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# Measurements are always convoluted with detector response function
@ What can be done to recover blurred signal?
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Example: Who will pay the next round?

You meet an old fried at Gottingen in a pub. He proposes that the next round
should be payed by whichever of the two extracts the card of lower value from a
pack of cards.

This situation happens many times in the following days. What is the probability
that your friend cheats if you end up paying wins consecutive times?

You assume:

@ P(cheat) = 5% and P(honest) = 95%. (Surely an old friend is an unlikely
cheater ...)
@ P(wins|cheat) = 1 and P(wins|honest) = 2~
Bayesian solution:

P(wins|cheat) P(cheat
P(cheat|wins) = (wins|cheat) P(cheat)

P(wins|cheat)P(cheat) + P(wins|honest)P(honest)

1P(cheat) 0.05
P(cheat|0) = =5
(cheat|0) = 1P(cheat) + 2~ DP(honest) 0.05 + 0.95 7
1P(cheat 0.05
P(cheat|5) = (cheat) = 63%

1P(cheat) + 2— 5P(honest) 0.05 + 0.03

2Adapted from G. D’Agostini, Bayesian Reasoning in High-Energy Physics: Principles and
Applications, CERN-99-03, 1999
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Example: Learning by experience

The process of updating the probability when new experimental data becomes
available can be followed easily if we insert

@ P(cheat) = P(cheat|wins — 1) and P(honest) = P(honest|wins — 1),
where wins — 1 indicate the propability assigned after the previous win
@ P(wins = 1|cheat) = P(win|cheat) = 1 and
P(wins = 1|honest) = P(win|honest) = %
Iterative aplication of the Bayes formula for P(cheat|wins)=
P(win|cheat)P(cheat|wins — 1)
P(win|cheat)P(cheat|wins — 1) + P(win|honest)P(honest|wins — 1)

B P(cheat|wins — 1)
 P(cheat|wins — 1) + L P(honest|wins — 1)
P(cheat) P(cheat|wins)

When you learn from the

% wins=> 19 15 experience, your conclu
é Ei g; 9999;})74 sions no longer depend on
50 97 999 99 '997 the initial assumptions.
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Probability?.

Let's define a probability considering a set S, called space, and its subsets
A, B, .... as a real-valued function fulfilling the following axioms:
@ For every subset Ain S, P(A) >0
@ For disjoint subsets (AN B = 0), P(AU B) = P(A) + P(B)
@ P(S)=1
From conditional probability
P(AB) = P(An B)/P(B), using AN B = BN A one obtains Bayes’ theorem

P(A|B) = P(B|A)P(A)/P(B)

From the axioms of probability, and the definition of conditional probability we get

the law of total probability P(B) = > . P(B|A;)P(A;).

This combined with Bayes' theorem gives
P(B|A)P(A)
>_i P(B|Ai)P(A)))

3Adapted from W.M. Yao et al. Journal of Physics G 33, 1, 2006. For more details consult
Particle Data Group http://pdg.1bl.gov

P(A|B) =
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Bayesian probability

The subsets of the sample space S can be also interpreted as hypothesis, i.e.
statements that are either true or false.

@ In the frequency interpretation, a hypothesis is either always or never true.

@ In subjective probability P(A) is interpreted as the degree of of belief that
the hypothesis A is true.

Subjective probability is used in Bayesian (as opposed to frequentist) statistics.
Bayes' theorem can be written

P(theory|data) oc P(data|theory)P(theory)

where 'theory’ represents some hypothesis and 'data’ is the outcome of the
experiment.

Bayesian statistics provides no rule for obtaining the P(theory); this is necessarily
subjective and depends on theoretical considerations and previous measurements.
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Bayes' theorem

Let us think of all the possible, mutually exclusive, hypotheses H;, which could
condition the event E.

The standard form of Bayes' theorem is

P(E|H;)P(H;)

PSS RCETRy P

where
@ P(H,) is the initial (or a priori or briefly "prior') propability of H;. That is, the
probability of this hypothesis using information available before the event E.
@ P(E|H;) is called likelihood

@ P(H;|E) is the final (or a posteriori) probability of H; after the new
information

Typical application of Bayesian reasoning in HEP is Kalman filter used in track
finding.
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Example: p-trigger

Example*: The particle beam is a mixture of 90% 7 and 10% pu, detector has pu
identification efficiency of 95%, and a probability of identifying a 7 as a p of 2%.
A trigger is fired, if a particle is identified as a L.

Q: What is the probability that a trigger is falsely fired by a 77

Solution: Bayes' formula for two hypotheses ;1 and 7 conditioning the trigger T:

P(u|T) = P(Tp)P(1) 0.95 0.1

P(TILP0) + P(T|7)P(x) 005 011002 08 %

P(n|T)=1— P(u|T)=1-0.84=0.16.

So 16% of triggered events are 7 events.

4Adapted from G. D’'Agostini, Bayesian Reasoning in High-Energy Physics: Principles and
Applications, CERN-99-03, 1999
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Hypothesis tests

Example: Classifying hypotheses according to their
credibility in the Bayesian framework

Consider the detector and trigger in previous slide and P(7w|T) = 0.16 and
P(pn|T) = 0.84. Q: What is the signal-to-noise ratio ?

Recalling Bayes' formulas for two hypotheses i+ and 7 conditioning the trigger T
are:

_ P(T|p)P(p)
PUT) = B0PG + P(TIM PG
P(r|T) = P(T|m)P(m)

P(TIp)P(u) + P(T|m)P(7)
Solution: General expression for the S/N ration if the effect E is observed:

_ P(SIE) _ P(EIS) P(S) _ P(Elp) P(p) _ P(plT) _ 084

>/N = P(N|E) ~ P(E|N) P(N) ~ P(E|x) P(x) P(x|T) 0.16

When the conditions are noisy P(S) << P(N),
the experiment must be very selective P(E|S) >> P(E

N).
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ontinuous random variables

Bayes' theorem for continuous random variables

Starting from usual Bayes formula:

P(E|H;)P(H,)
>_; P(E|H;)P(H;)

We get for continuous random variables

P(Hi|E) =

P(nlv)P(v)

P(vin) = 2 P(nlv)P(v)dv

For example in case of Poisson distribution

pe—V

P(n|lv) = ~

used in counting experiments, and assuming P(v) to be constant we get

eV

P(v|n) =

n!
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Bayesian Statistics

Typically the goal of the signal analysis is to:
@ exclude as strongly as possible the existence of signal in its absence, or
@ confirm as strongly as possible the existence of true signal
while minimizing the probabilities of
@ falsely excluding a true signal, or falsely discovering a fake signal.
In statistics we use a data sample make inferences about a probabilistic model
@ to asses the model’s validity, or
@ to determine the model parameters.

Frequentist statistics provides the usual tools used for reporting the outcome
of an experiment, yet it does not define a probability for a hypothesis/parameter.

In Bayesian statistics probability, though, we can be speak of a pdf for a
parameter, so it provides:

@ a framework for estimating the validity of different model interpretations of
the data, and

@ a natural way to include additional information such as physical boundaries.
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Hypothesis tests (1/2)

Consider an experiment characterized by a vector x, which might represent HEP
events.

A Hgy statement about the distribution of x could represent the signal hypothesis
and alternative H; could represent background process.

While hypothesis test provide a rule for accepting/rejecting hypotheses,
significance test gives

@ a probability to reject Hy If it is true at significance level o.
@ T he quantity 1-3 is called the power of the test to reject H,.

In HEP terminology, the probability to accept the signal hypothesis, Hg, is the
selection efficiency, i.e., 1 — significance level =1 — «..
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L ypothesis tests
Hypothesis tests (2/2)

The Neyman-Pearson lemma states that on can minimize the background
efficiency for a given signal efficiency by defining the acceptance region such
that for x in that region, the ratio of pdfs for the hypotheses
f(x|H
)\(x) _ (X| U)
f(x|Hy)

Is greater than the desired 5||gna| efficiency e.
@ If A > € we accept signal hypothesis Hj.

It is difficult to determine the ratio A(x), requiring the knowledge of joint pdfs

f(x|Ho) and f(x|H1).

There exist other multivariate classifiers that can separate different types of events:
@ neural networks, and

@ Fisher discriminants.
@ Recent classification methods (see e.g. ROOT TMVA package) include:
@ support vector machines and decision trees.
@ Methods such as boosting and bagging can be applied to combine weak
classifiers into a stronger one with greater stability with respect to training
data fluctuations.

(More details in Lecture 4.)
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oodaness ofT TIt

Goodness of fit°

Goodness of fit, GOF, of a statistical model describes how well it fits
a set of observations, see e.g. Pearson’s chi-square test.

P-value is the probability of obtaining a result as compatible with model as the
observed value, when the (MC) experiment is repeated many times, assuming true

Ho.

In a general procedure to prepare GOF for p-value, we need:
@ a test statistics t, which is a function that measure the 'distance’
between the data x and the H,, and
@ a function to map the value of the test statistic into a p-value.

@ That is, a way to calculate the probability of exceeding the observed value of
the t, for Hp.

If the data x are discrete, and the test statistic t = t(x),
(to = t(xp) for the data xq), the p-value would be:

Px = Z P(x|Hp).

x:t>1y

®Adapted from F. James: Statistical Methods in Experimental Physics, 2nd Ed. World
Scientific, 2006.
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oodaness or Tit

Example: p-value in a counting experiment

A theory predicts the decay rate of a radioactive sample to be = 17.3 decays/h,
and we measure N = 12 decays/h.

Q: Is the measurement compatible with the theory?

Solution: We choose the test statistics to be the absolute difference t = |n — pl,
so tp = |N — | = 5.3. We use the Poisson distribution to calculate the p-value:
12 00
e_*“’,uJ” e—l?.317_3n e—l?.31?_3n
p= > 4= ——F—+) ——F—— =023
n:ln—p|>5.3 n=1 n=23

Observation N is not significantly different from the theoretical prediction u, since
we have a 23% probability to measure the decay this far from the expected value.

This result can be confirmed with simple MC simulation that takes samples from
the Poisson distribution.
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oodness orT TIt

Converting the p-value into a number of standard
deviations ©

Very small p-values have little intuitive value.

Thus it is traditional to convert p-values into z-values using an error function.

@ z is the number of standard deviations beyond which the integral of the talil
on one side of a Gaussian distribution equals p.

1 z
p=501-erf( )

The conversion is applied regardless of whether the underlying test is one-sided or
two-sided.

For example a p-value 2.87e-7 corresponds to b sigma'’s.

6 Adapted from CMS TWiki: Recommended Procedure for Searching for New Physics at CMS
(11 July, 2009)
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onftiadence Intervals

Confidence intervals’
For a Gaussian estimator the result of an experiment is usually expressed by

@ the parameter’s estimated value, plus/minus an estimate of the standard
deviation, 0 £ o,

If the pdf is not Gaussian, or in the presence of physical boundaries,
@ one usually quotes instead an interval.
The quoted interval or limit should
@ objectively communicate the result of the experiment,
@ communicate incorporated prior beliefs and relevant assumptions,
@ provide interval that covers the true value of the 6 with specified probability,
@ make possible to draw conclusions about the parameter.

These goals are satisfied in case of large data sample by 0 + o5, and in the
multi-parameter case by

@ the parameter estimates and covariance matrix.

For small data sample, or in case of constrained variables, the Bayesian or the
Neyman approach can be used.

"Adapted from Particle Data Group.
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Neyman Confidence Interval (1/2)

Using frequentist approach Neyman defines confidence interval to unknown

parameter 0:
Plxi < x<x3;0)=1—a= / f(x; 0)dx,

X1

where 1-a is pre-specified probability and x is measurement.

—— D(w)—

—_—

= ™ X,(0), 0,0 | Union of [x,x2] segments for
% ' all values of € i1s know as the
1 x(6), 8,00 confidence belt, D(«a).

E (Image courtesy of Particle

Data Group.)

xl{ieo) xziieo}

P ossible experimental values x
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Neyman Confidence Interval (2/2)

Determining confidence interval for 6:

==

confidence interval

@ Draw a vertical line
: ™ Xy(0), 8,00
O] E ; through a measurement
° I X0 -

xl{e)! 91{)(}\ —'—,—_ :
— | @ Inspect where the

confidence belt is

intercepted by the line.

parameter 0

— X1(05) X5 X,(0p)
— i | i
Possible experimental values x
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Bayesian Confidence Intervals

In Bayesian statistics, all knowledge about parameter @ is summarized by the
posterior pdf p(@|x),

L(x|8)7(6)
[ L(x|0")=(6")de’

which gives the degree of belief for @ to have values in a certain region given the
data x.

p(Olx) =

@ 7(0) is the prior pdf for @, reflecting experimenter's subjective degree of belief
about 0 before the measurement.

@ L(x|@) is the likelihood function, i.e. the joint pdf for the data given a certain
value of 6.

@ L(x|@) should be published whenever possible, to enable readers to calculate
their own posterior pdf.

@ T he denominator simply normalizes the posterior pdf to unity.
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Sayesian Confidence Intervals

Example: Non-negative constraint of a Poisson variable

Consider Poisson variable n which counts known background event with mean b,
and unknown signal events with mean s constrained to be non-negative using the

prior pdf
(s) = 0 ifs<0
] 1 if s > 0.

The likelihood function for Poisson distributed n is

L(H‘S) _ (‘5 + b) E_(5+b).

n!
An upper limit s, at credibility level 1-a can be obtained by requiring

1—a= fs+ J=o L(nls)m(s)ds

p(s|n)ds =

e [=_ L(n|s)n(s)ds
If b = 0 the equation reduces to the quantile of the \? distribution
1 __
s, = Eszl(l — a; ng),

where ng = 2(n 4+ 1) is the number of degrees of freedom.
(e.g. 0.5%TMath: :ChisquareQuantile(0.95,2*(10+1)) ~ 17.0.)
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bayesian Confidence Intervals

Example: Bayesian Confidence Intervals in counting
experiment (1/2)

Consider a counting experiment, where the number of events, n=s+ b is
measured.

Given the posterior P(r|n) we now choose a range [v_, v,], for which

+

/ P(v|n)dv = 3 = confidence level.

Further, in our Bayesian approach we choose P(v_|n) = P(vy|n).

_[v ! [ _
o Ifa= |, Pdvanda—fujLde—l—ﬁ—a:,
@ symmetrical situation a = o’ is not valid in general.

@ If plenty of data is available (n > 20) classical and Bayesian methods
converge.

@ For small n, the specific method used should be reported.
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Example: Bayesian Confidence Intervals in counting

experiment (2/2)
TFl{TlROOT :Math: |p|0l55;0|ﬂ| pdf(_n, I‘-'<)| 0,30); In counting experiment n =

o 12 1 10 events were recorded.

_ | What are the upper and
0.1] 7 lower limits at the 3 =90%

. 1 confidence level for this
0.08— — measurement?
0.08— — . . :

i | Lower limit i1s adjusted in
o oal -| Bayesian approach:

- 1 e () =v_(n+1)
0.02_— ] Bayes L

- 1 e v (n)=wvy(n)

DCI — .l: — 10 — 15 20 | 2|5 — ;:(30

Classical: 5.4 < v < 17
Bayes®: 6.2 < v <17

8 Adapted from B. Escoubes, Probabilités et statistiques a I'usage des physiciens, Ellipses,
1998. For more details see CSC'09 exercises

A. Heikkinen and |. Puljak: Data Analysis with ROOT CERN School of Computing August 17-28, 2009, Gottingen, Germany.



Bayesian Confidence Intervals

Example: Computing confidence limits with 1imit.C (1/5)
TLimit computes 95% CL limits using
semi-Bayesian Likelihood ratio?.

@ Signal and background
histograms are wrapped in a

TLimitDataSource as inPUt. [ Signal and background compared to data ... | _ data
. - Moan - 0.004518
@ Monte Carlo experiments are run - RNS 0774
in order to compute the limits. -
40—
Computing limits... H;
CLs : 0.0179 g
CLsb  : 0.0093 °F
CLb : 0.5181 10~
< CLs > : 0.0165 -
% 3 2 1 0 1 2 3 |

< CLsb > : 0.0082

< CLb > : 0.5000

Computing limits with stat systematics...
Computing limits with systematics...

aT. Junk NIM A434, 1999, p.435-443
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Bayesian Confidence Intervals

Example:

// Comput
// in the

// Based

Computing confidence limits with 1imit.C (2/5)

ation of 95 /4 C.L. limits
precence of statistical error.
on root_w5.21.06/tutorials/math/limit.C by

// Christophe.Delaere@cern.ch

// Modif7
#include
#include
#include
#include
#1include

ed for CSC’09 by A.Heirkkinen 090705
"THStack.h"

"TCanvas.h"

"TLimit .h"

"TLimitDataSource.h"
"TConfidencelevel.h" [...]

void CLwithErrors () {

*cl = new TCanvas("cl","Dynamic Filling"

,200,10,700,500) ;

TCanvas
TH1D *b
TH1D =x*s
TH1D =*d
[...]

= new THID("b","Background", 30,-4,4);
= new THlD("s","Signal" , 30,-4,4);
= new TH1D("d","Data points" ,30,-4,4);
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Bayesian Confidence Intervals

Example: Computing confidence limits with 1imit.

[...]
TRandom2 r; // MC data gemneration

Float_t bg, sig, dt;

for (Int_t i = 0; i < 25000; i++) {
bg = r.Gaus(0, 1); sig = r.Gaus(1l, .2);
b->Fill (bg, 0.02); s->Fill(sig, 0.001);
L
for (Int_t i = 0; i < 500; i++) A
dt = r.Gaus (0, 1); dF>Fill(dt) ;
b
THStack *hs = new THStack("hs", "Signal and
background compared to data ...");
hs->Add(b); hs->Add(s); hs->Draw("hist") ;
d->Draw ("PEO, Same") ;

¢ (3/5)
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Bayesian Confidence Intervals

Example: Computing confidence limts with 1imit.C (4/5)

[-oo]
cout << "Computing limits... " << endl;

TLimitDataSource *dSrc=new TLimitDataSource(s,b,d) ;
TConfidencelevel *c1=TLimit::ComputeLimit(dSrc,

50000) ;
cout <<"CLs : << cl->CLs () <<endl ;
cout <<"CLsb . << cl1l->CLsb () <<endl ;
cout <<"CLD : << cl->CLb () <<endl;
cout <<"< CLs > : "<< cl->GetExpectedCLs_b () <<endl;
cout <<"< CLsb >: "<< cl->GetExpectedCLsb_b () <<endl;
cout <<"< CLb > : "<< cl->GetExpectedCLb_b () <<endl;

// Show canonical -21ln{ histogram:

// for B hypothestis (full) and

// for S and B hypothests (dashed).
cl->Draw () ;
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Bayesian Confidence Intervals

Example: Computing confidence limts with 1imit.C (5/5)

Inputs can be fluctuated according to systematics:

TObjString nl1 ("B uncertainty");
TObjString n2("S uncertainty") ;
names ->AddLast (&nl); names->AddLast (&n2) ;

// B error 1 (b)) and 2 (0))
eb[0]=0.05; eb[1]=0;

// S error 1 (0 ) and 2 (1 )
es [0]=0; es[1]=0.01;

TLimitDataSource *dSrcE = new TLimitDataSource () ;
dSrcE->AddChannel (s, b, d, &es, &eb, names) ;

(More details in exercises.)
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Uncertainty in physics

Uncertainty in physics

The sources of uncertainty in measurement”:
@ incomplete definition of the measurand; or its imperfect realization
@ non-representative sampling

@ inadequate knowledge of the effects of environmental conditions; or imperfect
measurements of these conditions

personal bias in reading instruments
finite instrument resolution

Inexact values of measurement standards and reference materials

inexact values of constants and other parameters obtained from external
sources and used in the data-reduction algorithm

e approximations and assumptions incorporated in the measurement
procedure

e variations of repeated observations of the measurand under apparently
identical conditions

9Adapted from the The International Organization for Standardization (ISO) Guide to the
Expression of Uncertainty in Measurement.
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Uncertainty in physics

Optimal presentation of search results

Optimal presentation of search results has some desired properties?

0.
Uncertainties due to systematic effects should be included in a clear

and consistent way.

e Often it is useful to quote the statistical and systematical error separately, e.g.
o=454+4+1 mb.

The result should summarize completely the experiment; so that no extra
information should be required for further analysis.

Results should be easily turned into probabilistic statements.

Analysis should be transparent, and result should be stated in such a way
that it cannot be misleading. The presentation of the result should not
depend on the particular application.

If possible full pdf-distributions and even data sets can be attached
into analysis results.

In unified approach to data analysis, the transitions between exclusion,
observation, discovery, and measurement are kept as small as possible.

1':]';f‘w.:la|:>ter:l from F. James, Workshop on Confidence Limits, CERN-2000-005, 2000.
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Propagation of errors

Example: Propagation of errors/uncertainty

Your 16 GB MicroSD has package size (HXWxD) (mm) 15 x 11 x 1.
Manufacturer claims 0.1 mm deviation from the nominal dimensions.

Estimate you cards volume V = H W D and its uncertainty?

V=HWD=15mm 11l mm 1 mm = 165 mm?. Assuming uncorrelated
variables we have

2+ (50

AW
(7)2:( H )2+(W

we have: (M)ZZ (%)Q_F(O.l)z_'_(&o.l)zﬁ0_01_
V+ AV =165+ 17 mm?>.

Note: Commonly the error on a quantity, here AV, is given as the standard
deviation, o. If the statistical probability distribution of the variable is assumed to
be a normal distribution, there is a 68% probability that the true value of volume
lies in the region V £ AV.
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Propagation of errors

Propagation of errors - Formal treatment

Consider
e a set of n quantities 8 = (A4, ....6,),
e a set of m functions n(8) = (11(9), ..., nn(8)), and
o Vj = cov[f;,b;]. (For uncorrelated quantities Vi—; = 0).

The purpose of error propagation is to determine the covariance matrix
Uj = cov[n;,nj], where ) = (@), for the (@) functions.

This can be done expanding the functions n(€) about the estimates 6 to first
order in a Taylor series:

dni On;
Ujj ~ ‘ Vi . 1
g Z 06, 06,16 " (1)
Using matrix notation U ~ AVA' where A; = :jg'; 5

Note: In general case our previous example:

(&—J)Z = (%)2 + (%)2 + (‘%’D)2 + correlation term due to Vi # 0
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Propagation of errors

Example: MC estimation of errors

If Taylor series aproximation (1) fails, errors can be estimated using Monte-Carlo
simulation. A real life example from neutrino physics!!, where Data Handling

deparment at CERN had to estimate value of

_ a a—=3.84+1.33
d(b—c)—2(1— &), b=74+4
Using (1) one finds R = 0.191 4 0.073. c=95+3
What is the probability P that R is dif- d =0.112 + 0.009
ferent ﬂfom theor_etical value Ry, = 0.427 e — 0.320 &+ 0.00?2
If gaussian fol;n;ls assumed K — 0.89
p :/ T k22 X o 104 P=ROQOT: :Math: :
3.14 V27 gaussian cdf_c(3.14)
A as introduced in ProbFunc-
(Reh — R)/or = (0.42 —0.191)/0.073 = 3.14 MathCore h

Monte-Carlo simulation gives a quite different result.
(Find it yourself in the exercises).

1From B. Escoubes, Probabilités et statistiques a I'usage des physiciens, Ellipses, 1998.
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Unfolding

Unfolding: Hubble's Contact Lens

Immediately after Hubble went into orbit 1990, it became clear that something

was wrong: images were blurred.
Hubble's primary mirror, polished so carefully, was just slightly the wrong shape.

In 1993 the Corrective Op-

tics Space Telescope Ax-
ial Replacement (COSTAR)
was installed to Hubble.

COSTAR, which was essentially a contact lens for Hubble's eye, consist of five
small mirrors that corrected the deflect.

This example shows how, corrective actions can be made to analyse measurements
distorted by bias if the experimental setup is understood in detail.
Correspondingly, in data analysis we define a response function in order to unfold

distorted measurements.
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Unfolding
Unfolding — introduction to inverse problems 1°

The transformation of the raw measured data to the measured distribution is
called unfolding:

@ Linear inversion: measurement y — x unfolded distribution.

Unfolding is an linear inverse problem with a coefficient matrix, and it is usually
ill-conditioned:

@ Unfolding is a complex mathematical operation and requires a good
understanding of the experimental setup:

o A correct determination of the response matrix (e.g. by Monte Carlo) is
essential.

In addition to image enhancement and anti-blurring unfolding is of great
importance in many different fields:

e tomography in medicine (using X-rays, positron-electron annihilation
reactions, ultrasound),

@ geophysics, astrophysics, and

e HEP (e.g. particle energy spectra reconstruction from measured pulse-height
distributions.)

12 According to V. Blobel and his lectures in CSC'84
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Unfolding

The mapping of input x to output y in a system
/ system x input d{2 = output
Q

expressed with Fredholm integral

/ Aly. x)f(x) dx = g(y)

. With discrete x and y we get a linear equation: Ax =~ vy.
@ x = n-histogram of true variable x

@ y = m-histogram of measured variable y
(contains measurement errors, or is Poisson distributed)
@ A = m x n response matrix, corresponds the A(y,x) response function

e Aj is the probability for an event originating from bin j of x, to be observed in
bin i of y.
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Unfolding

Unfolding: solving the equation

Direct solution of Ax a2 y:
@ Ilypically not feasible since the problem is ill-conditioned.

@ A small perturbation of the data can cause an arbitrary large perturbation of
the solution.

l[terative method:

@ Relatively simple method, which is popular for unfolding, calibration, and
alignment.

e If a single computational step is not sufficient.
@ Needs a start vector X

@ Only method, which is applicable for large number of parameters
(e.g. LHC detector alignment).

Regularization method:
@ Is typically more complex to implement.

@ Key idea is to incorporate assumptions about the size and smoothness of the
solution.
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Unfolding

Unfolding example: spectral line analysis 1/2

1200 ﬁ

1000 [}

—-l‘ TSpectrum class contains spectra processing functions
for one-dimensional:

800

- I @ background estimation,

@ smoothing,

400 . /
@ deconvolution method to unfold/reverse the

200 effects of convolution on measured data, and

@ peak search.

1 L |
100

S
1200 [ . *
1” // Use TSpectrum to find the peak candidates

1008 TSpectrum *s = new TSpectrum(2*npeaks) ;

' Int_t nfound = s->Search(h,2,"",0.10);
800 } printf ("Found %d candidate peaks to fit\n",nfound);
600 [

W




Unfolding

Unfolding example: spectral line analysis 2/2

//Loop on all found peaks.
par[0] = fline->GetParameter(0); par[1l] =fline->GetParameter(1l);
Float_t *xpeaks = s—>GetPositionX();
for (p=0;p<nfound;p++) {
Float_t xp = xpeaks[p];
Int_t bin = h->GetXaxis()->FindBin(xp);
Float_t yp = h->GetBinContent (bin) ;
if (yp-TMath::Sqrt(yp) < fline->Eval(xp)) continue;
par [3*xnpeaks+2]=yp; par [3*npeaks+3]=xp; par[3*npeaks+4]=3;
npeaks++;
b
printf ("Found %d useful peaks to fit\n",npeaks);
printf ("Now fitting: Be patient\n");
TF1 *fit = new TF1("fit",fpeaks,0,1000,2+3*npeaks) ;
TVirtualFitter: :Fitter(h2, 10+3*npeaks) ;
fit->SetParameters(par); h2->Fit("fit");

(See CSC'09 exercises on unfolding.)
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Unfolding

Solving the inverse problem with TUnfold

ROOT class T Unfold solves the unfolding problem using regularisation.
In CSC'09 data analysis exercises we study a case were:

_ 1400:— Unfolded
@ Monte Carlo data in generate for - Entries 101
backgrou nd 1200~ Mean 3.308
] ] B RMS 1824
@ Signal is a resonance generated 10001~ ST ndf 140.51 70395035
with a Breit-Wigner distribution auu: Prob 1
smeared by a Gaussian - PO 28,71+ 1.03
- p1 3.8+0.0
- : 600
e Data is unfolded using TUnfold - * 02 o147+ 00044
giving: 4{]“-_}
e [he background level -
@ [he shape of the resonance, 200
corrected for detector effects :
@ Fit is done to the unfolded N
. . . -200/
distribution, including the B
Correlatlon matrl}( _4un_III|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
0 1 2 3 4 5 6 7 8 9 10

mass(gen)
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Summary

@ An introduction to Bayesian statistics was made.

o Examples on subjective Bayesian reasoning were given
o |t was stressed that if plenty of data is available, Bayesian results converge
with classical method.

@ Concept of hypothesis test was introduced.

e Minimizing the background efficiency was studied using Neyman-Pearson
lemma.

@ P-value as an example of goodness of fit was discussed.

@ [ he sources of uncertainty in physics measurement were briefly discussed.

e A general method to propagate errors was shown.

@ Examples were given on unfolding distorted measurements.

e [he importance of defining a response function was stressed.

(In exercises these topics are studied further using ROOT data analysis
software.)
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