
Bob Jacobsen - UC Berkeley

Tools and Techniques

1

Tools and Techniques

Track introduction

Tools you can use individually (part 1): Test Frameworks

The size of the task: Building software for a collaboration

Bob Jacobsen - UC Berkeley

Tools and Techniques

2

What do you need to do the job?

I need to calculate the sum of primes less than 100:

This is quick, throw-away code

• Not well structured, efficient, general or robust

• I understand what I intended, because I wrote it just now

Already, I need an editor, compiler, linker, and probably a debugger

int sumPrimes() {

int sum = 0;

for (int i=1; i < 100; i++) { // loop over possible primes

bool prime = true;

for (int j=1; j < 10; j++) { // loop over possible factors

if (i % j == 0) prime = false;

}

if (prime) sum += i;

}

return sum;

}

Bob Jacobsen - UC Berkeley

Tools and Techniques

3

“Don‟t worry, I‟ll remember
what I changed.”

“The answer looks OK, lets
move on.”

“Does anybody know where
this value came from?”

“Your #%@!& code broke
again!”

Bob Jacobsen - UC Berkeley

Tools and Techniques

4

My sample program is a pretty small project!

Projects come in different sizes

Size (arbitrary units)

E
ff

o
rt

 (
a

rb
it

ra
ry

 u
n

it
s

)

Bob Jacobsen - UC Berkeley

Tools and Techniques

5

Projects come in different sizes

My sample program is a pretty small project!

It can be done with a simple technique:

But that won‟t solve larger problems well

Size (arbitrary units)

E
ff

o
rt

 (
a

rb
it

ra
ry

 u
n

it
s
)

Bob Jacobsen - UC Berkeley

Tools and Techniques

6

Projects come in different sizes

My sample program is a pretty small project!

It can be done with a simple technique:

But that won‟t solve larger problems well

Bob Jacobsen - UC Berkeley

Tools and Techniques

7

Projects come in different sizes

A larger project may need a different approach

• Those tend to require more effort up front

What do you do when your project grows?

Size (arbitrary units)

E
ff

o
rt

 (
a

rb
it

ra
ry

 u
n

it
s
)

Method 1

Method 2

Bob Jacobsen - UC Berkeley

Tools and Techniques

8

Projects come in different sizes

If you‟re trying to solve a really large problem:

Size (arbitrary units)

E
ff

o
rt

 (
a

rb
it

ra
ry

 u
n

it
s

)
Method 1

Method 2

Method 3

Bob Jacobsen - UC Berkeley

Tools and Techniques

9

What has all this to do with us?

Our systems tend to be complex systems

• HEP tends to work at the limit of what we know how to do

“If you only have a hammer, wood screws look a lot like nails” - ??

“If you only have a screwdriver, nails are pretty useless” - Don Briggs

Bob Jacobsen - UC Berkeley

Tools and Techniques

10

Larger projects have standard ways of doing things

To make it possible to communicate, you need a shared vocabulary

• Standards for languages, data storage, etc.

For people to work together, you have to control integrity of source code

• E.g. CVS to provide versioning and control of source code

Just building a large system can be difficult

• Need tools for creating releases, tracking problems, etc.

Bob Jacobsen - UC Berkeley

Tools and Techniques

11

But individual effort is still important!

You can‟t build a great system
from crummy parts

You want your efforts to make a
difference

Good tools & methods can help
you do a better job

“Whatever you do may seem
insignificant, but it is most
important that you do it.” -
Gandhi

Bob Jacobsen - UC Berkeley

Tools and Techniques

12

The Base Technologies Track

A spectrum of places to improve:

• What you do in the next minutes

• What you do over the next years

Three basic themes:

• Individual tools & methods

• Working with existing code

• Working with large systems

int sumPrimes() {

int sum = 0;

for (int i=1; i < 100; i++) { // loop over possible primes

bool prime = true;

for (int j=1; j < 10; j++) { // loop over possible factors

if (i % j == 0) prime = false;

}

if (prime) sum += i;

}

return sum;

}

Bob Jacobsen - UC Berkeley

Tools and Techniques

13

Plan for
this week:

Bob Jacobsen - UC Berkeley

Tools and Techniques

14

Tools you can use

Knowing whether it works - JUnit

Bob Jacobsen - UC Berkeley

Tools and Techniques

15

Toward an informed way of experimental working

Progress often comes from small, experimental changes

• Allows you to make quick progress on little updates

• Without risk to the big picture

How do you know those steps are progress?

Bob Jacobsen - UC Berkeley

Tools and Techniques

16

Testing

But don‟t you see Gerson - if the particle is too small and too short-lived
to detect, we can‟t just take it on faith that you‟ve discovered it.”

Bob Jacobsen - UC Berkeley

Tools and Techniques

17

The role of testing tools

Remember our original example:

• Simple routine, written in a few minutes

• “So simple it must be right”

int sumPrimes() {

int sum = 0;

for (int i=1; i < 100; i++) { // loop over possible primes

bool prime = true;

for (int j=1; j < 10; j++) { // loop over possible factors

if (i % j == 0) prime = false;

}

if (prime) sum += i;

}

return sum;

}

But it‟s not right...

"Study it forever and you'll still wonder. Fly it once and you'll know.”

- Henry Spencer

Bob Jacobsen - UC Berkeley

Tools and Techniques

18

How to test?

Simplest: Run it and look at the output

• Gets boring fast!

• How often are you willing to do this?

More realistic: Code test routines to provide inputs, check outputs

• Can become ungainly

Most useful: A test framework

• Great feedback

• Better control over testing

Bob Jacobsen - UC Berkeley

Tools and Techniques

19

Testing Frameworks: CppUnit, Junit, et al

To test a function:

public class FindVals {

// determine whether an number is a square

boolean isSquare(int val) {

double root = Math.floor(Math.pow(val, 0.5));

if (Math.abs(root*root - val) < 1.E-6) return true;

else return false;

}

}

You write a test:

public void testIsSquare() {

FindVals s = new FindVals();

Assert.assertTrue(s.isSquare(4));

}

Plus tests for other cases…

Invoke a function

Check the result

Bob Jacobsen - UC Berkeley

Tools and Techniques

20

Embed that in a framework

Gather together all the tests

// define test suite

public static Test suite() {

// all tests from here down in heirarchy

TestSuite suite = new TestSuite(TestFindVals.class);

return suite;

}

Start the testing

• To just run the tests: junit.textui.TestRunner.main(TestFindVals.class.getName());

• Via a GUI: junit.swingui.TestRunner.main(TestFindVals.class.getName());

And that‟s it!

Invoke tests for my class

Junit uses class

name to find tests

Bob Jacobsen - UC Berkeley

Tools and Techniques

21

Running the tests

Bob Jacobsen - UC Berkeley

Tools and Techniques

22

Running the tests

Bob Jacobsen - UC Berkeley

Tools and Techniques

23

How JUnit works - one test:

public void testOneIsPrime() {

SumPrimes s = new SumPrimes();

Assert.assertEquals("check sumPrimes(1)", 1, s.sumPrimes(1));

}

This defines a “method” (procedure) that runs one test (line 1 and 4)

• JUnit treats as a test procedure any method whose name starts with
“test”

• The tests will be run in the order they appear in the file

Line 2 creates an object “s” to be tested

Line 3 checks that sumPrimes(1) returns a 1

Assert is a class that checks conditions

assertEquals(“message”, valueExpected, valueToTest) does the check

If the check fails, the message and observed values are displayed

Bob Jacobsen - UC Berkeley

Tools and Techniques

24

If the check fails:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Bob Jacobsen - UC Berkeley

Tools and Techniques

25

Other views:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Bob Jacobsen - UC Berkeley

Tools and Techniques

26

Why?

One test isn‟t worth very much

• Maybe saves you a couple seconds once or twice

But consistently building the tests as you build the code does have
value

• Have you ever broken something while fixing a bug? Adding a
feature?

Tests remember what the program is supposed to do

• A set of tests is definitive documentation for what the code does

• Alternating between writing tests and code keeps the work
incremental

Keeping the tests running prevents ugly surprises

• And it‟s very satisfying!

“Extreme Programming” advocates

writing the tests before the code

• Not clear for large projects

• But individuals report good results

Bob Jacobsen - UC Berkeley

Tools and Techniques

27

The art of testing

What makes a good test?

• Not worth testing something that‟s too simple to fail

• Some functionality is too complex to test reliably

• Best to test functionality that you understand, but can imagine failing

If you‟re not sure, write a test

If you have to debug, write a test

If somebody asks what it does, write a test

How big should a test be?

• A JUnit test is a unit of failure

When a test fails, it stops

The pattern of failures can tell you what you broke

• Make lots of small tests so you know what still works

What about existing code?

• Probably not practical to sit down and write a complete set of tests

• But you can write tests for new code, modifications, when you have a
question about what it does, when you have to debug it, etc

Bob Jacobsen - UC Berkeley

Tools and Techniques

28

Summary 1

The principle of „I think, therefore I am‟, does not apply to high quality software. -
Malcolm Davis

In art, intentions are not enough. What counts is what one does, not what one
intends to do. - Pablo Picasso

Excellence is not a single act, but a habit. You are what you repeatedly do. -
Aristotle, as quoted by Shaquille O‟Neal

