
Bob Jacobsen, UC Berkeley

Tools and Techniques

1

Large Projects & Software Engineering

With thanks to Bob Jones for ideas and illustrations

Bob Jacobsen, UC Berkeley

Tools and Techniques

2

Why spend so much time talking about ñSoftware Processò?

How do you create software?

ÅLots of parts: Writing, documenting, testing, sharing, fixing, é.

ÅUsually done by lots of people

ñProcessò is just a big word for how they do this

ÅExists whether you talk about it or not

ñWhy do we have to formalize this?ò

Bob Jacobsen, UC Berkeley

Tools and Techniques

3

Scale and process:
Building a dog house

Å Can be built by one person

Å Minimal plans

Å Simple process

Å Simple tools

Å Little risk

Rational Software Corporation

Bob Jacobsen, UC Berkeley

Tools and Techniques

4

Scale and process:
Building a family house

Å Built by a team

Å Models

Å Simple plans, evolving to

blueprints

Å Well-defined process

Å Architect

Å Planning permission

Å Time-tabling and Scheduling

Å ...

Å Power tools

Å Considerable risk

Rational Software Corporation

Bob Jacobsen, UC Berkeley

Tools and Techniques

5

Scale and process:
Building a skyscraper

Å Built by many companies

Å Modeling
Å Simple plans, evolving to

blueprints

Å Scale models

Å Engineering plans

Å Well-defined process
Å Architectural team

Å Political planning

Å Infrastructure planning

Å Time-tabling and scheduling

Å Selling space

Å Heavy equipment

Å Major risks
Rational Software Corporation

Bob Jacobsen, UC Berkeley

Tools and Techniques

6

Why do software projects fail?

Even if you do produce the code it does not guarantee that the
project will be a success

There are many other factors (both internal and external) that can
affect the success of a project...

Bob Jacobsen, UC Berkeley

Tools and Techniques

7

Communication explosion

More people means more time communicating which means more
misunderstandings and less time for the software

Bob Jacobsen, UC Berkeley

Tools and Techniques

8

Why software projects fail...

Undefined responsibilities

ñHey... this could be the chiefò

Gary Larson

Too little responsibility can cause
a lot of confusion & embarrassing
mistakes

Bob Jacobsen, UC Berkeley

Tools and Techniques

9

Why software projects fail...

Missed user requirements

Gary Larson

Weõre not smart enough to
know everything people want
the system to do; we need
to ask!

Bob Jacobsen, UC Berkeley

Tools and Techniques

10

Why software projects fail...

Badly defined interfaces

Fumbling for his recline
button, Bob unwittingly instigates a
disaster

Gary Larson

Spend the time to design
and test good interfaces

Bob Jacobsen, UC Berkeley

Tools and Techniques

11

Why software projects fail...

Creeping featurism

ñNo, noé Not this one. Too many bells
and whistlesò

Gary Larson

Focus on what the users are
asking for, not what the
developers think is cool

Bob Jacobsen, UC Berkeley

Tools and Techniques

12

Why software projects fail...

Unrealistic goals

ñItôs time we face reality, my friendsé
Weôre not exactly rocket scientistsò

Gary Larson

Analysis and design would make it
clear the project is not feasible

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 1

13

Design

System architecture

Individual project

Specific task

ñDesignò is how you think about what youôre doing

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 1

14

Design Levels: an analogy

Architectural design

Mechanisticdesign

Detaileddesign

The Greasy

Spoon

Bill Watterson

Imagine the project is not to build software but to go on an

inter-planetary journey...

decide which planet to fly to

select the flight path

choose where to have lunch

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 1

15

Architectural design

Goals

ÅCapture major interfaces between
subsystems and packages early

ÅBe able to visualize and reason
about the design in a common
notation

ÅBe able to break work into smaller
pieces that can be developed by
different teams (concurrently)

ÅAcquire an understanding of non-
functional constraints

programming languages and
operating systems

technologies: distribution,
concurrency, database, GUIs

component reuse

