B B B B		Reference Image		B B B B B B B B B B B B B B B B B B B B		Reference Image	
Temporal Resolution Level 2	Reference Image				B B B B B B B B B B B B B B B B B B B B				Reference Image	
Temporal Resolution Level 3										
										1
31			iCSC2	008, José M.	Dana, CER	N				

