
Computer Architecture and Performance Tuning

Understanding performance 
tuning

Andrzej Nowak

CERN openlab

CERN School of Computing 2009



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

2

Contents

1. Software performance tuning in general

2. Drilling down on performance figures

3. Perfmon2 as an example of a performance monitoring 
framework

4. Pfmon abilities and usage



 
In this talk, we focus on x86_64 processors (Intel Core 
and friends, AMD Athlon/Barcelona, etc)



Understanding Performance Tuning

3 Andrzej Nowak – CERN openlab

Performance tuning in general



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

4

Improving application performance



 

Question #1 – “Why is it SOOOOOO SLOW?”



 

Upgrading hardware


 

Removing common bottlenecks


 

New CPU, new hard drive, more memory


 

New, new, new…



 

Replacing whole software components


 

Replacing shared or external libraries



 

Improving existing code



 

Performance monitoring will give you the answer


 

It allows you to find the things you could change in your setup to 
improve performance



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

5

The free ride is over



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

6

Performance tuning



 
Why tune performance?


 
To get more speed and/or throughput…



 
…or to just keep up with the hardware or previous 
performance figures



 
Processor clock frequencies don’t go up anymore! No 
free meals since the millennium



 
Who needs performance tuning?



 
Who can do performance tuning?


 
Some bottlenecks are really easy to find…



 
… but performance tuning can be VERY tricky



 
Performance tuning is a lot like tuning a car… but you 
can do well with only one wrench and you don’t need all 
those expensive parts



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

7

Performance tuning levels - examples


 

Source code


 

Function calls


 

Excessive calls of a function or a group of functions


 

Blocking (i.e. I/O)



 

Loops within your program


 

Iterating over sparse/long structures



 

General characteristics of your program


 

Excessive memory allocations and copying, excessive calculations, 
checks, malformed conditions, etc.



 

Operating system


 

Running daemons, limits, co-existing processes, I/O, libraries



 

Hardware


 

Buy new, better hardware… not always possible, even if the money is 
there



 

Hardware counter level


 

Can relate to all of the above… if well implemented



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

8

Popular performance tuning software (1)



 

gprof


 

Flat profiles, call lists


 

Recompilation needed



 

oprofile


 

Flat profiles


 

Kernel driver needed



 

PIN, Valgrind


 

Instrumentation / Synthetic software CPU


 

Simulate such characteristics as cache misses and branch 
mispredictions, memory space usage, function call relationships



 

pfmon / perfmon2


 

Low level access to counters


 

No recompilation needed


 

Kernel patch needed today, but will be a part of the standard Linux 
kernel



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

9

Popular performance tuning software (2)



 

Intel products:


 

VTune, PTU – very powerful


 

Thread Checker, Thread Profiler – for multithreading


 

VTune in Linux requires a precompiled kernel module



 

HP Caliper



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

10

Platform tuning and debugging



 
Sometimes tuning the application is not enough, or not 
the right thing to do



 
Traditional tools: iostat, netstat, vmstat, pmap



 
More advanced tools: strace, ltrace, SystemTap, utrace



 
Great paper from IBM: “Linux Performance and Tuning 
Guidelines”


 
Quote: “IBM has embraced Linux”



 
http://www.redbooks.ibm.com/abstracts/redp4285.html



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

11

Common sense tips



 
Know your system



 
Look for bottlenecks and understand them


 
Use and understand the tools



 
Change one thing at a time


 
Will other components be able to keep up with this 
change?



 
Keep a good log of your activities and conditions



 
Performance tuning is an iterative process



Understanding Performance Tuning

12 Andrzej Nowak – CERN openlab

Common performance figures
And how to interpret them



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

13

Performance monitoring in hardware


 
Most modern CPUs are able to provide real-time 
statistics concerning executed instructions…



 
…via a Performance Monitoring Unit (PMU)



 
The PMU is spying in real time on your application! (and 
everything else that goes through the CPU)



 
Limited number of “sentries” (counters) available, but 
they are versatile



 
Recorded occurrences are called events



 
Typically on modern Intel CPUs:


 
2-4 universal counters (#0, #1 (#2, #3))



 
3 specialized counters (#16, #17, #18)



 
Additional 8 “uncore” counters



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

14

The Performance Monitoring Unit

RETIRED INSTRUCTIONS
(=successful & useful execution)

PERFORMANCE MONITORING UNIT
(PMU)

ADD

ADDADD

ADDMOV

MOVSUB

MOVMUL
3

MOV 3

READOUT:
ADD: 3      MOV: 3



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

15

Basic information about your program 
Recap



 
The amount of:


 
instructions executed



 
processor cycles spent on the program



 
transactions on the bus



 
The amount/percentage of:


 
memory loads and stores



 
floating point operations



 
vector operations (SIMD)



 
branch instructions



 
cache misses



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

16

Advanced information about your program



 
The amount and type of:


 
micro-ops executed



 
SIMD instructions executed



 
resource stalls within the CPU



 
Cache access characteristics


 
A rich set on Intel Core CPUs



 
Demand



 
Requests (missed / hit / total / exclusive or shared / store 
or read)



 
Lines modified / evicted / prefetched



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

17

Derived events



 
Too much information available?



 
Low level and fine grained events can be combined to 
produce ratios (so called “derived events”)



 
Extensive information:


 
Intel Manual 248966-016 “Intel 64 and IA-32 
Architectures Optimization Reference Manual”



 
AMD CPU-specific manuals, i.e. #32559 “BIOS and 
Kernel Developer’s Guide for AMD NPT Family 0Fh 
Processors”



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

18

A word for the future

Mapping performance monitoring data onto your source 
code and environment requires care and experience



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

19

The CPI figure and its meaning


 
CPI – cycles per instruction


 
Thanks to multiple execution ports (superscalar 
architecture), more than one instruction can be 
executed per cycle



 
In Intel Core 2 CPUs, CPI can go as low as 0.25 
= 4 instructions per cycle



 
CPI above 1.0 is not impressive



 
The ratio of the number of CPU cycles spent on a 
program to the number of program instructions 
retired by the CPU



 
CYCLES / INSTRUCTIONS



 
This figure illustrates the CPU usage efficiency, 
but, like all ratios, can be tricky to interpret



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

20

Cache misses


 

If the requested item is not in the polled 
cache, the next level has to be consulted 
(cache miss)



 

Significant impact on performance



 

Formula:
LAST LEVEL CACHE MISSES / LAST 

LEVEL CACHE REFERENCES



 

Tips:


 

A L2 cache hit ratio below 95% is 
considered to be catastrophic! (=5% miss)



 

Usually the figure should be above 99%


 

The overall cache miss rate might be low 
(misses / total instructions), but the 
resource stalls figure might be high; 
always check the cache miss percentage

Data request

L1

L2

L3



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

21

Cache miss demo

Assuming 20% of the instructions are loads and 3% of L2 misses…

~35% cycles wasted, program runs ~60% slower!

} profiled
section

50 cycles of work (incl. L1 consultations/misses)

50 cycles of work with one L2 cache miss

50 cycles of no work



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

22

Cache miss impact graph

1% 2% 3% 4% 5% 10% 20%

5%

20%

50%

0%

200%

400%

600%

800%

1000%

1200%

%
 o

f o
rig

in
al

 ru
nt

im
e

L2 cache misses (%)

Memory loads 
(% of cycles)

L2 Cache miss impact (simplified)



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

23

False sharing

Thread 1

tab[0]++;

tab[0]++;

Thread 2

tab[1]++;

tab[1]++;

L2 cache

int global_tab[2];

MACHINE_NUKES:MEM_ORDER



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

24

Branch prediction



 
Branch prediction is a process inside the CPU which 
determines whether a conditional branch in the program 
is anticipated by the hardware to be taken or not



 
Typically: prediction based on history



 
The effectiveness of this hardware mechanism heavily 
depends on the way the software is written



 
The penalty for a mispredicted branch is usually severe 
(the pipelines inside the CPU get flushed and execution 
stalls for a while)



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

25

Branch prediction ratios


 
The percentage of branch instructions

BRANCH INSTRUCTIONS / ALL INSTRUCTIONS



 
The percentage of mispredicted branches

MISPREDICTED BRANCHES / BRANCH INSTRUCTIONS


 
The number of correctly predicted branches is typically 
very high (80%+), up to 99%



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

26

Floating point operations



 
Often a significant portion of work of an application



 
May be accelerated using SSE (SIMD)



 
Related events on the Intel Core microarchitecture:


 
“traditional” x87 FP ops



 
Packed/Scalar single computational SIMD



 
Packed/Scalar double computational SIMD



 
SIMD micro-ops



 
Non computational SIMD instructions can also be 
counted



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

27

Relating to code (1)



 
CPI problems


 
Doing too many operations?



 
Large latency instructions in the code?



 
Using vector instructions?



 
Cache misses, false sharing


 
Memory access characteristics



 
Data structures and their layout



 
Does your program fit in the cache?



 
Help the hardware prefetcher!



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

28

Relating to code (2)



 
Many mispredicted branches


 
Is there a way to restructure the code?



 
Is there a way to make the “ifs” more predictable?



 
Rearranging conditions and loops



 
Too many jumps / function calls?



 
Excessive floating point operations


 
Does everything need to be calculated?



 
Could some results be reused?



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

29

Relating to code (3)


 
Performance optimization is a time-consuming task, so 
design your program with performance in mind!


 
What hardware will it run on?



 
What architecture will it run on?



 
Is it 64-bit compatible?



 
Will it use vector computing? What width?



 
Will it use multiple cores?



 
Will it use multiple sockets?



 
Will it use multiple nodes?



 
What if any of the above changes? Is it scalable?



 
Scalable designs and high performance are friends



Understanding Performance Tuning

30 Andrzej Nowak – CERN openlab

Perfmon2 & pfmon
A real-world performance monitoring framework example
… and some hints for the exercises



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

31

Perfmon2 architecture



 

We use it as an example of 
a robust performance 
monitoring framework for 
Linux



 

perfmon2 – kernel part



 

libpfm – userspace 
interface for perfmon



 

pfmon – “example” 
userspace application, 
perfmon2 client



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

32

Perfmon2



 
Resides in the kernel


 
Currently available as a kernel patch



 
Very basic functionality: basically read and write



 
Candidate to be merged into the Linux kernel mainline


 
No guarantees – it might never be merged



 
Support for numerous architectures:

x86, x86-64, ia64, PowerPC, Cell / PS3, MIPS, SPARC



 
Supported in Red Hat since a long time (which is the 
base for Scientific Linux)



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

33

Pfmon overview



 
Console based interface to libpfm/perfmon2



 
Provides convenient access to performance counters



 
Wide range of functionality:


 
Counting events



 
Sampling in regular intervals



 
Flat profile



 
System wide mode



 
Triggers



 
Different data readout “plug-ins” (modules) available



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

34

Events



 
Many events in the CPU can be monitored


 
A comprehensive list is dependent on the CPU and can be 
extracted from the manufacturer’s manuals



 
On some CPUs (i.e. Intel Core), some events have bit- 
masks which limit their range, called “unit masks” or 
“umasks”


 
Example: instructions retired: all / only loads / only stores



 
In pfmon:


 
Getting a list of supported events: pfmon –l



 
Getting information about an event: pfmon –i eventname



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

35

Basic modes



 

Counting


 

Example: How many instructions did my application execute?


 

Example: How many times did my application have to stop and wait 
for data from the memory?



 

Sampling


 

Reporting results in “regular” intervals


 

Example: every 100’000 cycles record the number of SSE operations 
since the last sample



 

Profiling


 

Example: how many cycles are spent in which function?


 

Example: how many cache misses occur in which function?


 

Example: which code address is the one most frequently visited? 
(looking for hotspots)



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

36

Counting example

1. Specify interesting events
i.e. INSTRUCTIONS_RETIRED

2. Build the command line
pfmon –e INSTRUCTIONS_RETIRED ls /xyz

3. Run and obtain results
181992 INSTRUCTIONS_RETIRED

Step numbers don’t
correspond to the list above



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

37

Multiplexing


 

Multiplexing allows monitoring of more events than there are 
available counters



 

Specify sets of events by repeating the –e switch



 

Enable multiplexing by using --switch-timeout=NUM



 

Pfmon will automatically switch the monitored set on the PMU after 
the given timeout (in ms)



 

Specify separate sets by repeating the –e switch



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

38

Sampling example

1. Specify interesting events and the reference event
i.e. UNHALTED_CORE_CYCLES (ref), INSTRUCTIONS_RETIRED

2. Build the command line
pfmon -e UNHALTED_CORE_CYCLES,INSTRUCTIONS_RETIRED --long- 

smpl-periods=26670 --smpl-module=compact /bin/ls

3. Run and obtain results (next page)

Step numbers don’t
correspond to the list above



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

39

Profiling example
1. Specify the reference event

i.e. UNHALTED_CORE_CYCLES

2. Build the command line
pfmon -e UNHALTED_CORE_CYCLES --long-smpl-periods=10000 --resolve- 

addresses --smpl-per-function /bin/ls

3. Run and obtain results (next page)

Step numbers don’t
correspond to  the list above



Understanding Performance Tuning

40 Andrzej Nowak – CERN openlab

More advanced performance monitoring 
concepts



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

41

Following execution and threading chains



 

You might need to monitor 
across numerous types of 
execution splits


 

pthreads


 

forks


 

exec calls



 

Pfmon options:

--follow-all

--follow-fork

--follow-pthread

--follow-exec

Child
process (2)

Parent
Process (1)

Child
process (3)

Child
process 4

pfmon

Result1

Monitored domain

Result2

Result3 Result4



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

42

Results aggregation



 

Results from multiple 
threads of execution can 
be merged into one



 

Pfmon option: 

--aggregate-results



 

Collects results from all 
monitored executables



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

43

Triggers



 

A concept which enables 
monitoring to start or stop 
automatically



 

Trigger types:


 

Code


 

Data



 

A symbol name…


 

i.e. “foobar”



 

…or an address


 

i.e. 0x8103b91e

!

 

Limitation: in pfmon symbol names are 
available only within the first binary

Code Data



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

44

System wide monitoring



 

In system wide mode all processes are monitored on a specific set 
of CPUs


 

In pfmon root access is not needed


 

Pfmon switch: --system-wide



 

Useful pfmon options:


 

Timeout (-t, results reported in regular intervals)


 

Kernel mode (explained on the next slide)


 

Aggregation (--aggregate-results)


 

Multiplexing (--switch-timeout)



 

Both counting and profiling are possible



 

Used at CERN in a pilot project w/ pfmon in multiplexing mode


 

Running in the background on some batch machines



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

45

Monitoring levels



 
4 privilege levels:


 
Userlevel (3) – default (-u)



 
Kernel level (0) – useful for kernel debugging in system 
wide mode (-k)



 
Other levels: 1, 2

cnt %self  %cum            code addr symbol

448 35.50% 35.50% 0xffffffff8103b91e __do_softirq+0x45<kernel> (idle,0)

278 22.03% 57.53% 0xffffffff8100a47b mwait_idle+0x3f<kernel> (idle,0)

77  6.10% 63.63% 0xffffffff8127e229 _spin_unlock_irq+0x9<kernel> (idle,0)

Kernel level monitoring example in pfmon (system wide):



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

46

Q & A



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

47

BACKUP



 
Resources:


 

http://cern.ch/openlab


 

http://sf.net/projects/perfmon2


 

http://perfmon2.sourceforge.net (documentation)


 

http://perfmon2.sourceforge.net/pfmon_usersguide.html


 

http://www.intel.com (manuals)


 

http://cern.ch/andrzej.nowak (gpfmon)


 

http://ltp.sourceforge.net/tooltable.php (Linux Test Tools)



 

Intel Software Products:


 

VTune, Thread checker, Thread Profiler: http://intel.com/software


 

PTU: http://softwarecommunity.intel.com/articles/eng/1437.htm



 

HP Caliper


 

http://h21007.www2.hp.com/portal/site/dspp

http://intel.com/software
http://softwarecommunity.intel.com/articles/eng/1437.htm


Andrzej Nowak – CERN openlab

Understanding Performance Tuning

48

BACKUP - enabling different modes in 
pfmon



 
Different modes are triggered by the presence of certain 
command line switches



 
Counting

default mode



 
Sampling

--smpl-module=compact, --smpl-module=detailed



 
Profiling

--long-smpl-period=NUM



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

49

BACKUP – basic pfmon options



 
Event specification with umasks

–e INST_RETIRED:STORES:LOADS



 
Follow all execution splits

–-follow-all



 
System wide mode

–-system-wide



 
Displaying a header with useful information

–-with-header



 
Aggregating results

–-aggregate-results



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

50

BACKUP – output formatting



 
EU counter format (--eu-c)

1.567.123 instead of 1567123



 
US counter format (--us-c)

1,567,123 instead of 1567123



 
Hex counter format (--hex-c)

0xdeadbeef instead of 3735928559



 
Show execution time (--show-time)

real 0h00m00.252s user 0h00m00.000s sys 0h00m00.000s



 
Suppress monitored command output (--no-cmd-output)



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

51

BACKUP – advanced pfmon options



 
Specifying triggers

–-trigger-code-start-address=...
–-trigger-code-stop-address=...
–-trigger-data-start-address=...
–-trigger-data-start-address=...



 
Multiplexing

–e EVENT1,EVENT2,… -e EVENTa,EVENTb,… --switch- 
timeout=NUM



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

52

BACKUP – pfmon sampling/profiling 
options



 
Specifying sampling periods (the unit is reference event 
occurrences)

–-long-smpl-period=NUM
–-short-smpl-period=NUM



 
Resetting counters back to zero when sampling

–-reset-non-smpl-periods



 
Limit the sampling entries buffer (useful!)

–-smpl-entries=NUM



 
Translating addresses into symbol names

–-resolve-addresses



 
Show results per function rather than per address

–-smpl-per-function



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

53

BACKUP - example sampling results (pfmon)

# description of columns:
# column  1: entry number
# column  2: process id
# column  3: thread id
# column  4: cpu number
# column  5: instruction pointer
# column  6: unique timestamp
# column  7: overflowed PMD index
# column  8: event set
# column  9: initial value of overflowed PMD (sampling period)
# followed by optional sampled PMD values in command line order

1   2     3   4      5                6          7 8    9     10
0 32442 32442 2 0x3061230d6a 0x0004d5f49c2a8e57 17 0 -26670 0x556 
1 32442 32442 2 0x3061292980 0x0004d5f49c2b4851 17 0 -26670 0xd66 
2 32442 32442 2 0x3061226363 0x0004d5f49c2c04dc 17 0 -26670 0x1aaa 
3 32442 32442 2 0x3061010159 0x0004d5f49c2c39cb 17 0 -26670 0x6942 
4 32442 32442 2 0x306126b5f0 0x0004d5f49c2c9a1c 17 0 -26670 0x171c 



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

54

BACKUP: gpfmon – a graphical interface for pfmon



Andrzej Nowak – CERN openlab

Understanding Performance Tuning

55

BACKUP - example profiling results (pfmon)

cnt %self   %cum addr symbol
80 20.83% 20.83% 0x… do_lookup_x</lib64/ld-2.3.4.so>

53 13.80% 34.64% 0x… do_page_fault<kernel>
32  8.33% 42.97% 0x… _init</bin/ls>
20  5.21% 48.18% 0x… __GI_strlen</lib64/tls/libc-2.3.4.so>
19  4.95% 53.12% 0x… _int_malloc</lib64/tls/libc-2.3.4.so>
18  4.69% 57.81% 0x… strcmp</lib64/ld-2.3.4.so>
17  4.43% 62.24% 0x… __GI___strcoll_l</lib64/tls/libc-2.3.4.so>
13  3.39% 65.62% 0x… __GI_memcpy</lib64/tls/libc-2.3.4.so>


	Computer Architecture and Performance Tuning
	Contents
	Performance tuning in general
	Improving application performance
	The free ride is over
	Performance tuning
	Performance tuning levels - examples
	Popular performance tuning software (1)
	Popular performance tuning software (2)
	Platform tuning and debugging
	Common sense tips
	Common performance figures
	Performance monitoring in hardware
	The Performance Monitoring Unit
	Basic information about your program �Recap
	Advanced information about your program
	Derived events
	A word for the future
	The CPI figure and its meaning
	Cache misses
	Cache miss demo
	Cache miss impact graph
	False sharing
	Branch prediction
	Branch prediction ratios
	Floating point operations
	Relating to code (1)
	Relating to code (2)
	Relating to code (3)
	Perfmon2 & pfmon
	Perfmon2 architecture
	Perfmon2
	Pfmon overview
	Events
	Basic modes
	Counting example
	Multiplexing
	Sampling example
	Profiling example
	More advanced performance monitoring concepts
	Following execution and threading chains
	Results aggregation
	Triggers
	System wide monitoring
	Monitoring levels
	Slide Number 46
	BACKUP
	BACKUP - enabling different modes in pfmon
	BACKUP – basic pfmon options
	BACKUP – output formatting
	BACKUP – advanced pfmon options
	BACKUP – pfmon sampling/profiling options
	BACKUP - example sampling results (pfmon)
	BACKUP: gpfmon – a graphical interface for pfmon
	BACKUP - example profiling results (pfmon)

