
Bob Jacobsen, UC Berkeley

Tools and Techniques

1

Large Projects & Software Engineering

With thanks to Bob Jones for ideas and illustrations

Bob Jacobsen, UC Berkeley

Tools and Techniques

2

Why spend so much time talking about “Software Process”?

How do you create software?

• Lots of parts: Writing, documenting, testing, sharing, fixing, ….

• Usually done by lots of people

“Process” is just a big word for how they do this

• Exists whether you talk about it or not

“Why do we have to formalize this?”

Bob Jacobsen, UC Berkeley

Tools and Techniques

3

Scale and process:
Building a dog house

• Can be built by one person

• Minimal plans

• Simple process

• Simple tools

• Little risk

Rational Software Corporation

Bob Jacobsen, UC Berkeley

Tools and Techniques

4

Scale and process:
Building a family house

• Built by a team

• Models

• Simple plans, evolving to

blueprints

• Well-defined process

• Architect

• Planning permission

• Time-tabling and Scheduling

• ...

• Power tools

• Considerable risk

Rational Software Corporation

Bob Jacobsen, UC Berkeley

Tools and Techniques

5

Scale and process:
Building a skyscraper

• Built by many companies

• Modeling
• Simple plans, evolving to

blueprints

• Scale models

• Engineering plans

• Well-defined process
• Architectural team

• Political planning

• Infrastructure planning

• Time-tabling and scheduling

• Selling space

• Heavy equipment

• Major risks
Rational Software Corporation

Bob Jacobsen, UC Berkeley

Tools and Techniques

6

Why do software projects fail?

Even if you do produce the code it does not guarantee that the
project will be a success

There are many other factors (both internal and external) that can
affect the success of a project...

Bob Jacobsen, UC Berkeley

Tools and Techniques

7

Communication explosion

More people means more time communicating which means more
misunderstandings and less time for the software

Bob Jacobsen, UC Berkeley

Tools and Techniques

8

Why software projects fail...

Undefined responsibilities

“Hey... this could be the chief”

Gary Larson

Too little responsibility can cause
a lot of confusion & embarrassing
mistakes

Bob Jacobsen, UC Berkeley

Tools and Techniques

9

Why software projects fail...

Missed user requirements

Gary Larson

We’re not smart enough to
know everything people want
the system to do; we need
to ask!

Bob Jacobsen, UC Berkeley

Tools and Techniques

10

Why software projects fail...

Badly defined interfaces

Fumbling for his recline
button, Bob unwittingly instigates a
disaster

Gary Larson

Spend the time to design
and test good interfaces

Bob Jacobsen, UC Berkeley

Tools and Techniques

11

Why software projects fail...

Creeping featurism

“No, no… Not this one. Too many bells
and whistles”

Gary Larson

Focus on what the users are
asking for, not what the
developers think is cool

Bob Jacobsen, UC Berkeley

Tools and Techniques

12

Why software projects fail...

Unrealistic goals

“It’s time we face reality, my friends…
We’re not exactly rocket scientists”

Gary Larson

Analysis and design would make it
clear the project is not feasible

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 1

13

Design

System architecture

Individual project

Specific task

“Design” is how you think about what you’re doing

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 1

14

Design Levels: an analogy

Architectural design

Mechanistic design

Detailed design

The Greasy

Spoon

Bill Watterson

Imagine the project is not to build software but to go on an

inter-planetary journey...

decide which planet to fly to

select the flight path

choose where to have lunch

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 1

15

Architectural design

Goals

• Capture major interfaces between
subsystems and packages early

• Be able to visualize and reason
about the design in a common
notation

• Be able to break work into smaller
pieces that can be developed by
different teams (concurrently)

• Acquire an understanding of non-
functional constraints

programming languages and
operating systems

technologies: distribution,
concurrency, database, GUIs

component reuse

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 1

16

Architectural Design Qualities

A well designed architecture has certain qualities:

• layered subsystems

• low inter-subsystem coupling

• robust, resilient and scalable

• high degree of reusable components

• clear interfaces

• driven by the most important and risky use cases

•EASY TO UNDERSTAND

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 1

17

Mechanistic Design

Specify the details of inter-object collaboration mechanisms

•Determine the structure of classes and their associations

Class diagram

•Determine the behavior of classes

Interaction diagrams

Collaboration

Sequence

•Target: The people working together

Over time & space

You can’t do everything!

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 1

18

Class Diagram

Describes the types of objects in
the system and the various kinds of
static relationships that exist
between them

Rational Software Corporation

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 1

19

Example Class Diagrams

There are many possible designs

Goal: Allow you to reason about
the strengths and weaknesses of a
particular choice

Communicate through time and
space

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

20

Design

Specify the details of inter-object collaboration mechanisms

•Determine the structure of classes and their associations

Relationships of access, ownership, authority

•Determine the behavior of classes

E.g. Interactions with other objects

Collaboration

Sequence

How do we record and

communicate this?

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

21

UML Diagrams

Use Case
DiagramsUse Case

DiagramsUse Case
Diagrams

Scenario
DiagramsScenario

DiagramsCollaboration
Diagrams

State
DiagramsState

DiagramsComponent
Diagrams

Component
DiagramsComponent

DiagramsDeployment
Diagrams

State
DiagramsState

DiagramsObject
Diagrams

Scenario
DiagramsScenario

DiagramsStatechart
Diagrams

Use Case
DiagramsUse Case

DiagramsSequence
Diagrams

State
DiagramsState

DiagramsClass
Diagrams

Activity
Diagrams

Models

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

22

Class Diagram

Describes the types of objects in
the system and the various kinds of
static relationships that exist
between them

Rational Software Corporation

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

23

Example Class Diagrams

LHC++/Anaphe:

Event structure as defined in DDL
file for populateDb exercise

ROOT:

Histogram classes

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

24

Sequence Diagram

Captures dynamic behavior (time-oriented)

• Model flow of control

• Illustrate typical scenarios

Rational Software Corporation

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

25

Example Sequence diagram

LHC++/Anaphe: scenario for createTag exercise with 1 event and 2 tracks

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

26

Collaboration Diagram

Captures dynamic behavior (message-oriented)

• Model flow of control

• Illustrate coordination of object structure and control

Rational Software Corporation

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

27

Example Collaboration Diagram

LHC++/Anaphe: messages between classes for CreateTag exercise

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

28

“So is field theory”

•Which is physicist-speak for “I don‟t get it either, so I‟ll call it „trivial‟”

“It’s just notation”

•The notation is complicated because it‟s representing a complicated
thing

“These are complicated”

“Yes, and how do we know they’re right?”

• That’s the key question.

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

29

Example: Linear Algebra

Physics code contains lots of linear algebra: A*X+B

• Where A, X and B are more than just numbers: vectors, matrices

Complicated operations:

• Only some operations are OK

Can’t add, dot-product vectors of different sizes

Dimensions must agree for vector-matrix multiplication

• But within those rules, users don’t want to care about
restrictions

A measurement might be a 1D, 2D or 3D constraint, but same formula
to use it

What are the trade-offs for a “linear algebra library”? For users?

• Time & space of the linear algebra code

• Ease of use

• Time & space of the using code

• Correctness of answers

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

30

Implementation: Vector3, Matrix32

class Vector3 {

float values[3];

float dotWith(Vector3 v) {...}

Vector3 add(Vector3 v) {...}

...

}

class Matrix33 {

float values[3,3];

Vector3 multiply(Vector3 v) {...}

Matrix33 add(Matrix33 v) {...}

...

}

Does the job

•Once you‟ve created one of these, you can just string together
operations

•Code to implement each method is quite simple

•Almost can‟t resist operator overloading to A*X+B

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

31

Does the job

• Once you’ve created one of these, you can just string together
operations

• Code to implement each method is quite simple

But needs lots and lots and lots of methods

• Vector3 can multiply Matrix32, Matrix33, Matrix34, Matrix35,
Matrix36, ...

• Similar numbers for matrix multiplication

• Large amount of duplicated code to make a general library

Can we get smarter with inheritance?

• Matrix class, with Matrix32, Matrix33, Matrix34 as subclasses

• Methods then take and return Matrix objects

Problem: Implementation of methods still needs to know

• Methods require size information, access to individual elements

Different size internal arrays need to be accessed, compiler wants to
know

• Lots of work to get those

• And methods still need to call “new Matrix32” vs “new
Matrix33”, etc

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

32

General Implementation: Vector, Matrix

class Vector {

int dim;

float *values[dim];

float dotWith(Vector v) {...}

Vector add(Vector v) {...}

...

}

class Matrix {

int dim1, dim2;

float *values[dim1, dim2];

Vector multiply(Vector v) {...}

Matrix add(Matrix v) {...}

...

}

Again does the job

•Once you‟ve created one of these, you can just string together
operations

•Code to implement each method is almost as simple

• “Just has to” keep track of index dimensions, and do one
indirection

• Return types are fixed, so only need to handle one “new”

Strong, general approach for a library, but at what cost?

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

33

Costs:

Type checking at runtime, not compile time

Memory allocation from heap (“new”) always, not stack or static

Extra indirection to access any element

...

It’s an experimental question whether these matter!

Bob Jacobsen, UC Berkeley

Tools and Methods Lecture 3

34

Tradeoffs:

Direct structure

Minimal memory use:

Compiler handles limits, allocates
data as part of object

Fast allocate/deallocate:

Vector[5] is just one long allocation &
5 ctor calls

More complicated user code:

You have to explicitly specify classes
for intermediate variables, etc; can‟t
pass common super-types

Indirect structure

More memory needed:

Virtual table pointer

Length values

Pointer to memory

Allocate/deallocate is more
work:

Vector[5] is one allocation, 5 ctor calls,
then 5 more allocations

User code simple, general:

All objects are same basic type

Code can be written without reference
to specific sizes

When there’s no perfect answer, you’re in the realm of tradeoffs

Start with the general, and replace with specific when needed?

