
ROOT

Bertrand Bellenot, Axel Naumann

CERN

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 2

What's ROOT?

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 3

ROOT: An Open Source Project

• Started in 1995

• 8 full time developers at CERN, plus Fermilab,

Agilent Tech, Japan, MIT (one each)

• Large number of part-time developers: let users

participate

• Available (incl. source) under GNU LGPL

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 4

ROOT in a Nutshell
Framework for large scale data handling

Provides, among others,

– an efficient data storage, access and query system

(PetaBytes)

– advanced statistical analysis algorithms (multi

dimensional histogramming, fitting, minimization and

cluster finding)

– scientific visualization: 2D and 3D graphics, Postscript,

PDF, LateX

– geometrical modeller

– PROOF parallel query engine

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 5

Graphics

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 6

Histogramming

• Histogram is just occurrence counting, i.e. how

often they appear

• Example: {1,3,2,6,2,3,4,3,4,3,5}

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 7

Histogramming

• How is a Real Histogram Made?

Lets consider the age distribution of the CSC

participants in 2008:

Binning:

Grouping ages of

participants in

several categories

(bins)

CSC09 • ROOT 8

Histogramming

Table of Ages

(binned)

Shows distribution of ages, total number of

entries (57 participants) and average: 27 years

10 months 6 days…

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 9

Histograms

Analysis result: often a histogram

Menu:

View / Editor

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 10

Fitting

Analysis result:

often a fit

based on a

histogram

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 11

Fit Panel

To fit a histogram:

right click histogram,

"Fit Panel"

Straightforward interface

for fitting!

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 12

2D/3D

We have seen 1D histograms, but there are

also histograms in more dimensions.

2D Histogram 3D Histogram

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 13

OpenGL

OpenGL can be used to render 2D & 3D

histograms, functions, parametric equations, and

to visualize 3D objects (geometry)

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 14

Geometry

• Describes complex detector geometries

• Allows visualization of these detector geometries

with e.g. OpenGL

• Optimized particle transport in complex

geometries

• Working in correlation with simulation packages

such as GEANT3, GEANT4 and FLUKA

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 15

Geometry

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 16

EVE (Event Visualization Environment)

• Event: Collection of data from a detector (hits,

tracks, …)

Use EVE to:

• Visualize these physics objects together with

detector geometry (OpenGL)

• Visually interact with the data, e.g. select a

particular track and retrieve its physical properties

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 17

EVE

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 18

Math

CSC09 • ROOT 19

Multivariate Analysis

• Consider this simple question: How to estimate

someone’s life expectancy?

• This depends on many variables:

Life style

Genetics

…

Income

Sex (m/f)

Country

(region)

Life

expectancy

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 20

Multivariate Analysis

• Many variables? Parallel Coordinates

• This will not help to solve the problem, it only

allows to visualize multiple variables

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 21

Multivariate Analysis

• Sample described by k variables (that are found to
be discriminating)

• Samples can be classified
into n categories: H1 … Hn

• E.g.

– H1 : life exp. < 40

– H2 : life exp. 40..60

– H3 : life exp. > 60

• Example: k=2 variables x1, x2

n=3 categories H1, H2, H3

H2

H1

x1

x2

H3

Example: k=2, n=3

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 22

Multivariate Analysis

Problem: Find boundaries between H1, H2, and H3

such that f(x) returns the category of x with

maximum correctness

H2

H1

x1

x2

H3

Non-linear Boundaries

H2

H1

x1

x2

H3

Linear Boundaries ?

H2

H1

x1

x2

H3

Rectangular Cuts ?

Simple example  I can do it by hand.

Large input variable space, complex correlations:
manual optimization very difficult

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 23

Multivariate Analysis

Generic problem: find category for set of values

To make such an estimation, we need two phases:

• (Supervised) learning / training phase:

– Take samples for which categories are known

– Machine adapts to give the smallest classification error

on training sample

• Processing phase:

– The trained system can now analyze and produce

output for any new sample

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 24

TMVA

• Framework offering a collection of data mining

tools, e.g. NN (Neural Network), GA (Genetic

Algorithm), …

• In HEP mostly two class problems – signal (S)

and background (B)

– Physics processes

– Finding physics objects

– Detector readout

– ...

CSC09 • ROOT 25CSC08 • ROOT 25

Interlude: HELP!

ROOT is a framework – only as good as its

documentation.

http://root.cern.ch

• User's Guide (it has your answers!)

What is TNamed?

What functions does it have?

• Reference Guide

CSC09 • ROOT 26CSC08 • ROOT 26

Let's fire up ROOT!

CSC09 • ROOT 27

Setting Up ROOT

Before starting ROOT:

setup environment variables $PATH,

$LD_LIBRARY_PATH

(ba)sh:

(t)csh:

$ source /PathToRoot/bin/thisroot.csh

$. /PathToRoot/bin/thisroot.sh

CSC09 • ROOT 28

Starting Up ROOT

ROOT is prompt-based

Prompt speaks C++

$ root

root [0] _

root [0] gROOT->GetVersion();

(const char* 0x5ef7e8)"5.24/00"

CSC09 • ROOT 29

ROOT As Pocket Calculator

Calculations:

Uses C++ Interpreter CINT

root [0] sqrt(42)

(const double)6.48074069840786038e+00

root [1] double val = 0.17;

root [2] sin(val)

(const double)1.69182349066996029e-01

CSC09 • ROOT 30CSC08 • ROOT

Running Code

To run function mycode() in file mycode.C:

Equivalent: load file and run function:

Quit:

All of CINT's commands (help):

root [0] .x mycode.C

root [0] .L mycode.C

root [1] mycode()

root [0] .h

root [0] .q

CSC09 • ROOT 31CSC08 • ROOT 31

ROOT Prompt

Why C++ and not a scripting language?!

You'll write your code in C++, too. Support for

python, ruby,… exists.

Why a prompt instead of a GUI?

ROOT is a programming framework, not an office

suite. Use GUIs where needed.

CSC09 • ROOT 32CSC08 • ROOT 32

Running Code

Macro: file that is interpreted by CINT (.x)

Execute with .x mymacro.C(42)

int mymacro(int value)

{

int ret = 42;

ret += value;

return ret;

}

CSC09 • ROOT 33CSC08 • ROOT 33

Compiling Code: ACLiC

Load code as shared lib, much faster:

Uses the system's compiler, takes seconds

Subsequent .x mymacro.C+(42) check for

changes, only rebuild if needed

Exactly as fast as e.g. Makefile based stand-alone

binary!

CINT knows types, functions in the file, e.g. call

.x mymacro.C+(42)

mymacro(43)

CSC09 • ROOT 34CSC08 • ROOT 34

Compiled versus Interpreted

Why compile?

Faster execution, CINT has limitations, validate

code.

Why interpret?

Faster Edit → Run → Check result → Edit cycles

("rapid prototyping").

Scripting is sometimes just easier.

Are Makefiles dead?

Yes! ACLiC is even platform independent!

CSC09 • ROOT 35CSC08 • ROOT 35

A Little C++

Hopefully many of you know – but some don't.

• Object, constructor, assignment

• Pointer, reference

• Scope, destructor

• Stack vs. heap

• Inheritance, virtual functions

If you use C++ you have to understand these

concepts!

CSC09 • ROOT 36CSC08 • ROOT 36

Look at this code:

TNamed myObject("name", "title");

TNamed mySecond;

mySecond = myObject;

cout << mySecond.GetName() << endl;

Objects, Constructors, =

CSC09 • ROOT 37CSC08 • ROOT 37

Look at this code:

Creating objects:

1. Constructor TNamed::TNamed(const

char*, const char*)

2. Default constructor TNamed::TNamed()

TNamed myObject("name", "title");

TNamed mySecond;

mySecond = myObject;

cout << mySecond.GetName() << endl;

Objects, Constructors, =

Look at this code:

3. Assignment: creating a twin

CSC09 • ROOT 38CSC08 • ROOT 38

= TNamed:

fName "name"

fTitle "title"

TNamed:

fName ""

fTitle ""

TNamed:

fName "name"

fTitle "title"

TNamed myObject("name", "title");

TNamed mySecond;

mySecond = myObject;

cout << mySecond.GetName() << endl;

Objects, Constructors, =

myObjectmySecond

CSC09 • ROOT 39CSC08 • ROOT 39

Look at this code:

4. New content

output:

TNamed myObject("name", "title");

TNamed mySecond;

mySecond = myObject;

cout << mySecond.GetName() << endl;

Objects, Constructors, =

TNamed:

fName "name"

fTitle "title"

mySecond

"name"

CSC09 • ROOT 40CSC08 • ROOT 40

Modified code:

Pointer declared with "*", initialize to 0

TNamed myObject("name", "title");

TNamed* pMySecond = 0;

pMySecond = &myObject;

cout << pMySecond->GetName() << endl;

Pointer, Reference

CSC09 • ROOT 41CSC08 • ROOT 41

Modified code:

Assignment: "&" creates reference:

TNamed myObject("name", "title");

TNamed* pMySecond = 0;

pMySecond = &myObject;

cout << pMySecond->GetName() << endl;

Pointer, Reference

= & TNamed:

fName "name"

fTitle "title"

[address]

myObject
pMySecond

CSC09 • ROOT 42CSC08 • ROOT 42

Modified code:

Access members of value pointed to by "->"

TNamed myObject("name", "title");

TNamed* pMySecond = 0;

pMySecond = &myObject;

cout << pMySecond->GetName() << endl;

Pointer, Reference

CSC09 • ROOT 43CSC08 • ROOT 43

Modified code:

Or dereference pointer by "*"

and then access like object with "."

TNamed myObject("name", "title");

TNamed* pMySecond = 0;

pMySecond = &myObject;

cout << (*pMySecond).GetName() << endl;

Pointer, Reference

CSC09 • ROOT 44CSC08 • ROOT 44

Changes propagated:

Pointer forwards to object

Name of object changed – prints "newname"!

TNamed myObject("name", "title");

TNamed* pMySecond = 0;

pMySecond = &myObject;

pMySecond->SetName("newname");

cout << myObject.GetName() << endl;

Pointer, Reference

CSC09 • ROOT 45CSC08 • ROOT 45

Compare object:

to pointer:

TNamed myObject("name", "title");

TNamed mySecond = myObject;

cout << mySecond.GetName() << endl;

Object vs. Pointer

TNamed myObject("name", "title");

TNamed* pMySecond = &myObject;

cout << pMySecond->GetName() << endl;

CSC09 • ROOT 46CSC08 • ROOT 46

Calling functions: object parameter obj gets copied

for function

call!

Pointer parameter: only address passed,

no copy

void funcO(TNamed obj);

TNamed myObject;

funcO(myObject);

Object vs. Pointer: Parameters

void funcP(TNamed* ptr);

TNamed myObject;

funcP(&myObject);

CSC09 • ROOT 47CSC08 • ROOT 47

Functions changing parameter: funcO can only

access copy!
caller not

changed!

Using pointers (or references) funcP can change
caller

void funcO(TNamed obj){

obj.SetName("nope");

}

funcO(caller);

Object vs. Pointer: Parameters

void funcP(TNamed* ptr){

ptr->SetName("yes");

}

funcP(&caller);

CSC09 • ROOT 48CSC08 • ROOT 48

Scope: range of accessibility and C++ "life".

Birth: constructor, death: destructor

Variables are valid / accessible only in scopes:

int a = 42;

{ int a = 0; }

cout << a << endl;

Scope

{ // birth: TNamed() called

TNamed n;

} // death: ~TNamed() called

CSC09 • ROOT 49CSC08 • ROOT 49

Functions are scopes:

must not return

pointers to

local variables!

void func(){ TNamed obj; }

func();

cout << obj << end; // obj UNKNOWN!

Scope

TNamed* func(){

TNamed obj;

return &obj; // BAD!

}

CSC09 • ROOT 50CSC08 • ROOT 50

Stack vs. Heap

So far only stack:

Fast, but often < 10MB. Only survive in scope.

Heap: slower, GBs (RAM + swap), creation and

destruction managed by user:

TNamed myObj("n","t");

TNamed* pMyObj = new TNamed("n","t");

delete pMyObj; // or memory leak!

CSC09 • ROOT 51CSC08 • ROOT 51

Stack vs. Heap: Functions

Can return heap objects without copying:

ptr gone – but TNamed object still on the heap,

address returned!

TNamed* CreateNamed(){

// user must delete returned obj!

TNamed* ptr = new TNamed("n","t");

return ptr; }

TNamed* pMyObj = CreateNamed();

cout << pMyObj->GetName() << endl;

delete pMyObj; // or memory leak!

CSC09 • ROOT 52CSC08 • ROOT 52

Inheritance

Classes "of same kind" can re-use functionality

E.g. TPlate, TBowl both dishes:

Can implement common functions in TDish:

class TPlate: public TDish {...};

class TBowl: public TDish {...};

class TDish {

public:

void Wash();

};

CSC09 • ROOT 53CSC08 • ROOT 53

Inheritance: The Base

Use TPlate, TBowl as dishes:

assign pointer of derived to pointer of base "every

plate is a dish"

But not every dish is a plate, i.e. the inverse doesn't

work. And a bowl is totally not a plate!

TDish *a = new TPlate();

TDish *b = new TBowl();

TPlate* p = new TDish(); // NO!

TPlate* q = new TBowl(); // NO!

CSC09 • ROOT 54CSC08 • ROOT 54

Virtual Functions

Often derived classes behave differently:

class TDish { ...

virtual bool ForSoup() const;

};

class TPlate: public TDish { ...

bool ForSoup() const {return false;}

};

class TBowl: public TDish { ...

bool ForSoup() const {return true;} };

CSC09 • ROOT 55CSC08 • ROOT 55

Pure Virtual Functions

But TDish cannot know! Mark as "not implemented"

Only for virtual functions.

Cannot create object of TDish anymore (one

function is missing!)

class TDish { ...

virtual bool ForSoup() const = 0;

};

CSC09 • ROOT 56CSC08 • ROOT 56

Calling Virtual Functions

Call to virtual functions evaluated at runtime:

Works for any type as expected:

TDish* a = new TPlate();

TDish* b = new TBowl();

FillWithSoup(a); // will not be full

FillWithSoup(b); // is now full

void FillWithSoup(TDish* dish) {

if (dish->ForSoup())

dish->SetFull();

}

CSC09 • ROOT 57CSC08 • ROOT 57

Virtual vs. Non-Virtual

So what happens if non-virtual?

Will now always call TDish::ForSoup(), i.e. false

void FillWithSoup(TDish* dish) {

if (dish->ForSoup())

dish->SetFull();

}

class TDish { ...

bool ForSoup() const {return false;}

};

CSC09 • ROOT 58CSC08 • ROOT 58

Summary

We know:

• why and how to start ROOT

• C++ basics

• that you run your code with ".x"

• can call functions in libraries

• can (mis-) use ROOT as a pocket calculator!

Lots for you to discover during next two lectures and

especially the exercises!

CSC09 • ROOT 59CSC08 • ROOT 59

Saving Data

Streaming, Reflection, TFile,

Schema Evolution

CSC09 • ROOT 60CSC08 • ROOT 60

Saving Objects

Cannot do in C++:

E.g. LHC experiments use C++ to manage data

Need to write C++ objects and read them back

std::cout not an option: 15PetaBytes / year of

processed data (i.e. data that will be read)

TNamed* o; TNamed* p;

o = new TNamed("name", "title");

std::write("file.bin", "obj1", o);

p = std::read("file.bin", "obj1");

p->GetName();

CSC09 • ROOT 61CSC08 • ROOT 61

Saving Objects – Saving Types

What's needed?

Store data members of TNamed; need to know:

1) type of object

2) data members for the type

3) where data members are in memory

4) read their values from memory, write to disk

TNamed* o;

o = new TNamed("name", "title");

std::write("file.bin", "obj1", o);

CSC09 • ROOT 62CSC08 • ROOT 62

Serialization

Store data members of TNamed: serialization

1) type of object: runtime-type-information RTTI

2) data members for the type: reflection

3) where data members are in memory:

introspection

4) read their values from memory, write to disk: raw

I/O

Complex task, and C++ is not your friend.

CSC09 • ROOT 63CSC08 • ROOT 63

Reflection

Need type description (aka reflection)

1. types, sizes, members

TMyClass is a class.

Members:

– "fFloat", type float, size 4 bytes

– "fLong", type Long64_t, size 8 bytes

class TMyClass {

float fFloat;

Long64_t fLong;

};

CSC09 • ROOT 64CSC08 • ROOT 64

Platform Data Types

Fundamental data types (int, long,…):

size is platform dependent

Store "long" on 64bit platform, writing 8 bytes:

00, 00, 00, 00, 00, 00, 00, 42

Read on 32bit platform, "long" only 4 bytes:

00, 00, 00, 00

Data loss, data corruption!

CSC09 • ROOT 65CSC08 • ROOT 65

ROOT Basic Data Types

Solution: ROOT typedefs

Signed Unsigned sizeof [bytes]

Char_t UChar_t 1

Short_t UShort_t 2

Int_t UInt_t 4

Long64_t ULong64_t 8

Double32_t float on disk,

double in RAM

CSC09 • ROOT 66CSC08 • ROOT 66

Reflection

Need type description (platform dependent)

1. types, sizes, members

2. offsets in memory class TMyClass {

float fFloat;

Long64_t fLong;

};

T
M
y
C
l
a
s
s

M
e
m

o
ry

 A
d

d
re

s
s

fLong

fFloat

– 16

– 14

– 12

– 10

– 8

– 6

– 4

– 2

– 0

PADDING "fFloat" is at offset 0

"fLong" is at offset 8

CSC09 • ROOT 67CSC08 • ROOT 67

members  memory  disk

I/O Using Reflection

T
M
y
C
l
a
s
s

M
e
m

o
ry

 A
d

d
re

s
s

fLong

fFloat

– 16

– 14

– 12

– 10

– 8

– 6

– 4

– 2

– 0

PADDING

CSC09 • ROOT 68CSC08 • ROOT 68

C++ Is Not Java

Lesson: need reflection!

Where from?

Java: get data members with

C++: get data members with

– oops. Not part of C++.

Class.forName("MyClass").getFields()

CSC09 • ROOT 69CSC08 • ROOT 69

ROOT And Reflection

Simply use ACLiC:

Creates library with reflection data ("dictionary") of

all types in MyCode.cxx!

Dictionary needed for interpreter, too

ROOT has dictionary for all its types

.L MyCode.cxx+

CSC09 • ROOT 70CSC08 • ROOT 70

Back To Saving Objects

Given a TFile:

Write an object deriving from TObject:

"optionalName" or TObject::GetName()

Write any object (with dictionary):

TFile* f = new TFile("file.root", "RECREATE");

object->Write("optionalName")

f->WriteObject(object, "name");

CSC09 • ROOT 71CSC08 • ROOT 71

TFile

ROOT stores objects in TFiles:

TFile behaves like file system:

TFile has a current directory:

TFile compresses data ("zip"):

TFile* f = new TFile("file.root", "NEW");

f->mkdir("dir");

f->cd("dir");

f->GetCompressionFactor()

2.61442160606384277e00

CSC09 • ROOT 72CSC08 • ROOT 72

"Where Is My Histogram?"

TFile owns histograms, graphs, trees

(due to historical reasons):

h automatically deleted: owned by file.

c still there.  names unique!

TFile acts like a scope for hists, graphs, trees!

TFile* f = new TFile("myfile.root");

TH1F* h = new TH1F("h","h",10,0.,1.);

h->Write();

TCanvas* c = new TCanvas();

c->Write();

delete f;

CSC09 • ROOT 73CSC08 • ROOT 73

Risks With I/O

Physicists can loop a lot:

For each particle collision

For each particle created

For each detector module

Do something.

Physicists can loose a lot:

Run for hours…

Crash.

Everything lost.

CSC09 • ROOT 74CSC08 • ROOT 74

Name Cycles

Create snapshots regularly:

MyObject;1

MyObject;2

…

MyObject; 5427

MyObject

Write() does not replace but append!

but see documentation TObject::Write()

CSC09 • ROOT 75CSC08 • ROOT 75

The "I" Of I/O

Reading is simple:

Remember:

TFile owns histograms!

file gone, histogram gone!

TFile* f = new TFile("myfile.root");

TH1F* h = 0;

f->GetObject("h", h);

h->Draw();

delete f;

CSC09 • ROOT 76CSC08 • ROOT 76

Ownership And TFiles

Separate TFile and histograms:

… and h will stay around.

TFile* f = new TFile("myfile.root");

TH1F* h = 0;

TH1::AddDirectory(kFALSE);

f->GetObject("h", h);

h->Draw();

delete f;

CSC09 • ROOT 77CSC08 • ROOT 77

Changing Class – The Problem

Things change:

Inconsistent reflection data, mismatch in memory,

on disk

Objects written with old version cannot be read

Need to store reflection with data to detect!

class TMyClass {

double fFloat;

Long64_t fLong;

};

CSC09 • ROOT 78CSC08 • ROOT 78

Schema Evolution
Simple rules to convert disk to memory layout

1. skip removed members

2. default-initialize added members

3. convert members where possible

Long64_t fLong;

float fFloat;

file.root

float fFloat;

RAM

ignore

float fFloat;

file.root Long64_t fLong;

float fFloat;

RAM
TMyClass(): fLong(0)

CSC09 • ROOT 79CSC08 • ROOT 79

Class Version

ClassDef() macro makes I/O faster, needed when

deriving from TObject

Can have multiple class versions in same file

Use version number to identify layout:

class TMyClass: public TObject {

public:

TMyClass(): fLong(0), fFloat(0.) {}

virtual ~TMyClass() {}

...

ClassDef(TMyClass,1); // example class

};

CSC09 • ROOT 80CSC08 • ROOT 80

Reading Files

Files store reflection and data: need no library!

function

call

CSC09 • ROOT 81CSC08 • ROOT 81

Powers of ROOT I/O

• Can even open
TFile::Open("http://cern.ch/file.root")

including read-what-you-need!

• Nice viewer for TFile: new TBrowser

• Combine contents of TFiles with
$ROOTSYS/bin/hadd

CSC09 • ROOT 82CSC08 • ROOT 82

Summary

Big picture:

• you know ROOT files – for petabytes of data

• you learned what schema evolution is

• you learned that reflection is key for I/O

Small picture:

• you can write your own data to files

• you can read it back

• you can change the definition of your classes

ROOT Collection Classes

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 84

Collection Classes

ROOT collections polymorphic containers: hold

pointers to TObject, so:

• Can only hold objects that inherit from TObject

• Return pointers to TObject, that have to be cast

back to the correct subclass

void DrawHist(TObjArray *vect, int at)

{

TH1F *hist = (TH1F*)vect->At(at);

if (hist) hist->Draw();

}

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 85

TClonesArray

Array of objects of the same

class ("clones")

Designed for repetitive data

analysis tasks: same type

of objects created and

deleted many times.

No comparable class in STL!

The internal data structure of a

TClonesArray

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 86

Traditional Arrays

Very large number of new and delete calls in large loops

like this (N(100000) x N(10000) times new/delete):

TObjArray a(10000);

while (TEvent *ev = (TEvent *)next()) {

for (int i = 0; i < ev->Ntracks; ++i) {

a[i] = new TTrack(x,y,z,...);

...

}

...

a.Delete();

}

N(100000)

N(10000)

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 87

You better use a TClonesArray which reduces the number

of new/delete calls to only N(10000):

TClonesArray a("TTrack", 10000);

while (TEvent *ev = (TEvent *)next()) {

for (int i = 0; i < ev->Ntracks; ++i) {

new(a[i]) TTrack(x,y,z,...);

...

}

...

a.Delete();

}

Pair of new / delete calls cost about 4 μs

Allocating / freeing memory NN(109) times costs about 1
hour!

N(100000)

N(10000)

ROOT Trees

CSC09 • ROOT 89

Trees
From:

Simple data types

(e.g. Excel tables)

To:

Complex data types

(e.g. Database tables)

Event

Particles

Pt Charge

Energy Track

Vertex

Position

Header Type

…

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 90

Trees

• Databases have row wise access

– Can only access the full object (e.g. full event)

• ROOT trees have column wise access

– Direct access to any event, any branch or any leaf

even in the case of variable length structures

– Designed to access only a subset of the object

attributes (e.g. only particles’ energy)

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 91

Why Trees ?

object.Write() convenient for simple objects like

histograms, inappropriate for saving collections of

events containing complex objects

• Reading a collection: read all elements (all

events)

• With trees: only one element in memory, or even

only a part of it (less I/O)

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 92

Why Trees ?

• Extremely efficient write once, read many

("WORM")

• Designed to store >109 (HEP events) with same

data structure

• Trees allow fast direct and random access to any

entry (sequential access is the best)

• Optimized for network access (read-ahead)

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 93

Building ROOT Trees

Overview of

– Trees

– Branches

5 steps to build a TTree

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 94

Tree structure

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 95

Tree structure
• Branches: directories

• Leaves: data containers

• Can read a subset of all branches – speeds up
considerably the data analysis processes

• Branches of the same TTree can be written to separate
files

CSC09 • ROOT 96

Memory ↔ Tree

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

T.Fill()

T.GetEntry(6)

T

Memory

Each Node is a branch in the Tree

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 97

Five Steps to Build a Tree

Steps:

1. Create a TFile

2. Create a TTree

3. Add TBranch to the TTree

4. Fill the tree

5. Write the file

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 98

Example macro
void WriteTree()

{

Event *myEvent = new Event();

TFile f("AFile.root");

TTree *t = new TTree("myTree","A Tree");

t->Branch("EventBranch", &myEvent);

for (int e=0;e<100000;++e) {

myEvent->Generate(); // hypothetical

t->Fill();

}

t->Write();

}

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 99

Step 1: Create a TFile Object

Trees can be huge  need file for

swapping filled entries

TFile *hfile = new TFile("AFile.root");

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 100

Step 2: Create a TTree Object

The TTree constructor:

– Tree name (e.g. "myTree")

– Tree title

TTree *tree = new TTree("myTree","A Tree");

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 101

Step 3: Adding a Branch

• Branch name

• Pointer to the object

Event *myEvent = new Event();

myTree->Branch("eBranch", &myEvent);

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 102

Step 4: Fill the Tree

• Create a for loop

• Assign values to the object

contained in each branch

• TTree::Fill() creates a new entry

in the tree: snapshot of values of

branches’ objects

for (int e=0;e<100000;++e) {

myEvent->Generate(e); // fill event

myTree->Fill(); // fill the tree

}

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 103

Step 5: Write Tree To File

myTree->Write();

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 104

Reading a TTree

• Looking at a tree

• How to read a tree

• Friends and chains

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 105

Example macro
void ReadTree()

{

Event *myEvent = 0;

TFile f("AFile.root");

TTree *myTree = (TTree*)f->Get("myTree");

myTree->SetBranchAddress("EventBranch",

&myEvent);

for (int e=0;e<100000;++e) {

myTree->GetEntry(e);

myEvent->Analyze();

}

}

The pointer (myEvent) MUST be set to 0

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 106

How to Read a TTree

Example:

1. Open the Tfile

2. Get the TTree

TFile f("AFile.root")

TTree *myTree = 0;

f.GetObject("myTree",my

Tree)

OR

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 107

How to Read a TTree

3. Create a variable pointing to the data
root [] Event *myEvent = 0;

4. Associate a branch with the variable:
root [] myTree->SetBranchAddress("eBranch", &myEvent);

5. Read one entry in the TTree
root [] myTree->GetEntry(0)

root [] myEvent->GetTracks()->First()->Dump()

==> Dumping object at: 0x0763aad0, name=Track, class=Track

fPx 0.651241 X component of the momentum

fPy 1.02466 Y component of the momentum

fPz 1.2141 Z component of the momentum

[...]

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 108

Branch Access Selection

• Use TTree::SetBranchStatus() to activate only the

branches holding wanted variables.

• Speed up considerably the reading phase

TClonesArray* myMuons = 0;

// disable all branches

myTree->SetBranchStatus("*", 0);

// re-enable the "muon" branches

myTree->SetBranchStatus("muon*", 1);

myTree->SetBranchAddress("muon", &myMuons);

// now read (access) only the "muon" branches

myTree->GetEntry(0);

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 109

Looking at the Tree

TTree::Print() shows the data layout

root [] TFile f("AFile.root")

root [] myTree->Print();
**

*Tree :myTree : A ROOT tree *

*Entries : 10 : Total = 867935 bytes File Size = 390138 *

* : : Tree compression factor = 2.72 *

**

*Branch :eBranch *

*Entries : 10 : BranchElement (see below) *

..

*Br 0 :fUniqueID : *

*Entries : 10 : Total Size= 698 bytes One basket in memory *

*Baskets : 0 : Basket Size= 64000 bytes Compression= 1.00 *

..

…

…

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 110

Looking at the Tree

TTree::Scan("leaf:leaf:….") shows the values

root [] myTree->Scan("fNseg:fNtrack"); > scan.txt

root [] myTree->Scan("fEvtHdr.fDate:fNtrack:fPx:fPy","",

"colsize=13 precision=3 col=13:7::15.10");

**

* Row * Instance * fEvtHdr.fDate * fNtrack * fPx * fPy *

**

* 0 * 0 * 960312 * 594 * 2.07 * 1.459911346 *

* 0 * 1 * 960312 * 594 * 0.903 * -0.4093382061 *

* 0 * 2 * 960312 * 594 * 0.696 * 0.3913401663 *

* 0 * 3 * 960312 * 594 * -0.638 * 1.244356871 *

* 0 * 4 * 960312 * 594 * -0.556 * -0.7361358404 *

* 0 * 5 * 960312 * 594 * -1.57 * -0.3049036264 *

* 0 * 6 * 960312 * 594 * 0.0425 * -1.006743073 *

* 0 * 7 * 960312 * 594 * -0.6 * -1.895804524 *

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 111

TTree Selection Syntax

Prints the first 8 variables of the tree.

Prints all the variables of the tree.

Select specific variables:

Prints the values of var1, var2 and var3.

A selection can be applied in the second argument:

Prints the values of var1, var2 and var3 for the entries
where var1 is greater than 0

Use the same syntax for TTree::Draw()

MyTree->Scan();

MyTree->Scan("*");

MyTree->Scan("var1:var2:var3");

MyTree->Scan("var1:var2:var3", "var1>0");

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 112

Looking at the Tree

TTree::Show(entry_number) shows the values for
one entry

root [] myTree->Show(0);

======> EVENT:0

eBranch = NULL

fUniqueID = 0

fBits = 50331648

[...]

fNtrack = 594

fNseg = 5964

[...]

fEvtHdr.fRun = 200

[...]

fTracks.fPx = 2.066806, 0.903484, 0.695610, -0.637773,...

fTracks.fPy = 1.459911, -0.409338, 0.391340, 1.244357,...

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 113

TChain: the Forest
• Collection of TTrees: list of ROOT files containing the

same tree

• Same semantics as TTree

As an example, assume we have three files called

file1.root, file2.root, file3.root. Each contains tree called

"T". Create a chain:

TChain chain("T"); // argument: tree name

chain.Add("file1.root");

chain.Add("file2.root");

chain.Add("file3.root");

Now we can use the TChain like a TTree!

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN

T(3)

file3.root

CSC09 • ROOT 114

TChain

T(2)

file2.root

T(1)

file1.root

chain files together

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 115

Data Volume & Organisation

100MB 1GB 10GB 1TB100GB 100TB 1PB10TB

1 1 500005000500505

TTree TChain

• A TFile typically contains 1 TTree

• A TChain is a collection of TTrees or/and TChains

• A TChain is typically the result of a query to a file catalog

CSC09 • ROOT 116

Tree Friends

TFile f1("tree1.root");

tree.AddFriend("tree_1", "tree2.root")

tree.AddFriend("tree_2", "tree3.root");

tree.Draw("x:a", "k<c");

tree.Draw("x:tree_2.x", "sqrt(p)<b");

tree_1 tree_2

tree

a b c

n x

o p

q r

i j

k l x

CSC08 • ROOT 117

Tree Friends

• Trees are designed to be read only

• Often, people want to add branches to existing

trees and write their data into it

• Using tree friends is the solution:

– Create a new file holing the new tree

– Create a new Tree holding the branches for the users

data

– Fill the tree/branches with users data

– Add this new file/tree as friend of the original tree

117CSC09 • ROOT

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 118

Summary: Trees, basics

• TTree is one of the most powerful collections

available for HEP

• Extremely efficient for huge number of data sets

with identical layout

• Very easy to look at TTree - use TBrowser!

• Write once, read many (WORM) ideal for

experiments' data

• Still: extensible, users can add their own tree as

friend

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 119

Splitting

Split level = 0 Split level = 99

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 120

Splitting
• Creates one branch per member – recursively

• Allows to browse objects that are stored in trees,
even without their library

• Makes same members consecutive, e.g. for object
with position in X, Y, Z, and energy E, all X are
consecutive, then come Y, then Z, then E. A lot
higher zip efficiency!

• Fine grained branches allow fain-grained I/O -
read only members that are needed

• Supports STL containers too, even vector<T*>!

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 121

Splitting

Setting the split level (default = 99)

Split level = 0 Split level = 99

tree->Branch("EvBr", &event, 64000, 0);

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 122

Performance Considerations

A split branch is:

• Faster to read – if you only want a subset of data

members

• Slower to write due to the large number of

branches

• Higher compressed

CSC09 • ROOT 123CSC08 • ROOT 123

Analyzing Trees

Selectors, Analysis, PROOF

CSC09 • ROOT 124CSC08 • ROOT 124

Recap

TTree efficient storage and access

for huge amounts of structured data

Allows selective access of data

TTree knows its layout

Almost all HEP analyses based on TTree

CSC09 • ROOT 125CSC08 • ROOT 125

TTree Data Access

TSelector: generic "TTree based analysis"

Derive from it ("TMySelector")

ROOT invokes TSelector's functions,

Used e.g. by tree->Process(TSelector*,…),

PROOF

Functions called are virtual, thus TMySelector's

functions called.

CSC09 • ROOT 126CSC08 • ROOT 126

TSelector

Steps of ROOT using a TSelector:

1. setup Init(TTree*)

called to inform selector about tree

2. start SlaveBegin()

called to create histograms

3. run Process(Long64_t)

called for each entry to load and analyze it

4. end Terminate()

called to fit histograms, write them to files,…

CSC09 • ROOT 127CSC08 • ROOT 127

TTree Data Access

E.g.

SlaveBegin()

Process(i)

Terminate()

Init(tree)

next entry?

no

yes

tree->Process("MySelector.C+")

CSC09 • ROOT 128CSC08 • ROOT 128

TSelector: Usage

• Init(TTree* tree):

e.g. TMySelector::fChain = tree.

Set branch addresses.

• SlaveBegin(): create histograms

• Process(Long64_t entry):

fChain->GetTree()->GetEntry(entry);

fill histograms

• Terminate(): fit; save histograms

CSC09 • ROOT 129CSC08 • ROOT 129

Analysis Example

Determine trigger efficiencies from data, typical

ingredient in analyses

Trigger selection before writing data: not all events

available

Usually higher energy is taken, lower is ignored

Example 15GeV muon trigger: events with a muon

> 15GeV transverse momentum ("pT") are

recorded.
muon p

beam

muon pT

CSC09 • ROOT 130CSC08 • ROOT 130

Ideal Trigger

Efficiency: probability to record an event with a

given (transverse) muon momentum

eff = triggered/all

Ideal 15GeV

muon trigger

none all

CSC09 • ROOT 131CSC08 • ROOT 131

Trigger Example

Example for a trigger from STAR @ BNL

Main properties:

• plateau

• turn-on

• minimum

CSC09 • ROOT 132CSC08 • ROOT 132

Trigger Efficiency From Data

Look at data triggered by 15GeV muon trigger:

for each event's muon:

T=triggered, N=not triggered

{T} {NTN}{TT}{TNT}{NT}{TT}…

But this sample doesn't see {N}, {NN}, {NNN},…

eff = |T| / all = |T| / (|T| + |N|)

But |N| unknown! Cannot determine efficiency!

Instead: need muons that are independent of trigger

("unbiased")

CSC09 • ROOT 133CSC08 • ROOT 133

Dice And Tag / Probe

Think of two dice

Want probability for "6" ("6" trigger efficiency)

Have only triggered data, all results have ≥1 "6"

{1,6}, {6,4}, {6,6}, {1,6},…

Solution: one die has 6, the other is unbiased!

Result: N, N, T, N,… will yield 1/6

CSC09 • ROOT 134CSC08 • ROOT 134

Muons And Tag / Probe

Solution: events with >1 muon

For each muon:

if exists other muon causing trigger:

this muon is unbiased!

Need trigger decision stored with data, as in:

"other muon caused the 15GeV muon trigger"

CSC09 • ROOT 135CSC08 • ROOT 135

Get Data From TTree

In TSelector::Init(tree) select branches and connect

tree with our member fMuons:

TTree::GetEntry(i) will load data from branch muons

into fMuons; can access data via fMuons

TTree* t = fChain->GetTree();

t->SetBranchStatus("*", 0); // all off

t->SetBranchStatus("muons*", 1); // but muons

t->SetBranchAddress("muons", &fMuons);

TMySelector

fMuons

TREE

muons

CSC09 • ROOT 136CSC08 • ROOT 136

TClonesArray

fMuons could be TClonesArray:

Print pT of the i-th muon:

TClonesArray* fMuons; // array of TMuon

class TMuon: public TObject {

public:

...

float Pt() const;

bool Mu15() const; // triggered

};

TMuon* muon = (TMuon*) fMuons->At(i);

cout << muon->Pt() << endl;

CSC09 • ROOT 137CSC08 • ROOT 137

Determine Efficiency

Take a random muon number i ("probe")

Check that another muon ("tag") has caused trigger,

then:

++ all[probe->pT()]

if probe muon has triggered:

++fired[probe->pT()]

efficiency[pT] = fired[pT] / all[pT]

Counting in pT-bins – use histogram

Division: binomial errors, check Wikipedia ;-)

CSC09 • ROOT 138CSC08 • ROOT 138

Result

Dividing probes / tags yields sampled efficiency

"Bumpy" because of low numbers of events

CSC09 • ROOT 139CSC08 • ROOT 139

Statistics, Or: We Know Better!

Sampling "known" distribution

Influenced by statistics

Not monotonic!

Missing data

CSC09 • ROOT 140CSC08 • ROOT 140

Fit

Combine our knowledge with statistics / data by

fitting a distribution:

1. Find appropriate

function with

parameters

2. Fit function to

distribution

CSC09 • ROOT 141CSC08 • ROOT 141

Fitting: The Math

Fitting = finding parameters such that

f(x) – hist(x)

minimal for all points x [or any similar measure]

Histogram with errors:

(f(x) – hist(x)) / err(x)

[or similar]

CSC09 • ROOT 142CSC08 • ROOT 142

Fitting: The Function

Finding the proper function involves:

• behavioral analysis:

starts at 0, goes to constant, monotonic,…

• physics interpretation:

"E proportional to sin^2(phi)"

• having a good knowledge of typical functions (see

TMath)

• finding a good compromise between

generalization ("constant") and precision

("polynomial 900th degree")

TF1* f = new TF1("myfit",

"(TMath::Erf((x-[0])/[1])/2.+0.5)*[2]"

0., 100.);

CSC09 • ROOT 143CSC08 • ROOT 143

Fitting: Parameters

Let's take "erf"

Free parameters:

[0]: x @ center of the slope

[1]: ½ width of the slope

[2]: maximum efficiency

Define fit function:

erf(x)/2.+0.5

[0]

[1]

[2]

CSC09 • ROOT 144CSC08 • ROOT 144

Fitting: Parameter Init

A must!

Sensible:

[0]

[1]

[2]

f->SetParameter(0, 35.);

f->SetParameter(1, 10.);

f->SetParameter(2, 1.);

CSC09 • ROOT 145CSC08 • ROOT 145

Fitting Result

Result of is printed, or use

[0]: 34.9

[1]: 12.1

[2]: 0.98

which means:

Get efficiency at pT=42GeV:

(TMath::Erf((x-34.9)/12.1)/2.+0.5)*0.98

f->GetParameter(0)

f->Eval(42.)

hist->Fit(f);

CSC09 • ROOT 146CSC08 • ROOT 146

Analysis: Recap

We started with the trigger problem – and ended

with an answer

You now know

• how to determine trigger efficiency from triggered

data

• why large samples are relevant

• what fitting is, how it works, when to do it, and

how it's done with ROOT.

Interactive Data Analysis with

PROOF

Bleeding Edge Physics with

Bleeding Edge Computing

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 148

Parallel Analysis: PROOF

Some numbers (from Alice experiment)

• 1.5 PB (1.5 * 1015) of raw data per year

• 360 TB of ESD+AOD* per year (20% of raw)

• One pass at 15 MB/s will take 9 months!

Parallelism is the only way out!

* ESD: Event Summary Data AOD: Analysis Object Data

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 149

PROOF
Huge amounts of events, hundreds of CPUs

Split the job into N events / CPU!

PROOF for TSelector based analysis:

• start analysis locally ("client"),

• PROOF distributes data and code,

• lets CPUs ("workers") run the analysis,

• collects and combines (merges) data,

• shows analysis results locally

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 150

Interactive!

• Start analysis

• Watch status while running

• Forgot to create a histogram?

– Interrupt the process

– Modify the selector

– Re-start the analysis

• More dynamic than a batch system

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 151

PROOF

PROOF farm

Storage

MASTER

commands,
scripts

list of output
objects

(histograms, …)

Client

Workers

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 152

Creating a session

To create a PROOF session from the ROOT

prompt, just type:

where "master" is the hostname of the master

machine on the PROOF cluster

TProof *p = TProof::Open("master")

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 153

PROOF Lite

commands,
scripts

list of output
objects

(histograms, …)

Client

Multi-core Desktop/Laptop

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 154

Creating a session

To create a PROOF Lite session from the

ROOT prompt, just type:

Then you can use your multicore computer as

a PROOF cluster!

TProof *p = TProof::Open("lite")

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 155

PROOF Analysis

• Example of local TChain analysis

PROOF

// Create a chain of trees

root[0] TChain *c = new TChain("myTree");

root[1] c->Add("http://www.any.where/file1.root");

root[2] c->Add("http://www.any.where/file2.root");

// MySelector is a TSelector

root[3] c->Process("MySelector.C+");

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 156

PROOF Analysis

• Same example with PROOF

// Create a chain of trees

root[0] TChain *c = new TChain("myTree");

root[1] c->Add("http://www.any.where/file1.root");

root[2] c->Add("http://www.any.where/file2.root");

// Start PROOF and tell the chain to use it

root[3] TProof::Open("lite");

root[4] c->SetProof();

// Process goes via PROOF

root[5] c->Process("MySelector.C+");

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 157

TSelector & PROOF

• Begin() called on the client only

• SlaveBegin() called on each worker: create

histograms

• SlaveTerminate() rarely used; post

processing of partial results before they are sent

to master and merged

• Terminate() runs on the client: save results,

display histograms, …

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 158

PROOF Analysis

SlaveBegin()
•Create histos, …

•Define output list

Process()

preselection analysis

output listSelector (worker)

loop over events

OK

event

branch

branch

leaf

leafleaf

branch

leafleaf

1 2 n last

n

Chain

branch

leaf leaf

Begin() Terminate()
•Final analysis

(fitting, saving …)

SlaveTerminate()
•Post-processing

Selector (client)

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 159

Output List (result of the query)
• Each worker has a partial output list

• Objects have to be added to the list in
TSelector::SlaveBegin() e.g.:

• At the end of processing the output list gets sent
to the master

• The Master merges objects and returns them to
the client. Merging is e.g. "Add()" for histograms,
appending for lists and trees

fHist = new TH1F("h1", "h1", 100, -3., 3.);

fOutput->Add(fHist);

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 160

Example

void MySelector::SlaveBegin(TTree *tree) {

// create histogram and add it to the output list

fHist = new TH1F("MyHist","MyHist",40,0.13,0.17);

fOutput->Add(fHist);

}

Bool_t MySelector::Process(Long64_t entry) {

my_branch->GetEntry(entry); // read branch

fHist->Fill(my_data); // fill the histogram

return kTRUE;

}

void MySelector::Terminate() {

fHist->Draw(); // display histogram

}

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 161

Results

At the end of Process(), the output list is accessible

via gProof->GetOutputList()

// Get the output list

root[0] TList *output = gProof->GetOutputList();

// Retrieve 2D histogram "h2"

root[1] TH2F *h2 = (TH2F*)output->FindObject("h2");

// Display the histogram

root[2] h2->Draw();

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 162

PROOF GUI Session

Starting a PROOF GUI session is trivial:

Opens GUI:

TProof::Open()

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 163

PROOF GUI Session – Results

Results accessible via TSessionViewer, too:

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 164

PROOF Documentation

Documentation available online at

http://root.cern.ch/drupal/content/proof

But of course you need a little cluster of CPUs

Like your multi-core

game console!

Introduction to ROOT

Axel Naumann, B. Bellenot - CERN
CSC09 • ROOT 165

Summary

You've learned:

• analyzing a TTree can be easy and efficient

• integral part of physics is counting

• ROOT provides histogramming and fitting

• > 1 CPU: use PROOF!

Looking forward to hearing from you:

• as a user (help! bug! suggestion!)

• and as a developer!

