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What's ROOT?
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ROOT: An Open Source Project

• Started in 1995

• 8 full time developers at CERN, plus Fermilab, 

Agilent Tech, Japan, MIT (one each)

• Large number of part-time developers: let users 

participate

• Available (incl. source) under GNU LGPL
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ROOT in a Nutshell
Framework for large scale data handling

Provides, among others,

– an efficient data storage, access and query system 

(PetaBytes)

– advanced statistical analysis algorithms (multi 

dimensional histogramming, fitting, minimization and 

cluster finding)

– scientific visualization: 2D and 3D graphics, Postscript, 

PDF, LateX

– geometrical modeller

– PROOF parallel query engine
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Graphics
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Histogramming

• Histogram is just occurrence counting, i.e. how 

often they appear

• Example: {1,3,2,6,2,3,4,3,4,3,5}
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Histogramming

• How is a Real Histogram Made?

Lets consider the age distribution of the CSC 

participants in 2008:

Binning:

Grouping ages of 

participants in 

several categories 

(bins)



CSC09 • ROOT 8

Histogramming

Table of Ages

(binned)

Shows distribution of ages, total number of 

entries (57 participants) and average: 27 years 

10 months 6 days…
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Histograms

Analysis result: often a histogram

Menu:

View / Editor
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Fitting

Analysis result: 

often a fit

based on a 

histogram
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Fit Panel

To fit a histogram:

right click histogram,

"Fit Panel"

Straightforward interface 

for fitting!



Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 12

2D/3D

We have seen 1D histograms, but there are 

also histograms in more dimensions.

2D Histogram 3D Histogram
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OpenGL

OpenGL can be used to render 2D & 3D 

histograms, functions, parametric equations, and 

to visualize 3D objects (geometry)
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Geometry

• Describes complex detector geometries

• Allows visualization of these detector geometries 

with e.g. OpenGL

• Optimized particle transport in complex 

geometries

• Working in correlation with simulation packages 

such as GEANT3, GEANT4 and FLUKA
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Geometry
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EVE (Event Visualization Environment)

• Event: Collection of data from a detector (hits, 

tracks, …)

Use EVE to:

• Visualize these physics objects together with 

detector geometry (OpenGL)

• Visually interact with the data, e.g. select a 

particular track and retrieve its physical properties
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EVE
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Math
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Multivariate Analysis

• Consider this simple question: How to estimate 

someone’s life expectancy? 

• This depends on many variables:

Life style

Genetics

…

Income

Sex (m/f)

Country

(region)

Life 

expectancy
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Multivariate Analysis

• Many variables? Parallel Coordinates

• This will not help to solve the problem, it only 

allows to visualize multiple variables
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Multivariate Analysis

• Sample described by k variables (that are found to 
be discriminating)

• Samples can be classified 
into n categories: H1 … Hn

• E.g.

– H1 : life exp. < 40

– H2 : life exp. 40..60

– H3 : life exp. > 60

• Example: k=2 variables x1, x2

n=3 categories H1, H2, H3 

H2

H1

x1

x2

H3

Example: k=2, n=3
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Multivariate Analysis

Problem: Find boundaries between H1, H2, and H3 

such that f(x) returns the category of x with 

maximum correctness

H2

H1

x1

x2

H3

Non-linear Boundaries

H2

H1

x1

x2

H3

Linear Boundaries ?

H2

H1

x1

x2

H3

Rectangular Cuts ?

Simple example  I can do it by hand.

Large input variable space, complex correlations: 
manual optimization very difficult
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Multivariate Analysis

Generic problem: find category for set of values

To make such an estimation, we need two phases:

• (Supervised) learning / training phase:

– Take samples for which categories are known 

– Machine adapts to give the smallest classification error 

on training sample

• Processing phase:

– The trained system can now analyze and produce 

output for any new sample
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TMVA

• Framework offering a collection of data mining 

tools, e.g. NN (Neural Network), GA (Genetic 

Algorithm), …

• In HEP mostly two class problems – signal (S) 

and background (B)

– Physics processes

– Finding physics objects

– Detector readout

– ...
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Interlude: HELP!

ROOT is a framework – only as good as its 

documentation.

http://root.cern.ch

• User's Guide (it has your answers!)

What is TNamed?

What functions does it have?

• Reference Guide
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Let's fire up ROOT!
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Setting Up ROOT

Before starting ROOT:

setup environment variables $PATH, 

$LD_LIBRARY_PATH

(ba)sh: 

(t)csh:

$ source /PathToRoot/bin/thisroot.csh

$ . /PathToRoot/bin/thisroot.sh
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Starting Up ROOT

ROOT is prompt-based

Prompt speaks C++

$ root

root [0] _

root [0] gROOT->GetVersion();

(const char* 0x5ef7e8)"5.24/00"
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ROOT As Pocket Calculator

Calculations:

Uses C++ Interpreter CINT

root [0] sqrt(42)

(const double)6.48074069840786038e+00

root [1] double val = 0.17;

root [2] sin(val)

(const double)1.69182349066996029e-01
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Running Code

To run function mycode() in file mycode.C:

Equivalent: load file and run function:

Quit:

All of CINT's commands (help):

root [0] .x mycode.C

root [0] .L mycode.C

root [1] mycode()

root [0] .h

root [0] .q
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ROOT Prompt

Why C++ and not a scripting language?!

You'll write your code in C++, too. Support for 

python, ruby,… exists.

Why a prompt instead of a GUI?

ROOT is a programming framework, not an office 

suite. Use GUIs where needed.
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Running Code

Macro: file that is interpreted by CINT (.x)

Execute with .x mymacro.C(42)

int mymacro(int value)

{

int ret = 42;

ret += value;

return ret;

}
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Compiling Code: ACLiC

Load code as shared lib, much faster:

Uses the system's compiler, takes seconds

Subsequent .x mymacro.C+(42) check for 

changes, only rebuild if needed

Exactly as fast as e.g. Makefile based stand-alone 

binary!

CINT knows types, functions in the file, e.g. call

.x mymacro.C+(42)

mymacro(43)
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Compiled versus Interpreted

Why compile?

Faster execution, CINT has limitations, validate 

code.

Why interpret?

Faster Edit → Run → Check result → Edit cycles 

("rapid prototyping").

Scripting is sometimes just easier.

Are Makefiles dead?

Yes! ACLiC is even platform independent!



CSC09 • ROOT 35CSC08 • ROOT 35

A Little C++

Hopefully many of you know – but some don't.

• Object, constructor, assignment

• Pointer, reference

• Scope, destructor

• Stack vs. heap

• Inheritance, virtual functions

If you use C++ you have to understand these 

concepts!
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Look at this code:

TNamed myObject("name", "title");

TNamed mySecond;

mySecond = myObject;

cout << mySecond.GetName() << endl;

Objects, Constructors, =
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Look at this code:

Creating objects:

1. Constructor TNamed::TNamed(const 

char*, const char*)

2. Default constructor TNamed::TNamed()

TNamed myObject("name", "title");

TNamed mySecond;

mySecond = myObject;

cout << mySecond.GetName() << endl;

Objects, Constructors, =



Look at this code:

3. Assignment: creating a twin
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= TNamed:

fName "name"

fTitle "title"

TNamed:

fName ""

fTitle ""

TNamed:

fName "name"

fTitle "title"

TNamed myObject("name", "title");

TNamed mySecond;

mySecond = myObject;

cout << mySecond.GetName() << endl;

Objects, Constructors, =

myObjectmySecond
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Look at this code:

4. New content

output:

TNamed myObject("name", "title");

TNamed mySecond;

mySecond = myObject;

cout << mySecond.GetName() << endl;

Objects, Constructors, =

TNamed:

fName "name"

fTitle "title"

mySecond

"name"
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Modified code:

Pointer declared with "*", initialize to 0

TNamed myObject("name", "title");

TNamed* pMySecond = 0;

pMySecond = &myObject;

cout << pMySecond->GetName() << endl;

Pointer, Reference
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Modified code:

Assignment: "&" creates reference:

TNamed myObject("name", "title");

TNamed* pMySecond = 0;

pMySecond = &myObject;

cout << pMySecond->GetName() << endl;

Pointer, Reference

=     & TNamed:

fName "name"

fTitle "title"

[address]

myObject
pMySecond
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Modified code:

Access members of value pointed to by "->"

TNamed myObject("name", "title");

TNamed* pMySecond = 0;

pMySecond = &myObject;

cout << pMySecond->GetName() << endl;

Pointer, Reference
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Modified code:

Or dereference pointer by "*"

and then access like object with "."

TNamed myObject("name", "title");

TNamed* pMySecond = 0;

pMySecond = &myObject;

cout << (*pMySecond).GetName() << endl;

Pointer, Reference
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Changes propagated:

Pointer forwards to object

Name of object changed – prints "newname"!

TNamed myObject("name", "title");

TNamed* pMySecond = 0;

pMySecond = &myObject;

pMySecond->SetName("newname");

cout << myObject.GetName() << endl;

Pointer, Reference
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Compare object:

to pointer:

TNamed myObject("name", "title");

TNamed mySecond = myObject;

cout << mySecond.GetName() << endl;

Object vs. Pointer

TNamed myObject("name", "title");

TNamed* pMySecond = &myObject;

cout << pMySecond->GetName() << endl;
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Calling functions: object parameter obj gets copied 

for function 

call!

Pointer parameter: only address passed,

no copy

void funcO(TNamed obj);

TNamed myObject;

funcO(myObject);

Object vs. Pointer: Parameters

void funcP(TNamed* ptr);

TNamed myObject;

funcP(&myObject);
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Functions changing parameter: funcO can only 

access copy!
caller not

changed!

Using pointers (or references) funcP can change
caller

void funcO(TNamed obj){

obj.SetName("nope"); 

}

funcO(caller);

Object vs. Pointer: Parameters

void funcP(TNamed* ptr){

ptr->SetName("yes");

}

funcP(&caller);
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Scope: range of accessibility and C++ "life".

Birth: constructor, death: destructor

Variables are valid / accessible only in scopes:

int a = 42;

{ int a = 0; }

cout << a << endl;

Scope

{ // birth: TNamed() called

TNamed n;

} // death: ~TNamed() called
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Functions are scopes:

must not return

pointers to

local variables!

void func(){ TNamed obj; }

func();

cout << obj << end; // obj UNKNOWN!

Scope

TNamed* func(){

TNamed obj;

return &obj; // BAD!

}
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Stack vs. Heap

So far only stack:

Fast, but often < 10MB. Only survive in scope.

Heap: slower, GBs (RAM + swap), creation and 

destruction managed by user:

TNamed myObj("n","t");

TNamed* pMyObj = new TNamed("n","t");

delete pMyObj; // or memory leak!
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Stack vs. Heap: Functions

Can return heap objects without copying:

ptr gone – but TNamed object still on the heap, 

address returned!

TNamed* CreateNamed(){

// user must delete returned obj!

TNamed* ptr = new TNamed("n","t");

return ptr; }

TNamed* pMyObj = CreateNamed();

cout << pMyObj->GetName() << endl;

delete pMyObj; // or memory leak!
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Inheritance

Classes "of same kind" can re-use functionality

E.g. TPlate, TBowl both dishes:

Can implement common functions in TDish:

class TPlate: public TDish {...};

class TBowl: public TDish {...};

class TDish {

public:

void Wash();

};
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Inheritance: The Base

Use TPlate, TBowl as dishes:

assign pointer of derived to pointer of base "every 

plate is a dish"

But not every dish is a plate, i.e. the inverse doesn't 

work. And a bowl is totally not a plate!

TDish *a = new TPlate();

TDish *b = new TBowl();

TPlate* p = new TDish(); // NO!

TPlate* q = new TBowl(); // NO!



CSC09 • ROOT 54CSC08 • ROOT 54

Virtual Functions

Often derived classes behave differently:

class TDish { ...

virtual bool ForSoup() const;

};

class TPlate: public TDish { ...

bool ForSoup() const {return false;}

};

class TBowl: public TDish { ...

bool ForSoup() const {return true;} };
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Pure Virtual Functions

But TDish cannot know! Mark as "not implemented"

Only for virtual functions.

Cannot create object of TDish anymore (one 

function is missing!)

class TDish { ...

virtual bool ForSoup() const = 0;

};
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Calling Virtual Functions

Call to virtual functions evaluated at runtime:

Works for any type as expected:

TDish* a = new TPlate();

TDish* b = new TBowl();

FillWithSoup(a); // will not be full

FillWithSoup(b); // is now full

void FillWithSoup(TDish* dish) {

if (dish->ForSoup())

dish->SetFull();

}
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Virtual vs. Non-Virtual

So what happens if non-virtual?

Will now always call TDish::ForSoup(), i.e. false

void FillWithSoup(TDish* dish) {

if (dish->ForSoup())

dish->SetFull();

}

class TDish { ...

bool ForSoup() const {return false;}

};
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Summary

We know:

• why and how to start ROOT

• C++ basics

• that you run your code with ".x"

• can call functions in libraries

• can (mis-) use ROOT as a pocket calculator!

Lots for you to discover during next two lectures and 

especially the exercises!
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Saving Data

Streaming, Reflection, TFile,

Schema Evolution
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Saving Objects

Cannot do in C++:

E.g. LHC experiments use C++ to manage data

Need to write C++ objects and read them back

std::cout not an option: 15PetaBytes / year of 

processed data (i.e. data that will be read)

TNamed* o; TNamed* p;

o = new TNamed("name", "title");

std::write("file.bin", "obj1", o);

p = std::read("file.bin", "obj1");

p->GetName();
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Saving Objects – Saving Types

What's needed?

Store data members of TNamed; need to know:

1) type of object

2) data members for the type

3) where data members are in memory

4) read their values from memory, write to disk

TNamed* o;

o = new TNamed("name", "title");

std::write("file.bin", "obj1", o);
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Serialization

Store data members of TNamed: serialization

1) type of object: runtime-type-information RTTI

2) data members for the type: reflection

3) where data members are in memory: 

introspection

4) read their values from memory, write to disk: raw 

I/O

Complex task, and C++ is not your friend.
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Reflection

Need type description (aka reflection)

1. types, sizes, members

TMyClass is a class.

Members:

– "fFloat", type float, size 4 bytes

– "fLong", type Long64_t, size 8 bytes

class TMyClass {

float fFloat;

Long64_t fLong;

};
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Platform Data Types

Fundamental data types (int, long,…):

size is platform dependent

Store "long" on 64bit platform, writing 8 bytes:

00, 00, 00, 00, 00, 00, 00, 42

Read on 32bit platform, "long" only 4 bytes:

00, 00, 00, 00

Data loss, data corruption!
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ROOT Basic Data Types

Solution: ROOT typedefs

Signed Unsigned sizeof [bytes]

Char_t UChar_t 1

Short_t UShort_t 2

Int_t UInt_t 4

Long64_t ULong64_t 8

Double32_t float on disk, 

double in RAM
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Reflection

Need type description (platform dependent)

1. types, sizes, members

2. offsets in memory class TMyClass {

float fFloat;

Long64_t fLong;

};

T
M
y
C
l
a
s
s

M
e
m

o
ry

 A
d

d
re

s
s

fLong

fFloat

– 16

– 14

– 12

– 10

– 8

– 6

– 4

– 2

– 0

PADDING "fFloat" is at offset 0

"fLong" is at offset 8
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members  memory  disk 

I/O Using Reflection

T
M
y
C
l
a
s
s

M
e
m

o
ry

 A
d

d
re

s
s

fLong

fFloat

– 16

– 14

– 12

– 10

– 8

– 6

– 4

– 2

– 0

PADDING
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C++ Is Not Java

Lesson: need reflection!

Where from?

Java: get data members with 

C++: get data members with

– oops. Not part of C++.

Class.forName("MyClass").getFields()
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ROOT And Reflection

Simply use ACLiC:

Creates library with reflection data ("dictionary") of 

all types in MyCode.cxx!

Dictionary needed for interpreter, too

ROOT has dictionary for all its types

.L MyCode.cxx+
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Back To Saving Objects

Given a TFile:

Write an object deriving from TObject:

"optionalName" or TObject::GetName()

Write any object (with dictionary):

TFile* f = new TFile("file.root", "RECREATE");

object->Write("optionalName")

f->WriteObject(object, "name");
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TFile

ROOT stores objects in TFiles:

TFile behaves like file system:

TFile has a current directory:

TFile compresses data ("zip"):

TFile* f = new TFile("file.root", "NEW");

f->mkdir("dir");

f->cd("dir");

f->GetCompressionFactor()

2.61442160606384277e00
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"Where Is My Histogram?"

TFile owns histograms, graphs, trees

(due to historical reasons):

h automatically deleted: owned by file.

c still there.  names unique!

TFile acts like a scope for hists, graphs, trees!

TFile* f = new TFile("myfile.root");

TH1F* h = new TH1F("h","h",10,0.,1.);

h->Write();

TCanvas* c = new TCanvas();

c->Write();

delete f;
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Risks With I/O

Physicists can loop a lot:

For each particle collision

For each particle created

For each detector module

Do something.

Physicists can loose a lot:

Run for hours…

Crash.

Everything lost.
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Name Cycles

Create snapshots regularly:

MyObject;1

MyObject;2

…

MyObject; 5427

MyObject

Write() does not replace but append!

but see documentation TObject::Write()
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The "I" Of I/O

Reading is simple:

Remember:

TFile owns histograms!

file gone, histogram gone!

TFile* f = new TFile("myfile.root");

TH1F* h = 0;

f->GetObject("h", h);

h->Draw();

delete f;
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Ownership And TFiles

Separate TFile and histograms:

… and h will stay around.

TFile* f = new TFile("myfile.root");

TH1F* h = 0;

TH1::AddDirectory(kFALSE);

f->GetObject("h", h);

h->Draw();

delete f;
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Changing Class – The Problem

Things change:

Inconsistent reflection data, mismatch in memory, 

on disk

Objects written with old version cannot be read

Need to store reflection with data to detect!

class TMyClass {

double fFloat;

Long64_t fLong;

};



CSC09 • ROOT 78CSC08 • ROOT 78

Schema Evolution
Simple rules to convert disk to memory layout

1. skip removed members

2. default-initialize added members

3. convert members where possible

Long64_t fLong;

float fFloat;

file.root

float fFloat;

RAM

ignore

float fFloat;

file.root Long64_t fLong;

float fFloat;

RAM
TMyClass(): fLong(0)
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Class Version

ClassDef() macro makes I/O faster, needed when 

deriving from TObject

Can have multiple class versions in same file

Use version number to identify layout:

class TMyClass: public TObject {

public:

TMyClass(): fLong(0), fFloat(0.) {}

virtual ~TMyClass() {}

...

ClassDef(TMyClass,1); // example class

};
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Reading Files

Files store reflection and data: need no library!

function

call



CSC09 • ROOT 81CSC08 • ROOT 81

Powers of ROOT I/O

• Can even open 
TFile::Open("http://cern.ch/file.root")

including read-what-you-need!

• Nice viewer for TFile: new TBrowser

• Combine contents of TFiles with 
$ROOTSYS/bin/hadd
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Summary

Big picture:

• you know ROOT files – for petabytes of data 

• you learned what schema evolution is

• you learned that reflection is key for I/O

Small picture:

• you can write your own data to files

• you can read it back

• you can change the definition of your classes



ROOT Collection Classes
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Collection Classes

ROOT collections polymorphic containers: hold 

pointers to TObject, so:

• Can only hold objects that inherit from TObject

• Return pointers to TObject, that have to be cast 

back to the correct subclass

void DrawHist(TObjArray *vect, int at)

{ 

TH1F *hist = (TH1F*)vect->At(at);

if (hist) hist->Draw();

}
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TClonesArray

Array of objects of the same 

class ("clones")

Designed for repetitive data 

analysis tasks: same type 

of objects created and 

deleted many times.

No comparable class in STL!

The internal data structure of a 

TClonesArray
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Traditional Arrays

Very large number of new and delete calls in large loops 

like this (N(100000) x N(10000) times new/delete):

TObjArray a(10000);

while (TEvent *ev = (TEvent *)next()) {

for (int i = 0; i < ev->Ntracks; ++i) {

a[i] = new TTrack(x,y,z,...);

...

}

...

a.Delete();

}

N(100000)

N(10000)
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You better use a TClonesArray which reduces the number 

of new/delete calls to only N(10000):

TClonesArray a("TTrack", 10000);

while (TEvent *ev = (TEvent *)next()) {

for (int i = 0; i < ev->Ntracks; ++i) {

new(a[i]) TTrack(x,y,z,...);

...

}

...

a.Delete();

}

Pair of new / delete calls cost about 4 μs

Allocating / freeing memory NN(109) times costs about 1 
hour!

N(100000)

N(10000)



ROOT Trees
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Trees
From:

Simple data types

(e.g. Excel tables)

To:

Complex data types

(e.g. Database tables)

Event

Particles

Pt Charge

Energy Track

Vertex

Position

Header Type

…
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Trees

• Databases have row wise access

– Can only access the full object (e.g. full event)

• ROOT trees have column wise access

– Direct access to any event, any branch or any leaf 

even in the case of variable length structures

– Designed to access only a subset of the object 

attributes (e.g. only particles’ energy)
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Why Trees ?

object.Write() convenient for simple objects like 

histograms, inappropriate for saving collections of 

events containing complex objects

• Reading a collection: read all elements (all 

events)

• With trees: only one element in memory, or even 

only a part of it (less I/O)



Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 92

Why Trees ?

• Extremely efficient write once, read many 

("WORM")

• Designed to store >109 (HEP events) with same 

data structure

• Trees allow fast direct and random access to any 

entry (sequential access is the best)

• Optimized for network access (read-ahead)
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Building ROOT Trees

Overview of 

– Trees

– Branches

5 steps to build a TTree
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Tree structure
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Tree structure
• Branches: directories 

• Leaves: data containers

• Can read a subset of all branches – speeds up 
considerably the data analysis processes

• Branches of the same TTree can be written to  separate 
files
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Memory ↔ Tree

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

T.Fill()

T.GetEntry(6)

T

Memory

Each Node is a branch in the Tree
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Five Steps to Build a Tree

Steps:

1. Create a TFile 

2. Create a TTree

3. Add TBranch to the TTree

4. Fill the tree

5. Write the file
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Example macro
void WriteTree()

{

Event *myEvent = new Event();

TFile f("AFile.root");

TTree *t = new TTree("myTree","A Tree"); 

t->Branch("EventBranch", &myEvent);

for (int e=0;e<100000;++e) {

myEvent->Generate();  // hypothetical

t->Fill();

}

t->Write();

}
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Step 1: Create a TFile Object

Trees can be huge  need file for 

swapping filled entries

TFile *hfile = new TFile("AFile.root");
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Step 2: Create a TTree Object

The TTree constructor:

– Tree name (e.g. "myTree") 

– Tree title

TTree *tree = new TTree("myTree","A Tree");
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Step 3: Adding a Branch

• Branch name

• Pointer to the object 

Event *myEvent = new Event();

myTree->Branch("eBranch", &myEvent);
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Step 4: Fill the Tree 

• Create a for loop 

• Assign values to the object 

contained in each branch

• TTree::Fill() creates a new entry 

in the tree: snapshot of values of 

branches’ objects

for (int e=0;e<100000;++e) {

myEvent->Generate(e); // fill event

myTree->Fill();       // fill the tree

}
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Step 5: Write Tree To File

myTree->Write();
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Reading a TTree

• Looking at a tree

• How to read a tree

• Friends and chains
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Example macro
void ReadTree()

{

Event *myEvent = 0;

TFile f("AFile.root");

TTree *myTree = (TTree*)f->Get("myTree");

myTree->SetBranchAddress("EventBranch",

&myEvent);

for (int e=0;e<100000;++e) {

myTree->GetEntry(e);

myEvent->Analyze();

}

}

The pointer (myEvent) MUST be set to 0
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How to Read a TTree

Example:

1. Open the Tfile

2. Get the TTree

TFile f("AFile.root")

TTree *myTree = 0;

f.GetObject("myTree",my

Tree)

OR
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How to Read a TTree

3. Create a variable pointing to the data
root [] Event *myEvent = 0;

4. Associate a branch with the variable:
root [] myTree->SetBranchAddress("eBranch", &myEvent);

5. Read one entry in the TTree
root [] myTree->GetEntry(0) 

root [] myEvent->GetTracks()->First()->Dump()

==> Dumping object at: 0x0763aad0, name=Track, class=Track

fPx 0.651241    X component of the momentum

fPy 1.02466     Y component of the momentum

fPz 1.2141      Z component of the momentum

[...]
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Branch Access Selection

• Use TTree::SetBranchStatus() to activate only the 

branches holding wanted variables.

• Speed up considerably the reading phase 

TClonesArray* myMuons = 0;

// disable all branches

myTree->SetBranchStatus("*", 0);

// re-enable the "muon" branches

myTree->SetBranchStatus("muon*", 1);

myTree->SetBranchAddress("muon", &myMuons);

// now read (access) only the "muon" branches

myTree->GetEntry(0);
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Looking at the Tree

TTree::Print() shows the data layout

root [] TFile f("AFile.root")

root [] myTree->Print();
******************************************************************************

*Tree    :myTree    : A ROOT tree                                            *

*Entries :       10 : Total =          867935 bytes  File  Size =     390138 *

*        :          : Tree compression factor =   2.72                       *

******************************************************************************

*Branch  :eBranch                                                        *

*Entries :       10 : BranchElement (see below)                              *

*............................................................................*

*Br    0 :fUniqueID :                                                        *

*Entries :       10 : Total  Size=        698 bytes  One basket in memory    *

*Baskets :        0 : Basket Size=      64000 bytes  Compression=   1.00     *

*............................................................................*

…

…



Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 110

Looking at the Tree

TTree::Scan("leaf:leaf:….") shows the values

root [] myTree->Scan("fNseg:fNtrack"); > scan.txt

root [] myTree->Scan("fEvtHdr.fDate:fNtrack:fPx:fPy","", 

"colsize=13 precision=3 col=13:7::15.10");

******************************************************************************

* Row * Instance * fEvtHdr.fDate * fNtrack *           fPx *             fPy *

******************************************************************************

*   0 *        0 *        960312 *     594 *          2.07 *     1.459911346 *

*   0 *        1 *        960312 *     594 *         0.903 *   -0.4093382061 *

*   0 *        2 *        960312 *     594 *         0.696 *    0.3913401663 *

*   0 *        3 *        960312 *     594 *        -0.638 *     1.244356871 *

*   0 *        4 *        960312 *     594 *        -0.556 *   -0.7361358404 *

*   0 *        5 *        960312 *     594 *         -1.57 *   -0.3049036264 *

*   0 *        6 *        960312 *     594 *        0.0425 *    -1.006743073 *

*   0 *        7 *        960312 *     594 *          -0.6 *    -1.895804524 *
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TTree Selection Syntax

Prints the first 8 variables of the tree.

Prints all the variables of the tree.

Select specific variables: 

Prints the values of var1, var2 and var3.

A selection can be applied in the second argument:

Prints the values of var1, var2 and var3 for the entries 
where var1 is greater than 0

Use the same syntax for TTree::Draw()

MyTree->Scan();

MyTree->Scan("*");

MyTree->Scan("var1:var2:var3");

MyTree->Scan("var1:var2:var3", "var1>0");
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Looking at the Tree

TTree::Show(entry_number) shows the values for 
one entry

root [] myTree->Show(0);

======> EVENT:0

eBranch         = NULL

fUniqueID       = 0

fBits           = 50331648

[...]

fNtrack         = 594

fNseg           = 5964

[...]

fEvtHdr.fRun    = 200

[...]

fTracks.fPx     = 2.066806, 0.903484, 0.695610, -0.637773,...

fTracks.fPy     = 1.459911, -0.409338, 0.391340, 1.244357,...



Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 113

TChain: the Forest
• Collection of TTrees: list of ROOT files containing the 

same tree

• Same semantics as TTree

As an example, assume we have three files called 

file1.root, file2.root, file3.root. Each contains tree called 

"T". Create a chain:

TChain chain("T"); // argument: tree name

chain.Add("file1.root");

chain.Add("file2.root");

chain.Add("file3.root");

Now we can use the TChain like a TTree!
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TChain

T(2)

file2.root

T(1)

file1.root

chain files together
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Data Volume & Organisation

100MB 1GB 10GB 1TB100GB 100TB 1PB10TB

1 1 500005000500505

TTree TChain

• A TFile typically contains 1 TTree

• A TChain is a collection of TTrees or/and TChains

• A TChain is typically the result of a query to a file catalog
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Tree Friends

TFile f1("tree1.root");

tree.AddFriend("tree_1", "tree2.root")

tree.AddFriend("tree_2", "tree3.root");

tree.Draw("x:a", "k<c");

tree.Draw("x:tree_2.x", "sqrt(p)<b");

tree_1 tree_2

tree

a b c

n x

o p

q r

i j

k l x
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Tree Friends

• Trees are designed to be read only

• Often, people want to add branches to existing 

trees and write their data into it

• Using tree friends is the solution:

– Create a new file holing the new tree

– Create a new Tree holding the branches for the users 

data

– Fill the tree/branches with users data

– Add this new file/tree as friend of the original tree

117CSC09 • ROOT
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Summary: Trees, basics

• TTree is one of the most powerful collections 

available for HEP

• Extremely efficient for huge number of data sets 

with identical layout

• Very easy to look at TTree - use TBrowser!

• Write once, read many (WORM) ideal for 

experiments' data

• Still: extensible, users can add their own tree as 

friend
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Splitting

Split level = 0 Split level = 99
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Splitting
• Creates one branch per member – recursively

• Allows to browse objects that are stored in trees, 
even without their library

• Makes same members consecutive, e.g. for object 
with position in X, Y, Z, and energy E, all X are 
consecutive, then come Y, then Z, then E. A lot 
higher zip efficiency!

• Fine grained branches allow fain-grained I/O -
read only members that are needed

• Supports STL containers too, even vector<T*>!
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Splitting

Setting the split level (default = 99)

Split level = 0 Split level = 99

tree->Branch("EvBr", &event, 64000, 0 );
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Performance Considerations

A split branch is:

• Faster to read – if you only want a subset of data 

members

• Slower to write due to the large number of 

branches

• Higher compressed
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Analyzing Trees

Selectors, Analysis, PROOF
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Recap

TTree efficient storage and access

for huge amounts of structured data

Allows selective access of data

TTree knows its layout

Almost all HEP analyses based on TTree
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TTree Data Access

TSelector: generic "TTree based analysis"

Derive from it ("TMySelector")

ROOT invokes TSelector's functions,

Used e.g. by tree->Process(TSelector*,…), 

PROOF

Functions called are virtual, thus TMySelector's 

functions called.
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TSelector

Steps of ROOT using a TSelector:

1. setup Init(TTree*)

called to inform selector about tree

2. start SlaveBegin()

called to create histograms

3. run Process(Long64_t)

called for each entry to load and analyze it

4. end Terminate()

called to fit histograms, write them to files,…
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TTree Data Access

E.g. 

SlaveBegin()

Process(i)

Terminate()

Init(tree)

next entry?

no

yes

tree->Process("MySelector.C+")
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TSelector: Usage

• Init(TTree* tree):

e.g. TMySelector::fChain = tree.

Set branch addresses.

• SlaveBegin(): create histograms

• Process(Long64_t entry):

fChain->GetTree()->GetEntry(entry);

fill histograms

• Terminate(): fit; save histograms
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Analysis Example

Determine trigger efficiencies from data, typical 

ingredient in analyses

Trigger selection before writing data: not all events 

available

Usually higher energy is taken, lower is ignored

Example 15GeV muon trigger: events with a muon 

> 15GeV transverse momentum ("pT") are 

recorded.
muon p

beam

muon pT
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Ideal Trigger

Efficiency: probability to record an event with a 

given (transverse) muon momentum

eff = triggered/all

Ideal 15GeV

muon trigger

none all
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Trigger Example

Example for a trigger from STAR @ BNL

Main properties:

• plateau

• turn-on

• minimum
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Trigger Efficiency From Data

Look at data triggered by 15GeV muon trigger:

for each event's muon:

T=triggered, N=not triggered

{T} {NTN}{TT}{TNT}{NT}{TT}…

But this sample doesn't see {N}, {NN}, {NNN},…

eff = |T| / all = |T| / (|T| + |N|)

But |N| unknown! Cannot determine efficiency!

Instead: need muons that are independent of trigger 

("unbiased")
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Dice And Tag / Probe

Think of two dice

Want probability for "6" ("6" trigger efficiency)

Have only triggered data, all results have ≥1 "6"

{1,6}, {6,4}, {6,6}, {1,6},…

Solution: one die has 6, the other is unbiased!

Result: N, N, T, N,… will yield 1/6
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Muons And Tag / Probe

Solution: events with >1 muon

For each muon:

if exists other muon causing trigger:

this muon is unbiased!

Need trigger decision stored with data, as in:

"other muon caused the 15GeV muon trigger"
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Get Data From TTree

In TSelector::Init(tree) select branches and connect 

tree with our member fMuons:

TTree::GetEntry(i) will load data from branch muons 

into fMuons; can access data via fMuons

TTree* t = fChain->GetTree();

t->SetBranchStatus("*", 0); // all off

t->SetBranchStatus("muons*", 1); // but muons

t->SetBranchAddress("muons", &fMuons);

TMySelector

fMuons

TREE

muons
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TClonesArray

fMuons could be TClonesArray:

Print pT of the i-th muon:

TClonesArray* fMuons; // array of TMuon

class TMuon: public TObject {

public:

...

float Pt() const;

bool  Mu15() const; // triggered

};

TMuon* muon = (TMuon*) fMuons->At(i); 

cout << muon->Pt() << endl;
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Determine Efficiency

Take a random muon number i ("probe")

Check that another muon ("tag") has caused trigger, 

then:

++ all[probe->pT()]

if probe muon has triggered:

++fired[probe->pT()]

efficiency[pT] = fired[pT] / all[pT]

Counting in pT-bins – use histogram

Division: binomial errors, check Wikipedia ;-)
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Result

Dividing probes / tags yields sampled efficiency

"Bumpy" because of low numbers of events
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Statistics, Or: We Know Better!

Sampling "known" distribution

Influenced by statistics

Not monotonic!

Missing data



CSC09 • ROOT 140CSC08 • ROOT 140

Fit

Combine our knowledge with statistics / data by

fitting a distribution:

1. Find appropriate

function with

parameters

2. Fit function to

distribution
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Fitting: The Math

Fitting = finding parameters such that

f(x) – hist(x)

minimal for all points x [or any similar measure]

Histogram with errors:

(f(x) – hist(x)) / err(x)

[or similar]
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Fitting: The Function

Finding the proper function involves:

• behavioral analysis:

starts at 0, goes to constant, monotonic,…

• physics interpretation:

"E proportional to sin^2(phi)"

• having a good knowledge of typical functions (see 

TMath)

• finding a good compromise between 

generalization ("constant") and precision 

("polynomial 900th degree")



TF1* f = new TF1("myfit",

"(TMath::Erf((x-[0])/[1])/2.+0.5)*[2]"

0., 100.);
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Fitting: Parameters

Let's take "erf"

Free parameters:

[0]: x @ center of the slope

[1]: ½ width of the slope

[2]: maximum efficiency

Define fit function:

erf(x)/2.+0.5

[0]

[1]

[2]
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Fitting: Parameter Init

A must!

Sensible:

[0]

[1]

[2]

f->SetParameter(0, 35.);

f->SetParameter(1, 10.);

f->SetParameter(2,  1.);
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Fitting Result

Result of                             is printed, or use

[0]: 34.9

[1]: 12.1

[2]: 0.98

which means:

Get efficiency at pT=42GeV:

(TMath::Erf((x-34.9)/12.1)/2.+0.5)*0.98

f->GetParameter(0)

f->Eval(42.)

hist->Fit(f);
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Analysis: Recap

We started with the trigger problem – and ended 

with an answer

You now know

• how to determine trigger efficiency from triggered 

data

• why large samples are relevant

• what fitting is, how it works, when to do it, and 

how it's done with ROOT.



Interactive Data Analysis with

PROOF

Bleeding Edge Physics with

Bleeding Edge Computing
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Parallel Analysis: PROOF

Some numbers (from Alice experiment)

• 1.5 PB (1.5 * 1015) of raw data per year

• 360 TB of ESD+AOD* per year (20% of raw)

• One pass at 15 MB/s will take 9 months!

Parallelism is the only way out!

* ESD: Event Summary Data     AOD: Analysis Object Data
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PROOF
Huge amounts of events, hundreds of CPUs

Split the job into N events / CPU!

PROOF for TSelector based analysis:

• start analysis locally ("client"), 

• PROOF distributes data and code,

• lets CPUs ("workers") run the analysis,

• collects and combines (merges) data,

• shows analysis results locally
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Interactive!

• Start analysis

• Watch status while running

• Forgot to create a histogram?

– Interrupt the process

– Modify the selector

– Re-start the analysis

• More dynamic than a batch system
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PROOF

PROOF farm

Storage

MASTER

commands,
scripts

list of output
objects

(histograms, …)

Client

Workers
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Creating a session

To create a PROOF session from the ROOT

prompt, just type: 

where "master" is the hostname of the master 

machine on the PROOF cluster

TProof *p = TProof::Open("master")
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PROOF Lite

commands,
scripts

list of output
objects

(histograms, …)

Client

Multi-core Desktop/Laptop
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Creating a session

To create a PROOF Lite session from the

ROOT prompt, just type: 

Then you can use your multicore computer as 

a PROOF cluster!

TProof *p = TProof::Open("lite")
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PROOF Analysis

• Example of local TChain analysis

PROOF

// Create a chain of trees

root[0] TChain *c = new TChain("myTree");

root[1] c->Add("http://www.any.where/file1.root");

root[2] c->Add("http://www.any.where/file2.root");

// MySelector is a TSelector

root[3] c->Process("MySelector.C+");
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PROOF Analysis

• Same example with PROOF

// Create a chain of trees

root[0] TChain *c = new TChain("myTree");

root[1] c->Add("http://www.any.where/file1.root");

root[2] c->Add("http://www.any.where/file2.root");

// Start PROOF and tell the chain to use it

root[3] TProof::Open("lite");

root[4] c->SetProof();

// Process goes via PROOF

root[5] c->Process("MySelector.C+");
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TSelector & PROOF

• Begin() called on the client only

• SlaveBegin() called on each worker: create 

histograms

• SlaveTerminate() rarely used; post 

processing of partial results before they are sent 

to master and merged

• Terminate() runs on the client: save results, 

display histograms, … 



Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 158

PROOF Analysis

SlaveBegin()
•Create histos, …

•Define output list

Process()

preselection analysis

output listSelector (worker)

loop over events

OK

event

branch

branch

leaf

leafleaf

branch

leafleaf

1 2 n last

n

Chain

branch

leaf leaf

Begin() Terminate()
•Final analysis

(fitting, saving …)

SlaveTerminate()
•Post-processing

Selector (client)
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Output List (result of the query)
• Each worker has a partial output list

• Objects have to be added to the list in 
TSelector::SlaveBegin() e.g.:

• At the end of processing the output list gets sent 
to the master

• The Master merges objects and returns them to 
the client. Merging is e.g. "Add()" for histograms, 
appending for lists and trees

fHist = new TH1F("h1", "h1", 100, -3., 3.);

fOutput->Add(fHist);
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Example

void MySelector::SlaveBegin(TTree *tree) {

// create histogram and add it to the output list

fHist = new TH1F("MyHist","MyHist",40,0.13,0.17);

fOutput->Add(fHist);

}

Bool_t MySelector::Process(Long64_t entry) {

my_branch->GetEntry(entry); // read branch

fHist->Fill(my_data);       // fill the histogram

return kTRUE;

}

void MySelector::Terminate() {

fHist->Draw();              // display histogram

}



Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 161

Results

At the end of Process(), the output list is accessible 

via gProof->GetOutputList()

// Get the output list

root[0] TList *output = gProof->GetOutputList();

// Retrieve 2D histogram "h2"

root[1] TH2F *h2 = (TH2F*)output->FindObject("h2");

// Display the histogram

root[2] h2->Draw();
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PROOF GUI Session

Starting a PROOF GUI session is trivial:

Opens GUI:

TProof::Open()
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PROOF GUI Session – Results

Results accessible via TSessionViewer, too:
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PROOF Documentation

Documentation available online at

http://root.cern.ch/drupal/content/proof

But of course you need a little cluster of CPUs

Like your multi-core

game console!
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Summary

You've learned:

• analyzing a TTree can be easy and efficient

• integral part of physics is counting

• ROOT provides histogramming and fitting

• > 1 CPU: use PROOF!

Looking forward to hearing from you:

• as a user (help! bug! suggestion!)

• and as a developer!


