
Bob Jacobsen - UC Berkeley

Tools and Techniques

1

Software engineering

Bob Jacobsen - UC Berkeley

Tools and Techniques

2

Exercises
1) Demonstration of a test framework

2) Practice debugging using a test framework

3) Demonstration of a profiling tool

4) Practice tuning a small application

If you want experience with CVS, we’ve got optional exercises:

A) Simple use of CVSB) More advanced CVS,
showing how conflicts are handled

If you want some more practice with performance tuning, we've got
two optional exercises:

5) Understanding, updating and tuning a larger application

6) Tuning a sample RSA encryption/decryption application

7) Simple release activities with CMT

8) Releasing code changes with CMT

9) Managing configuration conflicts

10) Project - Joint Development

Instruction sheets are available via web browser at

file:/home/jake/CSC/index.html

Bob Jacobsen - UC Berkeley

Tools and Techniques

3

Exercise 1 - testing “SumPrimes”

Lesson 1: Its not easy to understand somebody else‟s code

• Assumptions, reasons are hard to see

“Is one a prime number?”

Test defines the behavior!! assertTrue(sumPrimes(1)==1)

Lesson 2: Better structure would have helped

• Separate “isPrime” from counting loop to allow separate
understanding

• Make the algorithm for checking prime even clearer

int sumPrimes(int len) {

int sum = 0;

for (int i=1; i < len; i++) { // loop over possible primes

bool prime = true;

for (int j=1; j < 10; j++) { // loop over possible factors

if (i % j == 0) prime = false;

}

if (prime) sum += i;

}

return sum;

}

Its OK for a prime number

to be divisible by one

If you divide a number by

itself, the remainder is zero

Should “len” be

included or not?

Bob Jacobsen - UC Berkeley

Tools and Techniques

4

Exercise 2 - isCube, isSquare, et al

New bugs:

• Just introduced

• Newly discovered in another area

• Newly understood to be bugs

Too many possibilities, how do you

keep track?

This is why large projects get harder

as you go along!

Bob Jacobsen - UC Berkeley

Tools and Techniques

5

The life time of HEP software

Users like stable and maintained systems

Vote with their feet

It takes time to develop a new system

• Geant3 6+ yrs 3 people 300 KLOCs

• PAW 6+ yrs 5 people 300

• Zebra 4+ yrs 2 people 100

• ROOT 5* yrs 3 people 630

• Working system after 1 year.

Real work is after that !!

Software is a long-term commitment

R. Brun

Many releases of the software are needed over its lifetime

to fix bugs, add new features, support new platforms etc

Bob Jacobsen - UC Berkeley

Tools and Techniques

6

How do we cope?

We try to find a way of working that leads to success

• We create a “process” for building systems

• We devise methods of communicating and record keeping: “models”

• We use the best tools & methods we can lay our hands on

And we engage in denial:

Bob Jacobsen - UC Berkeley

Tools and Techniques

7

Can‟t technology save us?

We‟ve built a series of ever-larger tools to handle large code projects:

CVS for controlling and versioning code

SRT for building “releases” of systems

CMT for “configuration management”

But we struggle against three forces:

•We‟re always building bigger & more difficult systems

•We‟re always building bigger & more difficult collaborations

•And we‟re the same old people

Net effect: We‟re always pushing the boundary of what we can do

Stupidity got us into this mess; why can‟t it get us out? - Will Rogers

Bob Jacobsen - UC Berkeley

Tools and Techniques

8

CVS Source Code Management

Maintains a repository of text files

• Allows users to check in and check out changed text

• Old code remains available

Each checked-in change defines a new revision

You can retrieve, ask for differences with any of them

• Revisions can be tagged for easy reference

Anybody can get a specific set of source code file versions

Collaboration can use “tags” to control software consistency

Big advantage: checkout is not exclusive

• More than one developer can have the same file checked out

• Developers can control their own use of the code for read, write

• Changes can come from multiple sources

• CVS handles (most) of the conflict resolution

Key tool for large collaborations!

• But can also be an important tool for individuals

Bob Jacobsen - UC Berkeley

Tools and Techniques

9

Why isn‟t CVS enough?

CVS let‟s me “check out” complete source code. Then just compile!

• Works great for small projects

• But runs into several levels of scaling problems

Want to attach to external code

• We don‟t write everything (though tempted)

• Sometimes don‟t get source for external code

• Need some way to connect to specific external libraries:

Both specific product, and a specific version of that product

Want to separate code into multiple parts

• So people/institutions can take responsibility for parts

• But software has cross-connections

• Need structure that works for both

And still need to be able to build the code

Bob Jacobsen - UC Berkeley

Tools and Techniques

10

Handling complicated builds

Multiple “packages” require cross connects while compiling

• Typing the compile command gets boring fast
g++ -c -I"/afs/cern.ch/user/s/scherzer/public/1001/InstallArea/include/PixelDigitization"
-I"/afs/cern.ch/user/s/scherzer/public/1001/InstallArea/include/SiDigitization"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/InDetSimEvent"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/HitManagement"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/TestTools"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/TestPolicy"
-I"/afs/cern.ch/atlas/offline/external/Gaudi/0.14.6.14-pool201/GaudiKernel/v15r7p4"
-I"/afs/cern.ch/sw/lcg/external/clhep/1.8.2.1-atlas/slc3_ia32_gcc323/include"
-I"/afs/cern.ch/sw/lcg/external/Boost/1.31.0/slc3_ia32_gcc323/include/boost-1_31"
-I"/afs/cern.ch/sw/lcg/external/cernlib/2003/slc3_ia32_gcc323/include" -O2 -pthread
-D_GNU_SOURCE -pthread -pipe -ansi -pedantic -W -Wall -Wwrite-strings -Woverloaded-virtual
-Wno-long-long -fPIC -march=pentium -mcpu=pentium -pedantic-errors -ftemplate-depth-25
-ftemplate-depth-99 -DHAVE_ITERATOR -DHAVE_NEW_IOSTREAMS -D_GNU_SOURCE
-o PixelDigitization.o -DEFL_DEBUG=0 -DHAVE_PRETTY_FUNCTION -DHAVE_LONG_LONG
-DHAVE_BOOL -DHAVE_EXPLICIT -DHAVE_MUTABLE -DHAVE_SIGNED -DHAVE_TYPENAME
-DHAVE_NEW_STYLE_CASTS -DHAVE_DYNAMIC_CAST -DHAVE_TYPEID
-DHAVE_ANSI_TEMPLATE_INSTANTIATION -DHAVE_CXX_STDC_HEADERS ‟
-DPACKAGE_VERSION="PixelDigitization-00-05-16"' -DNDEBUG -DCLHEP_MAX_MIN_DEFINED
-DCLHEP_ABS_DEFINED -DCLHEP_SQR_DEFINED ../src/PixelDigitization.cxx

Build tools: “make”, “Ant”, etc

• Manually create a “makefile” that forwards include options to the compiler

g++ -IpkgA -IpkgB

• Lets you adapt to various internal structures

g++ -IpkgA -IpkgB/include -IpkgC/headers

• Also lets you add other options to control debugging, etc

Bob Jacobsen - UC Berkeley

Tools and Techniques

11

But size keeps getting in the way

BaBar (offline production code only):

• 430 packages

• 17,000 files

• 7 million lines of source

Some of these are large “for historical reasons”

But that‟s true of just about any project

CVS checkout: 37 minutes

Build from scratch: 9 hours

Spread across multiple production machines; never did complete on laptop

“gmake” with one change: about 5-15 minutes to think about
dependencies

And I don‟t even want to think about the size of a monolithic Makefile

And everybody will need multiple copies…

Old ones, new ones, …

“But I just want to run the program!”

Bob Jacobsen - UC Berkeley

Tools and Techniques

12

“Release Systems” are built to deal with this

Key capabilities:

Partial builds, including the case of “just run it”

Ensuring consistency among the parts

Key concepts:

“Release”: labeled, consistent build of the entire system

“Package version”: name for a particular set of contents

The purpose of development is to change the contents of packages!

Helpful to have these be independent, so people can work independently

“Architecture”: A particular type of computer

hardware, software, even location

Bob Jacobsen - UC Berkeley

Tools and Techniques

13

Simple Example: SRT (SoftRelTools)

Allows a build to mix existing (shared) and individual parts

Check out some packages & built just those

Pre-built libraries, include files, etc are matched in “versions”

Set of shell scripts and Makefile fragments

Work within a particular directory structure

Bob Jacobsen - UC Berkeley

Tools and Techniques

14

Typical use:

Create an area for your own work

Specify the production release you want as context

Checkout source for the package(s) you want to edit

Specify which contents

Typically either the one from the context, or the latest

Compile, test, debug, edit, repeat

Eventually, you‟ve made progress, and want to share it

Check changes back in

Now they‟re safe, and colleagues can get changes

Tag repository

So you can tell your colleagues how to get these as stable content

Make part of next “production” release

Typically a “package coordinator” role to decide about this

These steps do not have to happen quickly, all at once, or by same
person

Biggest differences between collaborations occur here

Bob Jacobsen - UC Berkeley

Tools and Techniques

15

What else do we want from a release system?

Better support of development

Not just building complete versions

Also want to build & run test scaffolds

More complicated package, release structures

Not just a flat set of co-equal packages with no substructure

Including enough flexibility to develop release tool itself

Help distributing the workload

SRT spread parts of load across lots of package coordinators

But somebody still had to pull the production releases together

“Did you run your unit tests?”

If I update pkgA to V01-00-03, will pkgB V02-01-00 still work?

Help ensuring consistency

If I update pkgA to V01-00-03, will pkgB V02-01-00 still work?

Bob Jacobsen - UC Berkeley

Tools and Techniques

16

“Consistency”

Software strongly depends on other software

• Usually managed at the package level

(This can result in lots of packages, as you subdivide over and over)

• Expresses how changes in one piece can drive changes in another

Bob Jacobsen - UC Berkeley

Tools and Techniques

17

Robert Martin‟s “open/closed” principle

Some parts of the code need to be “stable”

Other parts are being continually developed

One solution: Separate stable interfaces from evolving implementations

But even stable interfaces have to change sometimes

And you also need tools for handling dependence on external code,
compiler/OS differences, location differences, etc

Bob Jacobsen - UC Berkeley

Tools and Techniques

18

How change propagates through dependencies

Bob Jacobsen - UC Berkeley

Tools and Techniques

19

Bob Jacobsen - UC Berkeley

Tools and Techniques

20

Bob Jacobsen - UC Berkeley

Tools and Techniques

21

Changes don‟t always stay small

Bob Jacobsen - UC Berkeley

Tools and Techniques

22

Another change:

Bob Jacobsen - UC Berkeley

Tools and Techniques

23

Bob Jacobsen - UC Berkeley

Tools and Techniques

24

Change management

Bob Jacobsen - UC Berkeley

Tools and Techniques

25

Change management

Bob Jacobsen - UC Berkeley

Tools and Techniques

26

The worst case

Bob Jacobsen - UC Berkeley

Tools and Techniques

27

Bob Jacobsen - UC Berkeley

Tools and Techniques

28

Issue arises at large & small level

At the level of developers, need way to manage this

• Both tools and procedures

We‟ll be discussing CMT, a typical tool, but others exist

Individual collaborations have their own ways of sharing info

At the collaboration level, need procedures to ensure it works

• “Nightly builds”

Now common in HEP - Give early feedback on consistency problems

Many in industry moving toward “continuous integration”

• Not a complete solution by itself

Only works when people actually integrate early and often

• Reduces problems, but integration is still a lot of work

Bob Jacobsen - UC Berkeley

Tools and Techniques

29

CMT: A modern tool example

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>

author Marc Virchaux <virchau@hep.saclay.cea.fr>

use AtlasPolicy v2r1

use CxxFeatures v2r1 Utilities

use CLHEP v2r1 External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test

...

Requirements file provides custom language for expressing our needs

Example from C.

Arnault (LAL and

Atlas)

Bob Jacobsen - UC Berkeley

Tools and Techniques

30

CMT: A modern example

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>

author Marc Virchaux <virchau@hep.saclay.cea.fr>

use AtlasPolicy v2r1

use CxxFeatures v2r1 Utilities

use CLHEP v2r1 External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test

...

Provides definitions for

standard Atlas conventions

(include paths, directory

structure, default behavioural

patterns, …)

Requirements file provides custom language for expressing our needs

Bob Jacobsen - UC Berkeley

Tools and Techniques

31

CMT: A modern example

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>

author Marc Virchaux <virchau@hep.saclay.cea.fr>

use AtlasPolicy v2r1

use CxxFeatures v2r1 Utilities

use CLHEP v2r1 External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test

...

An additional (non standard)

include search path

Requirements file provides custom language for expressing our needs

Bob Jacobsen - UC Berkeley

Tools and Techniques

32

CMT: A modern example

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>

author Marc Virchaux <virchau@hep.saclay.cea.fr>

use AtlasPolicy v2r1

use CxxFeatures v2r1 Utilities

use CLHEP v2r1 External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test

...

Describes additional

subdirectories (branches)

specific to this package

Requirements file provides custom language for expressing our needs

Bob Jacobsen - UC Berkeley

Tools and Techniques

33

CMT can reason from these

• Find inconsistencies

• Create the include options needed for compile and link

• Connect to the correct prebuilt parts

Includes more information that makes CMT more powerful for users:

The requirements file

Author(s),

manager(s)

Structural information
•specialized directory structure

•used packages

•links to external packages)

Constituents
•Libraries

•Applications

•generated documents

Make macros and environment variables
and their possible values on various platforms,

sites, environments

Customization for new

languages, or document

generators

Definition of conventional

behavioral patterns

Bob Jacobsen - UC Berkeley

Tools and Techniques

34

Custom package structure: Describing a library

...

apply_pattern default_no_share_linkopts

library MagneticField -no_share \

AbstractMagneticField.cxx \

MagField.cxx \

MagFieldFor.cxx \

MagFieldGradient.cxx \

Tableau.cxx \

reamag.F \

thanatos.F

...

Apply a “pattern” (defined in ATlasPolicy):

Provide client packages with information needed

to link with static library provided this package.

Bob Jacobsen - UC Berkeley

Tools and Techniques

35

Custom package structure: Describing a library

...

apply_pattern default_no_share_linkopts

library MagneticField -no_share \

AbstractMagneticField.cxx \

MagField.cxx \

MagFieldFor.cxx \

MagFieldGradient.cxx \

Tableau.cxx \

reamag.F \

thanatos.F

...

This describes a (static) library and all its

source files.

By default they are searched in ../src

The result will be

libMagneticField.a

Bob Jacobsen - UC Berkeley

Tools and Techniques

36

Building a test program

...

application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_check "ln -s $(data_file) test.dat"

macro test_check_args "test.dat"

macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies MagneticField

Create an application named test, with one

source file

run with the command

> gmake check

Bob Jacobsen - UC Berkeley

Tools and Techniques

37

Building a test program

...

application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_check "ln -s $(data_file) test.dat"

macro test_check_args "test.dat"

macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies MagneticField

The following macro definitions are private

to this package.

Client packages do not inherit these.

Bob Jacobsen - UC Berkeley

Tools and Techniques

38

Building a test program

...

application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_check "ln -s $(data_file) test.dat"

macro test_check_args "test.dat"

macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies MagneticField

Define data file to be used in the test

procedure.

Bob Jacobsen - UC Berkeley

Tools and Techniques

39

Building a test program

...

application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_check "ln -s $(data_file) test.dat"

macro test_check_args "test.dat"

macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies MagneticField

These three standard make macros provide

the parameters for the test procedure

Bob Jacobsen - UC Berkeley

Tools and Techniques

40

Building a test program

...

application test -check ../test/main.cxx

private

macro data_file "/afs/cern.ch/atlas/offline/data/bmagatlas02.data”

macro test_pre_check "ln -s $(data_file) test.dat"

macro test_check_args "test.dat"

macro test_post_check "/bin/rm -f test.dat"

macro test_dependencies MagneticField

Assure that MagneticField target is always

built before the test target.

This is useful when using the -j option of

gmake

Bob Jacobsen - UC Berkeley

Tools and Techniques

41

How do you know what‟s compatible?

Updated code might be fix, cause problems:

• Fix algorithmic bugs

• Add new capabilities

• Break interfaces

• Break assumptions

Collaborations enforce conventions via package versioning

• „V01-02-03‟ as triplet of major, minor, patch numbers

„Bigger is better‟, but might break other things

Different major numbers mean they won‟t work together

A larger minor number is backward-compatible with a smaller one

Different patch numbers should work together

(But larger is still better)

CMT provides ways to ensure that requirements are met

Is that enough?

Bob Jacobsen - UC Berkeley

Tools and Techniques

42

When Boeing wanted to design the 747, they had two choices:

1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

Why?

What can we learn from this?

Bob Jacobsen - UC Berkeley

Tools and Techniques

43

This is where iterative development comes in…

Imagine the project is not to build software but a bridge…

Initial Requirements: A to B

B A

Bob Jacobsen - UC Berkeley

Tools and Techniques

44

Bob Jacobsen - UC Berkeley

Tools and Techniques

45

Bob Jacobsen - UC Berkeley

Tools and Techniques

46

Successful Development Program!

Analogy shows successful iterations:

• The basic product existed from the first iteration and met the primary
requirement: Connect A to B

• Early emphasis on defining the architecture

• Basic architecture remained the same over iterations

• Extra functionality/reliability/robustness was added at each iteration

• Each iteration required more analysis, design, implementation and testing

• Use case (requirements) driven

Does what the users want - not what the developers think is cool

Some limits to analogy:

It took people centuries to figure out how to build big bridges

And we developed engineering processes to do the big ones!

Little of the early cycles survived in final one

Bob Jacobsen - UC Berkeley

Tools and Techniques

47

How to pick what goes in the next iteration?

Choice of additions for an iteration is risk driven

• Early development focuses on parts with the highest risk and

uncertainty

Avoids investing resources in a project that is not feasible

• But it has to do something basically useful

So all involved will take it seriously

Similar issues during deployment

“We need to get Z working”

“We‟ve just found the problem with Y”

“X was just badly broken!”

“The conference is in two months, and W keeps changing!”

Bob Jacobsen - UC Berkeley

Tools and Techniques

48

What can go wrong?

Bob Jacobsen - UC Berkeley

Tools and Techniques

49

Advantages of Iterative and Incremental Development

Complexity is never overwhelming

Only tackle small bits at a time

Avoid analysis paralysis and design decline

Continuous feedback from users

Provides input to the direction of subsequent iterations

Developers skills can grow with the project

Don‟t need to apply latest techniques/technology at the start

Get used to delivering finished software

Requirements can be modified

Each iteration is a mini-project (analysis, design….)

Note that these benefits come from completing, deploying and using the
iterations!

Bob Jacobsen - UC Berkeley

Tools and Techniques

50

Lecture summary

Software engineering is the art of building complex computer systems

It‟s ideas and techniques spring from our need to handle size &
complexity

As you do your own work & develop your own skills, consider:

• How your effort effects or contributes to things 10X, 100X, 1000X
larger

• How you‟ll do things different/better when it‟s your problem

Bob Jacobsen - UC Berkeley

Tools and Techniques

51

Exercises
1) Demonstration of a test framework

2) Practice debugging using a test framework

3) Demonstration of a profiling tool

4) Practice tuning small applications

If you want experience with CVS, we’ve got optional exercises:

A) Simple use of CVSB) More advanced CVS,
showing how conflicts are handled

If you want some more practice with performance tuning, we've got
two optional exercises:

5) Understanding, updating and tuning a larger application

6) Tuning a sample RSA encryption/decryption application

7) Simple release activities with CMT

8) Releasing code changes with CMT

9) Managing configuration conflicts

10) Project - Joint Development

Instruction sheets are available via web browser at

file:/home/jake/CSC/index.html

