Data Analysis with ROOT

Lecture 2: Distributions and statistical tests

Ivica Puljak

University of Split, FESB, Split, Croatia

Ivica.Puljak@cern.ch

August 26, 2009

A. Heikkinen and I. Puljak: Data Analysis with ROOT CERN School of Computing August 17 - 28, 2009, Goétingen, Germany



In this lecture

@ Distributions

® Properties
® Main distributions

@ Point (parameter) estimation
® Maximum likelilhood method
® |east-squares method

@ Interval estimation

® Errors on the fit parameters

@ Goodness-of-fit tests

® p-value
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Properties of distributions
@ Probability density function (PDF) = f(x)

@ Expectation

® Expectation of any random function g(x):
E(g) = [g(x) f (x)dX

® Expectation of X = mean of the f(X) = expected value of X :

E(X)=pu=X=(x)= jxf (x)dx

@ Variance _
V(x)=0?=E [x-1)? =E(®) - 12 = [(x— 1) f (x)dx
® o is called the standard deviation

@ E(X) is a measure of the location of the distribution

@ V(Xx) is a mesure of the spread of the distribution
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Moments

w1, =E(X") ISt
V. =E{[x"-EX)]"} ist
= E( X" st
VI =E{|x"—E(X)|"} ist

ne n™ algebraic moment
he n'" central moment
he n'" absolute moment

he n'" absolute central moment

@ The coefficient of skewness
A measure of the skewness of the distribution

@ The coefficient of kurtosis

A measure of the "peakedness™

of the distribution

A. Heikkinen and I. Puljak: Data Analysis with ROOT CERN School of Computing August 17 - 28, 2009, Goétingen, Germany



Covariances and correlations

@ Joint PDF for two random variables = f(X,y)

@ The mean and the variance of X and y:
1, =EQ) = [[xf O, y)dxdy  u, =E(y) = [[yf (y, y)dxdy

Jf:EIX_/Jx)2 Jszly_luy)z_

® Covariance . (x y)=E Ix_ﬂx)(y—,uy)_: E(xy) —E(x)-E(y)

cov(X,
@ Correlation coefficient corr(x,y) = p(X, y) = p,, = (x,y)

@ Covariance/Variance/Error matrix:

v _ cov(x,X) cov(Xx,Vy)
_Lov(x, y) cov(y, Y)}
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Correlations - illustration
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Binomial distribution

Variable r, positive integer <N

Parameters N, positive integer; p, 0 <p <1

Probability _ NY) | Ner
function P(r;N, p) :( " jp 1-p)

Mean E(r) = Np 3 :::;55
Variance V(r) = Np(1-p)

Usage example | Example - Z decay: | .

- p = BR(Z>ee) = 3% i
- P(5;80,0.03) = 6% probability to find kbl Ve
exactly 5 ee events out of 80 Z decays

Comment P(r;N,p) is a probability of finding
exactly r sucesses in N trials, when
probability of sucess in each single trial

is a constant, P o

0 2 4 6 8 1012 14
r

Figure from http://nedwww.ipac.caltech.edu/level5/Leo/Figures/figurel.ipeg
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Multinomial distribution

Variable

I, i=1,..k positive integers <N

Parameters

N, positive integer

k, positive integer <
! . =1
p;=0,1=1, ..k, ,lep'

Probability function

N! .
P(rlw--’rk;N’pli--wpk):rl.— '

I

P Py

e |

Mean

E(r;) = Np;

Variance

V(r;) = Np; (1-p;)

Usage example

Histogram containing N events distributed in K bins,
with r; events in the i bin

Comment

« Multinomial distribution is the generalization of the
binomial distribution to the case of more than two
possible outcomes of an experiment

» When p; << 1 (many bins) V(I‘i) ~ Npi =T
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Poisson distribution

Variable

I', positive integer

Parameters

M, positive real number

Probability
function

re—u
P(r; ) =& "

Mean

E(r) = u

Variance

— Siméon-nis P,i.'sson
V(r) = u (1781-1840)

Usage
example

Number of events I collected after integrated luminosity Ldt.
Expected number of events is i = olLdt. ois the cross section.

Comments

* P(r; 11) expresses the probability of a number of events occurring in a
fixed period of time if these events occur with a known average rate and
indepedently of the time since the last event

* L represents expected number of events in a given time interval

* Time between two sucessive events is exponentially distributed
 Poisson distribution is also called Poissonian
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Poisson distribution

@ For a large u Poisson distribution converges towards a Gaussian

distribution Pois(r: 1) N>
F’(r;ﬂ)m‘

>Gauss(r; 1, c° = 1)

@ Sum of Poisson
distributed random
variables also follows 1
a Poisson distribution 05
whose parameter is
sum of the
component 03
parameters

Xi - POiS(r;/ui) 0.1
Y => X; ~Pois(r; > i) N

0

0.6} M=

0.4

0.2

|

o et

® F.g. When combining signal (S) and background (b)
P(r;s,b) ~ Pois(r;s+b)
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Normal or Gaussian distribution

Variable

X, positive real number

Parameters

M, real number
O, real number

Probability density
function

00 =N~ exp[‘i%}

Carl Friedrich Gauss
(1777-1855)

Mean

E(x) = u

Variance

V(X) = 02

Cumulative
distribution

F(X) =¢(X;“j; #(2) =% je‘ixzdx

Comments

» The most important distribution in statistics
* The half-width at half-height is 1.176 0

* N(0,1) is called standard Normal density
 Any linear combination of the x; is also Normal
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Gaussian — some properties

Area tnGC

0.682689492137
0.954499736104
The 0.997300203937
Normal 0.999936657516

Distribution
0.999999426697

T
ury
=
-]
=
=3
=
o

Frobabhility of Cases values

n portions of the curve 03413

Standard Deviations
From The Mean

Cumulative %

£ Scores
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Why is Gauss Normal?

@ Central limit theorem:

If we have a set of N independent variables X;, each from a

distribution with mean y; and variance ¢;?, then the distribution of the
sum X = 2'X;

a) has a mean <X> = Xy,
b) has a variance V(X) = X o2,

c) becomes Gaussian as N 2.

Therefore, no matter what the distributions of original variables may
have been, their sum will be Gaussian in a large N limit

® Example: measurements errors
Example (adopted from Barlow):

“Human heights are well described by a Gaussian distribution, as many other
anatomical measurements, as these are due to the combined effects of many genetic and
environmental factors.”
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More than two variables

@ Let's say that each event measure three quantities A, B and C

@ We than have three random variables X, y and z

@ Vector of measurements is now a matrix:
Event B

Y1 @ Introducing new notation
Y2 (X, y,2) > (X1 Xz X)) = X =X

(Lt ey, 18,) = (Hys oy Mz)) = H=H

YN
Mean—> iy

@ In case of m variables X = (X(l) y K2y e X(m))

@ Please note: this multivariate vector X is a vector of m variables for
one event, while in the case of one variable X is a vector of values of
one variable for N events
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Multivariate Gaussian

@ Multivariate Gaussian for the vector X = (X(l) y K21+ e X(m))

1 1
exp| — = & —p "V & -
(272')n/2 |V |1/2 pl: 2 (( lu/ ‘( Iuj

@ X and p are column vectors, while X' and pT are row vectors
Ly = E(X)) Vi =cov[X;y, X ]

f (X m,V)=

@ Case of two variables (m = 2)
F (X1 X2)5 Hiayr H2)1 O 1y O 2)) =

1 (

- |
;<O =S by T He Yo o2,

X@) —

1
PO 1yO (2)} { Xoy —

1

X eXP+

2

270 O 1= p
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2D Gaussian: iso-probability curves

A
X(2)

I:)1D

PZD

lc

0.3934

26

0.8647

30

0.9889

1.515c6

0.6827

2.486c

0.9545

On)

20

3.439c

0.9973

Remember (roughly)
this values, we’ll use
them later in errors

estimates!

¢ IS a measure of the correlation (more details later)

Adopted from L. Lista
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Chi-square distribution

Variable

X, positive real number

Parameters

N, positive integer (number of “degrees of freedom”)

Probability
function

F(x) = ;( 2

Mean

E(x) =N

Variance

V(x) = 2N

Usage example

Chi-square test for goodness of fit

Comments

- If X; are K independent, normally distributed random variables with
mean 0 and variance, then the random variable
Q= ZXiz IS distributed according to the chi-square distribution
with K degrees of freedom

* The chi-square distribution is a special case of the gamma
distribution.
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Chi-square distribution

0.5
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Some other distributions
@ Student’s t-distribution

® Used for hypothesis testing

® First published in 1908 by W. S. Gosset, GU]NNESS
while he worked at a Guinness Brewery, under ORAUGHT
the pseudonym Student)

@ Beta distribution PE) |
® Used in Bayesian statistics B

@ Gamma distribution
® Probability model for waiting time

@ Cauchy or Lorentz or
Breit-Wigner distribution

® A solution to the differential equation

iDi I r
describing a resonance z M—L M M+l

2
® Energy distribution of a resonance 1

P(E) ~

(EZ_M2)2+MZFZ

@ Log-Normal distribution
® Used when including systematic errors in the analysis

® If X is Log-Normally distributed, than log(x) is Normally distributed
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All roads lead to Rome

Pp—=0 Np=u
) 4

Binomial

Poissonian

"LROME
7
\CTy

17

STy

\

Multinomial

\_

N —> o
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From ROOT User Guide

@ All the probability density functions are defined in the header file
Math/DistFunc.h and are part of the MathCore libraries.

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

ROOT:
ROOT:
ROOT:
ROOT:
ROOT:
ROOT:
ROOT:
ROOT:
ROOT:
ROOT:
ROOT:
ROOT:
ROOT:
ROOT:
ROOT:

:Math:
:Math:
:Math:
:Math:
:Math:
:Math:
:Math:
:Math:
:Math:
:Math:
:Math:
:Math:
:Math:
:Math:
:Math:

:beta pdf (double x,double a,
:binomial pdf (unsigned int k,double p,unsigned int n);

double b);

:breitwigner pdf (double x,double gamma,double x0=0);
:cauchy pdf (double x,double b=1,double x0=0);
:chisquared pdf (double x,double r,double x0=0);
:exponential pdf (double x,double lambda,double x0=0);
:fdistribution pdf (double x,double n,double m,double x0=0);
:gamma_pdf (double x,double alpha,double theta,double x0=0);
:gaussian pdf (double x,double sigma,double x0=0);
:landau pdf (double x,double s,double x0=0);
:lognormal pdf (double x,double m,double s,double x0=0);
:normal pdf (double x,double sigma,double x0=0);
:poisson pdf (unsigned int n,double mu) ;
:tdistribution pdf (double x,double r,double x0=0);
:uniform pdf (double x,double a,double b,double x0=0);

@ Some PDFs exist also in the namespace TMath

ROO R ool o omp q Aug 3 0]0)° 0 ge e




General picture

Sampling a reality (W, 1I5"Hys1iié'aﬁlt"' )"

Experiment " phenomena
»Described by;a theory

Described by PDFs,
depending on p uknown

. D mol arameters with true values
analysTs > ata sample p

true true true true
X = X’X,...,X 0 :(9 ,9 ,...,9 )
( 1172 N ) For example: . 2 P

For example: 0™ = (M}, Ame, . o
X = (event,,...,event,)

Results In statistics x is a multivariate random variable (each event
has many properties, all potential variables)

* parameter estimates
- confidence limits
* hypothesis tests
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Physicists and statisticians
@ Example: histogram fitting

Physicists Statisticians

1. Determining the “best fit” _ o
[ parameters of a curve ]“ [ 1. Point estimation ]

2. Determining the errors on ]“ 2. Confidence interval estimation ]

the parameters

[ 3. Judging the goodness of a fit ]“ [ 3. Goodness-of-fit testing ]

Adopted from [Baker, Cousins, 1984]
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Likelihood function

@ Assume that observations (events) are independent
® With PDF depending on parameters &: f(x;80)

The probability that all N events will happen, i.e. the PDF of X is, by
independence, a product of all single events PDFs

P(x;0) = P(xl,...,xN;H)zﬁf(xi;H)

When the variable X is replaced by the observed data x°, then P is no
longer a PDF

It is ussual to denote it by L and call L(X°;8) the likelihood function
® Which is now a function of @ only

L(#) = P(X";0)
Often in the literature, and through this lectures, it’s convenient to
keep X as a variable and continue to use notation L(X; @
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Statistic

@ Be carefull: statistic is not statisticS!

@ Any new random variable (f.g. T), defined as a function of a
measured sample X is called a statistic

For example, the sample mean <

i$ a statistic!

A statistic used to estimate a parameter is called an estimator

® For instance, the sample mean is a statistic and an estimator for
the population mean, which is an uknown parameter

® Estimator is a function of the data

® Estimate, a value of estimator, is our “best” guess for the true value of
parameter

Some other example of statistics: sample median, variance,
standarde deviation, quartiles, percentiles, t-statistics, chi-square
statistics, kurtosis, skewness etc.
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Properties of a good estimator

@ Consistent

® Estimate coverges to the true é N increases N Qtrue
value as amount of data increases

@ Unbiased

® Bias is the difference between expected A irue
value of the estimator and the true value b=E@)-6"" =0
of the parameter

@ Efficient

® Cramér-Rao bound for the minimum
of the variance of estimator: V(0) =

® Estimator is efficient when its EK;@ZM f(xi;eﬂ

variance reaches the lower bound

¢ Robust - , :

® Insensitive to departures from Fisher information
assumptions in the PDF
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How to find a good estimator?

-

The Method of Moments

 Giving consistent and asymptotically unbiased estimators
 But are not as efficient as the maximum likelihood estimates
 Not covered In this lecture

LThe Maximum Likelihood Method

 Also giving consistent and asymptotically unbiased
estimators

« Widely used in practice

The Least Squares Method (Chi-Square)

 Giving consistent estimator
 Linear chi-square estimator is unbiased
* Frequently used in histogram fitting
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Some good estimators

@ Suppose we have
® a set of N independent measurements X;,

® assumed to be unbiased measurements of some quantity ¢ and
variance o2

1. If both p and ¢ are uknown P
l N ~

. > 1 & N V(D o
=—) X ol =—> (x — =—
f | N—1;(' A V=T

N =

2. If only ois known - no difference for

3. If only x4 is known -
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Estimators in ROOT - values

Mean RMS
(it's actually o, name RMS is historic)

) ORI Ea
N 2N
Skewness Kurtosis

RMS

3/2 4
_ 3 1 & =5 6 13 _ 19 _ = 24
-2/ Ee-] s T (Eex/[iRex] e

Total number of events N is only in the currently defined range
From the ROOT Reference Manual

“"Note that the mean value/RMS is computed using the bins 1in the
currently defined range (see TAxis::SetRange). By default the
range includes all bins from 1 to nbins included, excluding
underflows and overflows. To force the underflows and overflows
in the computation, one must call the static function
THI1::StatOverflows (KkTRUE) before filling the histogram.”
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Estimators in ROOT - display

@ Estimators display in the statistic box
® Drawn by default; can be eleminated by TH1::SetStats (kFALSE)

@ gStyle->SetOptStat (mode) allows to select the type of displayed
information
® mode = ksiourmen (default = 000001111)

the name of histogram is printed
the number of entries

the mean value

the mean and mean error values
the root mean square (RMS)

the RMS and RMS error

the number of underflows

the number of overflows

the integral of bins

the skewness

the skewness and the skewness error
the kurtosis

the kurtosis and the kurtosis error

>
1
=

q))
[
=

1
N[

3|3

1
ICITENT N TSN L FENFING S

~ixlwn|lun|—lolc|=|-
I
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Estimators in ROOT - example

Notice influence of the tail on the mean value

\\ hpt_3
Entries\s 3351
Mean 0.3 +0.4228

RMS 24.41+ 0.299
Underflow 0
Overflow 19
Integral 3332

Skewness 2.156 +0.04243
Kurtosis 6.241+ 0.08487

72}
o
<
Q
>
(<}]
(T
o
.
Q
L0
=
-
P

I||’Ill’lll‘lll‘lll'lll‘l

| LLh—JI——LL. o e i ]
120 140 160 180 200
Electron pT (GeV/C)

o
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Maximum likelihood method

@ Reminder: the probability that all N mdependent events will happen is given
by the likelihood function L(x:0) = H f(x:6)

The principle of maximum likelihood (ML) says:lz
The maximum likelihood estimator @is the value of
0 for which the likelihood is a maximum!

In words of R. J. Barlow: "You determine the value of @ that makes the
probability of the actual results obtained, {Xy, ..., Xy}, as large as it can
possible be.”

In practice it's easier to maximize the log-likelihood function
INL(x;0) => In f(x;6)
For p parameters we get a set of p Iiizlielihood equations
oINLXO) o j-12,...p
00,
@ It is often more convenient the minimize —INL or -2InL
® Minimization with MINUIT/MIGRAD or FUMILI in ROOT
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Maximum Likelihood - comments

ML estimator is consistent

ML estimate is approximately unbiased and efficient for large samples
® Still usefull for small samples, but with extra care!

ML estimate is invariant
® A transformation of parameter won't change the answer

ML estimate is not the most likely value of parameter; it is the estimate that
makes your data most likely!

What was presented up to now is sometimes called
unbinned maximum likelihood

Binned maximum likelihood: when data are organized in bins
® See "ML fit of a histogram” later on

Extra care to be taken when the best value of parameters are near imposed
limits

ML has many advantages, but a few drawbacks too
® F.g. goodness-of-fit for ML is non-trivial issue, still open and debated
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Reminder
@ Example: histogram fitting

Physicists Statisticians

1. Determining the “best fit” _ o
[ parameters of a curve ]“ [ 1. Point estimation

2. Determining the errors on . . L
the parameters ]“ 2. Confidence interval estimation ]

[ 3. Judging the goodness of a fit ]“ [ 3. Goodness-of-fit testing

Adopted from [Baker, Cousins, 1984]
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Errors on the ML estimates (1/4)

@ How to obtain errors on the parameters estimated by the ML?

@ Option 1: Matrix inversion

® Covariance matrix is minus the inverse
of the matrix of second derivatives

® Done with MINUIT/HESSE in ROOT

@ Option 2: Log - likelihood curve

® In the large N limits the likelihood 1D
function is Gaussian and the . example
log-likelihood is parabola |

By definition (InL)..., = InL( ) @

+1c limits on @ are those values
of @ for which In L falls by 0.5
from its maximum value L,

For +26 (+30c) limits In L falls
by 2 (4.5)

Done with MINUIT/MINOS in ROOT

%L
06.00.

Jlo=6

-1
cov(6,,0;)=—
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Errors on the ML estimates (2/4)

@ The same, but now maximizing 2InL

2In L

1D
example
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Errors on the ML estimates (3/4)

@ Asymmetric example

® For finite samples and/or non-linear problems InL is not necessarily
parabolic nor symmetric

® Confidence intervals can still be extracted from the InL curve

2In L @ For asymmetric InL curve upper and lower limits

/ on & are not the same
2(InL

. @ To find upper and lower limits with a certain
| probability content (B) of the confidence region >

2(InL. use 4, from the table:

4 B (%)
1 68.27
95.45

9 99.73

o

\ @ ROOT uses Minuit/MINOS to extract
limits (errors) in this way

1D example
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Errors on the ML estimates (4/4)

@ 2D example: Standard error ellipse
® For more information see f.g. PDG

@ This is so called the plane tangent method

0, 1 @ ROOT uses Minuit/MINOS

2(InL), ., - 1 ® Works well also with non-regular iso-
probability curves

~ ® Upper and lower limits for parameter

6 are those values of & for which

\Q’”]:ch 4@%[‘% 19,5 510 DT

® This is OK when interested in errors
for only one parameter, regardless all
6, others

4+ ® Case of simultaneous errors
2 1774 estimate for more parameters - later
120,05

tan 2¢ = 212 in this lecture
O, — 0,

p1, IS the correlation coeficient
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Example — ML fit of a histogram (1/2)

@ Suppose one has
® N events in a histogram with k bins
® n,in the i bin &> vector of data n=(n,, ..., n,)

® Expected number of events in each bin depend on uknown
parameters 6, v(0) = (v,..., W)

® Givenv, probability to have n; is f(n;; v))

¢ Usually probability is Poissonian: JNiaV
i

n.!

f(n;v;)=

@ The likelihood function is L(n;v):HVinie_Vi
i n!

@ To find best estimate of 8 we have to maximize InL(n;v)
based on the contents of the bins
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Example — ML fit of a histogram (2/2)

@ In can be shown that this procedure is equivalent to maximizing the
likelihood ratio

L(n;v(@)) L(n;»(9))
L(n;m) - L(n;n)

A(0) =

® Where m = (my,..., M) are true (uknown) values of n

® Best bin-to-bin model independent maximum likelihood estimate of m is
actually n

@ Maximizing A(8) is equivalent to minimizing

—2In A(0) = ZZ|:V(0) n +n In (0)}

® Which is now much easier to implement then maximizing InL(n;v)

@ In case where n,=0, last term in eq. above is zero
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Extended maximum likelihood

@ In the usual maximum likelihood method
® Parameter relevant to the shapes of distributions are determined
® Absolute normalization is equal to the observed number of events

If we want to estimate the absolute normalization the so called
“"Extended maximum likelihood method” is used

Example: From the vector of measurements X = (Xy,...,Xy) we want to estimate
number of signal events (s), number of background events (b) and a vector
of parameters 6= (4,,...,4,)

Likelihood function is

_ (s+b)Ne ) N( S | b | j
L(x:s,b,0) = [Tl ——P.(x:0)+—PR, (0
( ) N! L\ S+Db ( ) S+b o )

@ To obtain s, b and 8 we maximize (or mimimize -2InL)

Constant

v

- I P B VO B I
InL(x;s,b,0) = —s b+;|n(s+bPs(xi,o)+s+bpb(xi,a)] In(N!)
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Least squares method

@ Suppose we have
® A set of precisely known values x = (x,,...,Xy)

- For example histograms bins
® At each X;

¢ a measured value y;
- For example number of events in the given histogram bin

¢ corresponding error on measured value o

¢ predicted value of measurement that depends on parameters
6= (6,.....6,) we want to estimate: F(x;6)

® Suppose that measurements are independent

@ To find best estimate of & we minimize the suitably weighted summ
of squared differences between measured and predicted values = so
called “least squares” or
“chi-square”

2°(0) =
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Choice of measurement errors

@ If y, are Gaussian distributed with variances o;

N By o
250)=> G F(;("H)/ = —21In L(0) + constant
i— O

[Minimizing chi-square y?2 ]<:> [Maximizing log-likelihood InL ]

or minimizing -2InL

@ If y, are Poissonian distributed two choices
® Reminder first: for Poissonian variance = mean value (o= )

® So called Pearson's chi-square (or “chi-square”)
‘2«

2 (0) = Z ¢ —F(x;60 ¢ But now g; depends on & which
X c F(Xl’g) complicates the minimization

® So called Neyman’s chi-square (or "modified chi-square”)

® Minimization simpler
) N g —F(x:;0)° . . : : :
72(0) = Z i i»”) - @ Easier to combine data with different basic
i Yi accuracies
® Problem withy, =0

¢ For example in ROOT this bin ignored

¢ For small samples better use ML
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Finding parameters and errors

@ The best values of parameters 6= (4,,..,6,) are found by solving p
equations 2

o) _,

00.

@ Errors (or limits) on parameters are found in the equivalent was as
for the ML method

® Matrix inversion
® Shape of y2 arround it's minimum value

, 1=1...,p

Prob(2InL)>2InL,, —A < Prob(x*) < zm, +A .

2InL \

2(INL) ax
2(Inl—)max -1
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Multiparameters errors

@ When interested in simultaneous error estimation on more than one
parameter, then the probability content (coverage probability) of the
constant -2InL or »2 contours is much smaller then in 1D case

@ Example (recall 2D Gaussians probabilities): ATA
lc

@ Therefore, to increase the coverage probability ezﬁa
or - see the values in the table (from PDG)

A A

4
Table 32.2: Ax?2 or 2A1In L corresponding to a coverage probability 1 — « in the
large data sample limit, for joint estimation of m parameters.

o _ 39 ROOT Tminuit: :Contour draws
contours of constant -2InL or %2
with a given probability
coverage use

(1 —a) (%) m=1 m=2

68.27 1.00 2.30 3.53
2.71 4.61 6.25
3.84 5.99 7.82
4.00 6.18 8.03
6.63 9.21 11.34
9.00 11.83 14.16
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Example
higgs boson mass costrains from
Electroweak precision tests

March 2009 m . = 163 GeV

(5)

. L Al g =

% —0.02758+0.00035
% % -=-0.02749+0.00012
2 iees incl. low Q? data

| Excluded ..;'I": Preliminary_
300
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2 Step 1 — Very precise measurements of SM

| « Measure SM parameters extremly well
o, M,, G

* ulifetime, (g-2),, LEP ...
J/

.. : : )
Step 2 — Predictions (assuming Higgs boson)
« Calculate guantum corrections to other observables
* my, AR, SIN%0,, ...
* Depending on a, M,, G¢, but also on m,, m ...

J

N\

_ )
Step 3 — Precise electroweak measurements

* Measure very precisely observables from Step 2
« @ SLC, LEP, Tevatron ...

Total Cross Section |pb]
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Results from step 2 and 3

Measurement Fit |omeas_Qft|/gmeas

(,l) l 2 3

91.1875+0.0021 91.1874

2.4952 + 0.0023  2.4959
41.540+£0.037  41.478

20.767 £0.025  20.742

0.01714 + 0.00095 0.01643

0.1465 £ 0.0032  0.1480

0.21629 + 0.00066 0.21579

0.1721 £0.0030  0.1723

0.0992 £ 0.0016  0.1038

0.0707 + 0.0035  0.0742

0.923 + 0.020 0.935

0.670 + 0.027 0.668

A(SLD) 0.1513+0.0021  0.1480
sin®6'F'(Q,) 0.2324 +0.0012  0.2314
my [GeVl  80.399 +0.025  80.378
T, [GeV] 2.098 + 0.048 2.092
m, [GeV] 173.1 £1.3 173.2

March 2009
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Adopted from http://lepewwqg.web.cern.ch/LEPEWWG/

The best fit

@ From the LEP Electroweak Working
MarchEO(.)g : i "_ - group:

._ Aol - {: @ “The preferred value for its mass,
t % 002758+0.00035 corresponding to the minimum of the
% % 0007404000012 M} curve, is at 90 GeV, with an experimental
% iees incl. low Q° data uncertainty of +36 and -27 GeV (at 68
: percent confidence level derived from
Delta chi2 = 1 for the black line, thus not
taking the theoretical uncertainty shown

as the blue band into account). ”

“The precision electroweak
measurements tell us that the mass of the
Standard-Model Higgs boson is lower
Prellmlnary than about 163 GeV (one-sided 95

1 4
I o, Az
1 G e
1 “o
1 1

0 | Excluded

30 /7 o percent confidence level upper limit
derived from Delta chi2 = 2.7 for the
blue band, thus including both the

P 90+36 GeV

Mo = 90— 27 GeV experimental and the theoretical

uncertainty).”
m, =90 GeV

A. Heikkinen and I. Puljak: Data Analysis with ROOT CERN School of Computing August 17 - 28, 2009, Goétingen, Germany


http://lepewwg.web.cern.ch/LEPEWWG/

Reminder
@ Example: histogram fitting

Physicists Statisticians

1. Determining the “best fit”
parameters of a curve

1. Point estimation ]

2. Determining the errors on

the parameters 2. Confidence interval estimation ]

[ 3. Judging the goodness of a fit ]“ [ 3. Goodness-of-fit testing

Adopted from [Baker, Cousins, 1984]
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Goodnes-of-fit tests

@ We are now interested in this kind of questions
® Is the fit good or not?

® How significant is discrepancy between data and obtained functional
form?

® How well does the vector of measurements in the histogram n=(n,, ..., ny)
compare with predicted values v =E[n] = (1,,..., %)?

These questions can be answered with a goodnes-of-fit test

® Which is itself a part of a so called HYPOTHESIS TESTING
(more in Lecture 3)

So called NULL hypothesis H; is:

The functional form (or predicted values) describes well our data!

The form (i.e. the parameters that form depends on) is found by one of the
methods for parameter estimation (moments, ML, chi-square)

We are now looking for a statistic t (usually a single number) whose value
reflects an agreement between the data and the hypothesis

® The most commonly used statistic is the Zz'
min
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Distribution of the test statistic t

@ Imagine we have many (M) experiments (i.e. data samples) trying
to test the null hypothesis H,

Parameter estimation test statistic t

Data sample (ML, chi-square) (f.g. Zriir)

A n tIH
(O yh oY) | P LA

(y2,y2,....y2) 2, ) X roin 2

(VY2 s YN ) M, 0 ) 72

i

@ We would then obtain a probability distribution function (PDF) of the
test statistics, giving the H, is true, g(t|H,)
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p-value

But (unfortunately) we usually have only one experiment ®!
Let’s say the value of test statistic for our experiment is t,

And let’s suppose that large value of t suggest larger discrepancy of
the H, with observed data (usually the case)

Now, having g(t|H,) we can for example answer to the question
What is the probability to obtain the value of t equall or

greater than the value t,. we observed?

@ The answer is simple an integral of the g(t|H,):
prob(t > t,, ) = [g(t] H,)dt

tobs
/ @ This probability is so called p-value

@ From PDG: “... p-value is defined as the probability
to find t in the region of equal and lesser compatibility
with H, than the level of compatibility observed with
actual data ...”
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v2(ndf) distribution

@ Well, this is all nice, but: as we don’t have so many experiments, how
do we get the PDF for the test statistics, g(t|H,)?

@ For once, it turns out that we are ‘lucky’: most commonly used
statistics fo GOF testing are distributed as a y?2 distribution!

® That's actually the reason why they are so often used ©
® For example: when fitting histograms with N bins, with the function

2
depending on P parameters, then the &btained in the fit, is distributed

according to the #*(N-p) function
¢ (N-p) is called number of degrees of freedom (ndf)

@ If we are not so ‘lucky’ than we can use so called "Toy Monte Carlo”
to generate g(t|H,) from assumed distribution (describing the null
hypothesis)

® We “just” generate Monte Carlo experiments, find t for each of them and
make a distribution g(t|H,)

® We can even directly study the properties of the estimators (like bias,
variance) as we can construct their distributions from MC experiments
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Reminder - y2 distribution
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GOF - overview
@ Data sample

Parameter estim.

(ML, chi-square)

@ test statistic t

O,

@ Decision about H,

p - value

ndf = N-p

M |

(Y1isYar-ees Vi)

p=[g(t|H,)dt

tobs

ROOT TMath: Prob

If (p<1l-a) reject
Hyat CL «

Example: histogram fitting

n=(n,n,,...

Ny)

Event counts

L 2

v=>0,V,,...

.

h 2

A

V.

Zriin :i (Ii _Vi\g

2

in bins
Predicted counts
in bins

tin case @
estimated

nL(

by #?> method

) tin case @
n;v) .
: estimated

by ML method
(Pearson’s y?
can also be used
as test statistic)

If p << try with
new fit

just common
sense

] Very often use

In theory « is predefined (f.g. 95%); in practice p-value is converted to z-value (f.g. significance = 5), see lecture 3
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p-values from PDG

1.000
0.500

0.200
0.100
0.050

0.020

=
o
Q
—
S
=
Q
=
—_—
=
-
=y

0.010
0.005

o, for confidence intervals

0.002

0001 l I l l [h 11l
1 : ' 20 30 4050 70 100

. - . ) . . . . § 9 )
Figure 32.1: One minus the xy* cumulative distribution, 1 — F'(x“:n), for n degrees
of freedom. This gives the p-value for the Xz goodness-of-fit test as well as one
minus the coverage probability for confidence regions (see Sec. 32.3.2.4).
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v2/ndf from PDG

10 20 30 40
Degrees of freedom n

Figure 32.2: The ‘reduced’ y2, equal to y2 /n, for n degrees of freedom. The
curves show as a function of n the Xz /n that corresponds to a given p-value.
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Math libraries in ROOT

@ From ROOT Users’s Guide

[ Histogram library ]

\ - 5
Fitting and Minimization Statistical Libraries
(Significance,
Linear & Limit/CL etc..)

P

TFumili [ TMinuit (OO Minuit) : :
{_ TFumii | TMinuit | Extra Libraries
,f

Unuran

v/

Linear Algebra &
W § Spectum ji§ Foam _J
" 7 ~

(
s MathCore o MathMore

: Random Numbers
Functors & interfaces Physics Vectors -
: TComplex Extra algorithms
Basic algorithms

TRanAcMm Extra Math functions

Math functions
L { TMath ©,
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Help

Fitting in ROOT

Mean = 1.56
90 RMS = 0.7277

@ “Classical” ROOT - fiting directly data classes 7
(Graphs, Histograms, Trees) .

a0

® For introduction see ROOT lectures @

30

@ Many options exist 20
® Binned fits (TH1: :Fit, Tgraph: :Fit) ®
¢ Default: Least-squares
¢ Maximum likelihood fits (h.Fit (..., “L”) , or “LL”)
Unbinned likelihood fit (TTree: :UnbinnedFit)
Fit with predefined or user-defined function
Fixing and setting parameters’ bounds
Fiting sub ranges
Combining functions
® Choice of minimization methods (Minuit(2), Fumili (2))

T m_iﬂ

+H|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|I

1}

@ Recent improvements: new Fit Panel and improved fitting system
® For more information see talk by L. Moneta at ACAT 2008

@ More on “understanding errors in fits” in excercises
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ROOT, RooFit & RooStats

RooFit is extension to ROOT —
(Almost) no overlap with existing functionality

Statistical analysis
Neyman construction
Bayesian posterior
Profile Likelihood

Data Modeling N

ToyMC data Model Data/Model
Generation Visualization Fitting

C++ command line MINUIT

interface & macros

Data management &

: _ I/O support
histogramming

\/

Graphics interface

This slide and more details at W. Verkerke, French school of statistics 2008 / more details also in excercises
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References for lectures 1 and 2 (1/2)

F. James, Statistical Methods in Experimental Physics, World Scientific
2006

R. J. Barlow, Statistics — A guide to the Use of Statistical Methods in
Physical Sciences, Wiley 1999

G. Cowan, Statistical Data Analysis, Oxford Univ. Press, 1998

D. S. Sivia, Data Analysis — A Bayesian Tutorial, Oxford University
Press, 2008

L. Lyons, Statistics for nuclear and particle physicists, Cambridge
Univesity Press 1992

PDG, The Review of Particle Physics, C. Amsler et al., Physics
Letters B667, 1 (2008), http://pdg.lbl.gov/

® Chapter 31: Probability

® Chapter 32: Statistics

® Chapter 33: Monte Carlo Technigues
® And references therein
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References for lectures 1 and 2 (1/2)

@ S. Baker and R. D. Cousins, Clarification of the use of chi-square and
likelihood functions in fits to histograms, Nucl.Instrum.Meth.221:437-
442,1984.

@ ROOT Users Guide 5.24, http://root.cern.ch/drupal/content/users-
guide

@ Luca Lista, Statistical methods for data analysis,
http://people.na.infn.it/~lista/Statistics/

@ M. Liendl|, Experiment Simulation, CERN School of Computing 2006

@ M. Liendl, A. Heikkinen, Experiment Simulation, CERN School of
Computing 2008
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