Data Analysis with ROOT Lecture 2: Distributions and statistical tests

Ivica Puljak University of Split, FESB, Split, Croatia Ivica.Puljak@cern.ch

August 26, 2009

In this lecture

Distributions

- Properties
- Main distributions
- Point (parameter) estimation
 - Maximum likelilhood method
 - Least-squares method
- Interval estimation
 - Errors on the fit parameters
- Goodness-of-fit tests

p-value

Properties of distributions

Probability density function (PDF) = f(x)

Expectation

- Expectation of any random function g(x): $E(g) = \int g(x) f(x) dX$
- Expectation of x = **mean** of the f(x) = **expected value** of x:

$$E(x) = \mu = \overline{x} = \langle x \rangle = \int x f(x) dx$$

Variance

$$V(x) = \sigma^{2} = E \left[x - \mu \right]^{2} = E(x^{2}) - \mu^{2} = \int (x - \mu^{2}) f(x) dx$$

 σ is called the standard deviation

- E(x) is a measure of the **location** of the distribution
- V(x) is a mesure of the **spread** of the distribution

Moments

 $\mu_n = E(x^n)$ is the nth algebraic moment $V_n = E\{[x^n - E(x)]^n\}$ is the nth central moment $\mu'_n = E(|x^n|)$ is the nth absolute moment $V'_n = E\{|x^n - E(x)|^n\}$ is the nth absolute central moment

The coefficient of skewness A measure of the skewness of the distribution

The coefficient of kurtosis
A measure of the "peakedness" of the distribution

 $\gamma_1 = \frac{V_3}{V_2^{3/2}}$

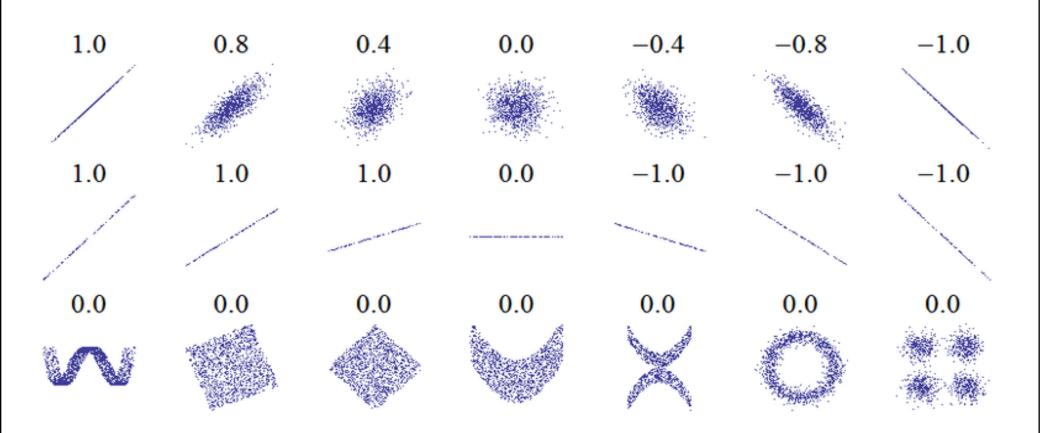
 $\gamma_2 = \frac{V_4}{V_2^2} - 3$

Covariances and correlations

- Joint PDF for two random variables = f(x,y)
- The **mean** and the **variance** of x and y: $\mu_x = E(x) = \iint xf(x, y)dxdy \qquad \mu_y = E(y) = \iint yf(y, y)dxdy$ $\sigma_x^2 = E \left[x - \mu_x\right]^2 - \sigma_y^2 = E \left[y - \mu_y\right]^2$
- **Covariance** $cov(x, y) = E[x \mu_x)(y \mu_y) = E(xy) E(x) E(y)$
- Correlation coefficient $\operatorname{corr}(x, y) = \rho(x, y) = \rho_{xy} = \frac{\operatorname{cov}(x, y)}{\sigma_x \sigma_y}$
- Covariance/Variance/Error matrix:

$$\boldsymbol{V} = \begin{bmatrix} \operatorname{cov}(x, x) & \operatorname{cov}(x, y) \\ \operatorname{cov}(x, y) & \operatorname{cov}(y, y) \end{bmatrix} = \begin{bmatrix} \sigma_x^2 & \rho_{xy} \sigma_x \sigma_y \\ \rho_{xy} \sigma_x \sigma_y & \sigma_y^2 \end{bmatrix}$$

Correlations - illustration



Binomial	0.3 - N = 15 p = 0.2	
Variable	r , positive integer $\leq N$	0.2
Parameters	N, positive integer; p, $0 \le p \le 1$	0.1-
Probability function	$P(r;N,p) = \binom{N}{r} p^r (1-p)^{N-r}$	0 2 4 6 8 10 12 14 r
Mean	E(r) = Np	0.3 - N = 15 p = 0.5
Variance	V(r) = Np(1-p)	0.2
Usage example	Example – Z decay: - $p = BR(Z \rightarrow ee) = 3\%$ - $P(5;80,0.03) = 6\%$ probability to find exactly 5 <i>ee</i> events out of 80 Z decays	0.1
Comment	P(r;N,p) is a probability of finding exactly r successes in N trials, when probability of success in each single trial is a constant, p	0.3 p = 0.75 0.2- 0.1-
		0 2 4 6 8 10 12 14 r

Figure from http://nedwww.ipac.caltech.edu/level5/Leo/Figures/figure1.jpeg

Multinomial distribution

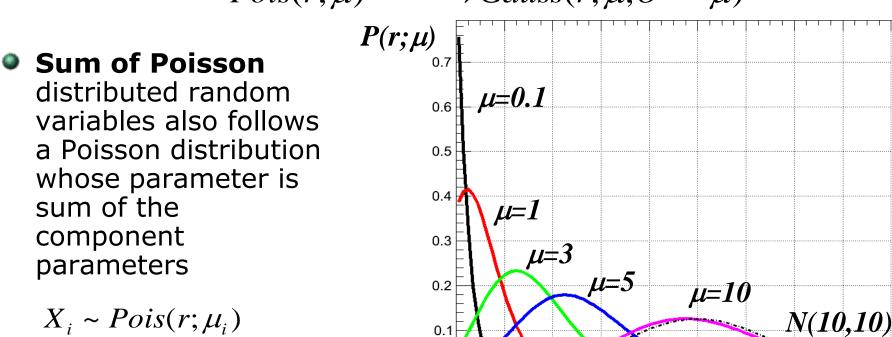
Variable	r_i , $i = 1,, k$, positive integers $\leq N$
Parameters	$ \begin{array}{ll} N, \mbox{ positive integer} \\ k, \mbox{ positive integer} \\ p_i \geq 0, \ i=1, \ \ldots \ k, \end{array} \sum_{i=1}^k p_i = 1 \\ \end{array} $
Probability function	$P(r_1,,r_k;N,p_1,,p_k) = \frac{N!}{r_1!\cdots r_k!} p_1^{r_1}\cdots p_k^{r_k}$
Mean	$E(r_i) = Np_i$
Variance	$V(r_i) = Np_i(1 - p_i)$
Usage example	Histogram containing N events distributed in k bins, with r_i events in the i^{th} bin
Comment	• Multinomial distribution is the generalization of the binomial distribution to the case of more than two possible outcomes of an experiment • When $p_i << 1$ (many bins) $V(r_i) \sim Np_i = r_i$

Poisson distribution

Variable	r, positive integer	
Parameters	μ , positive real number	
Probability function	$P(r;\mu) = \frac{\mu^r e^{-\mu}}{r!}$	
Mean	$E(r) = \mu$	
Variance	$V(r) = \mu$ Siméon-Denis Poisson (1781-1840)	
Usage example	Number of events <i>r</i> collected after integrated luminosity $\not\!\!L dt$. Expected number of events is $\mu = \sigma \not\!\!L dt$. σ is the cross section.	
Comments	• $P(r;\mu)$ expresses the probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event	
	 μ represents expected number of events in a given time interval Time between two successive events is exponentially distributed Poisson distribution is also called Poissonian 	

Poisson distribution

For a large μ Poisson distribution converges towards a Gaussian distribution $Pois(r;\mu) \xrightarrow{N>>} Gauss(r;\mu,\sigma^2 = \mu)$



0.1

$$X_{i} \sim Pois(r; \mu_{i})$$
$$Y = \sum_{i} X_{i} \sim Pois(r; \sum_{i} \mu_{i})$$

• F.g. When combining signal (s) and background (b) $P(r;s,b) \sim Pois(r;s+b)$

6

8

10

12

14

16

18

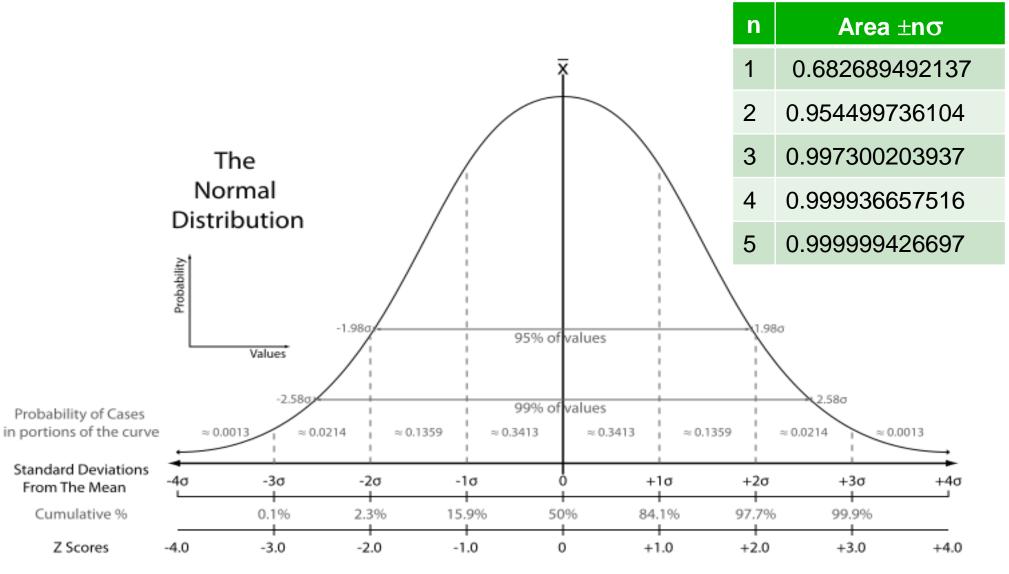
20

r

Normal or Gaussian distribution

Variable	x, positive real number	
Parameters	μ , real number σ , real number	
Probability density function	$f(x) = N(\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right]$	Carl Friedrich Gauss (1777-1855)
Mean	$E(x) = \mu$	
Variance	$V(x) = \sigma^2$	
Cumulative distribution	$F(x) = \phi\left(\frac{x-\mu}{\sigma}\right); \phi(Z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{Z} e^{-\frac{1}{2}x^2} dx$	
Comments	 The most important distribution in statistics The half-width at half-height is 1.176<i>σ</i> <i>N</i>(0,1) is called <i>standard</i> Normal density Any linear combination of the x_i is also Normal 	

Gaussian – some properties



Why is Gauss Normal?

Central limit theorem:

- If we have a set of N independent variables x_i , each from a distribution with mean μ_i and variance σ_i^2 , then the distribution of the sum $X = \Sigma x_i$
- a) has a mean $<\!\!X\!\!> = \Sigma \,\mu_i$,
- b) has a variance $V(X) = \Sigma \sigma_i^2$,
- c) becomes Gaussian as $N \rightarrow \infty$.
- Therefore, no matter what the distributions of original variables may have been, their sum will be Gaussian in a large N limit
 - Example: measurements errors
- Example (adopted from Barlow):

"Human heights are well described by a Gaussian distribution, as many other anatomical measurements, as these are due to the combined effects of many genetic and environmental factors."

More than two variables

- Let's say that each event measure three quantities A, B and C
- We than have three random variables x, y and z
- Vector of measurements is now a matrix:

Event	Α	В	С
1	<i>x</i> ₁	<i>Y</i> ₁	z_1
2	<i>x</i> ₂	<i>y</i> ₂	z_2
	•••	•••	•••
N	X_N	\mathcal{Y}_N	z_N
Mean→	μ_x	μ_{y}	μ_{z}

• Introducing new notation $(x, y, z) \rightarrow (x_{(1)}, x_{(2)}, x_{(3)}) = \vec{x} = x$ $(\mu_x, \mu_y, \mu_z) \rightarrow (\mu_{(1)}, \mu_{(2)}, \mu_{(3)}) = \vec{\mu} = \mu$

• In case of *m* variables $\mathbf{x} = (x_{(1)}, x_{(2)}, \dots, x_{(m)})$

Please note: this multivariate vector x is a vector of m variables for one event, while in the case of one variable x is a vector of values of one variable for N events

Multivariate Gaussian

• Multivariate Gaussian for the vector $x = (x_{(1)}, x_{(2)}, ..., x_{(m)})$

$$f(\mathbf{x}; \boldsymbol{\mu}, V) = \frac{1}{(2\pi)^{n/2}} \left| V \right|^{1/2} \exp \left[-\frac{1}{2} \mathbf{k} - \boldsymbol{\mu} \mathbf{k} - \boldsymbol{\mu} \right]$$

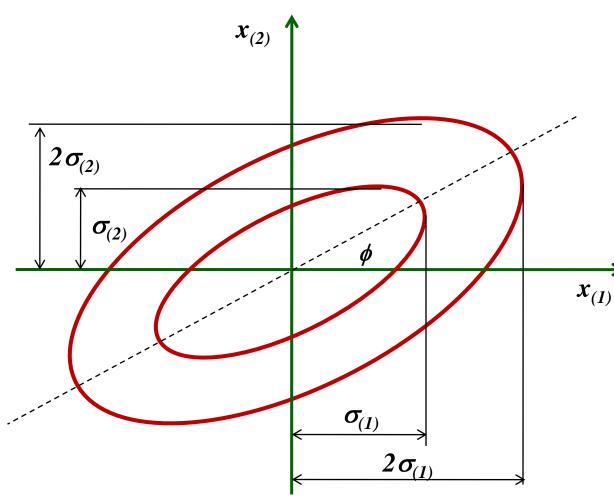
• x and μ are column vectors, while x^T and μ^T are row vectors

$$\mu_{(i)} = E(x_{(i)})$$
 $V_{ij} = \operatorname{cov}[x_{(i)}, x_{(j)}]$

• Case of two variables (m = 2)

$$\begin{aligned} f(x_{(1)}, x_{(2)}; \mu_{(1)}, \mu_{(2)}, \sigma_{(1)}, \sigma_{(2)}) &= \\ \frac{1}{2\pi\sigma_{(1)}\sigma_{(2)}\sqrt{1-\rho^{2}}} \times \exp\left\{-\frac{1}{2} \left[\left[-\mu_{(1)} - \mu_{(1)} - \mu_{(2)} - \mu_{(2)} \left[\left[\sigma_{(1)}^{2} - \rho\sigma_{(1)}\sigma_{(2)} - \sigma_{(2)}^{2} \right]^{-1} \left[x_{(1)} - \mu_{(1)} - \mu_{(1)} \right] \right] \right\} \\ &= \\ \frac{1}{2\pi\sigma_{(1)}\sigma_{(2)}\sqrt{1-\rho^{2}}} \times \exp\left\{-\frac{1}{2(1-\rho^{2})} \left[\left(\frac{x_{(1)} - \mu_{(1)}}{\sigma_{(1)}} \right)^{2} + \left(\frac{x_{(2)} - \mu_{(2)}}{\sigma_{(2)}} \right)^{2} - 2\rho \left(\frac{x_{(1)} - \mu_{(1)}}{\sigma_{(1)}} \right) \left(\frac{x_{(2)} - \mu_{(2)}}{\sigma_{(2)}} \right) \right] \right] \end{aligned}$$

2D Gaussian: iso-probability curves



	P _{1D}	P _{2D}
1σ	0.6827	0.3934
2σ	0.9545	0.8647
3σ	0.9973	0.9889
1.515σ		0.6827
2.486σ		0.9545
3.439σ		0.9973

Remember (roughly) this values, we'll use them later in errors estimates!

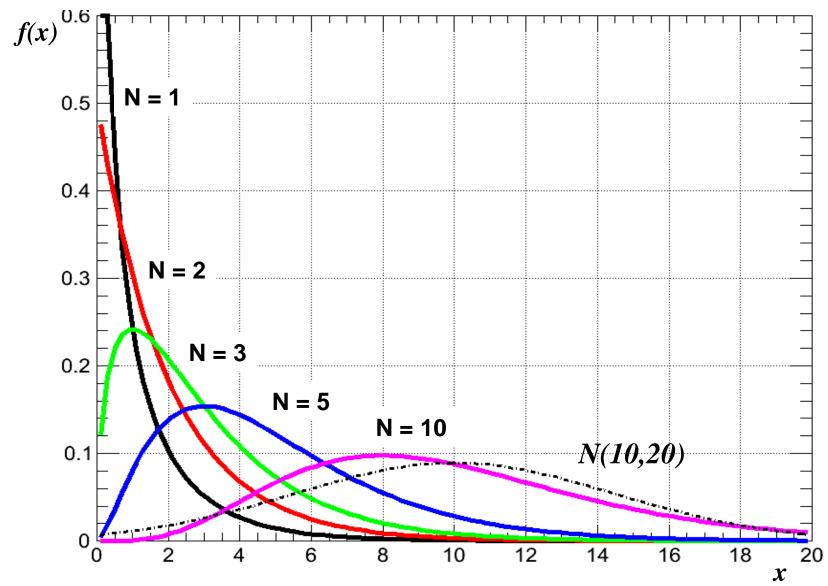
 ϕ is a measure of the correlation (more details later)

Adopted from L. Lista

Chi-square distribution

Variable	x, positive real number	
Parameters	N, positive integer (number of "degrees of freedom")	
Probability function	$f(x) = \left(\frac{1}{2}\left(\frac{X}{2}\right)^{\frac{N}{2}-1}e^{-\frac{x}{2}}\right) / \Gamma\left(\frac{N}{2}\right)$	
Mean	E(x) = N	
Variance	V(x) = 2N	
Usage example	Chi-square test for goodness of fit	
Comments	 If x_i are k independent, normally distributed random variables with mean 0 and variance, then the random variable Q = Σx_i² is distributed according to the chi-square distribution with k degrees of freedom The chi-square distribution is a special case of the gamma distribution. 	

Chi-square distribution



Some other distributions

Student's t-distribution

- Used for hypothesis testing
- First published in 1908 by W. S. Gosset, while he worked at a Guinness Brewery, under the pseudonym Student)

Beta distribution

Used in Bayesian statistics

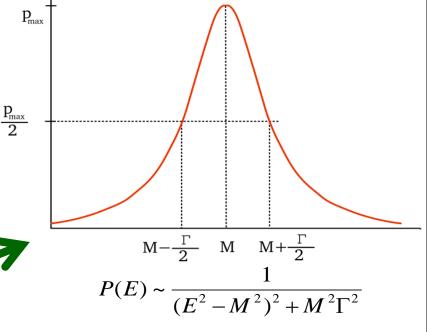
Gamma distribution

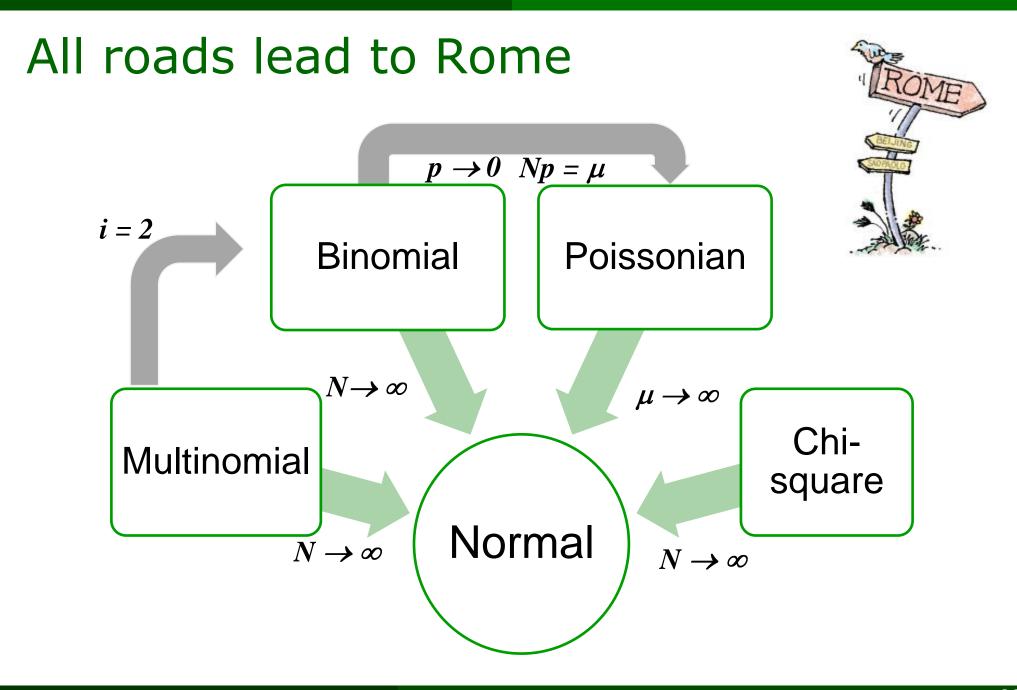
- Probability model for waiting time
- Cauchy or Lorentz or Breit-Wigner distribution
 - A solution to the differential equation describing a **resonance**
 - Energy distribution of a resonance

Log-Normal distribution

- Used when including systematic errors in the analysis
- If x is Log-Normally distributed, than log(x) is Normally distributed

P(E)





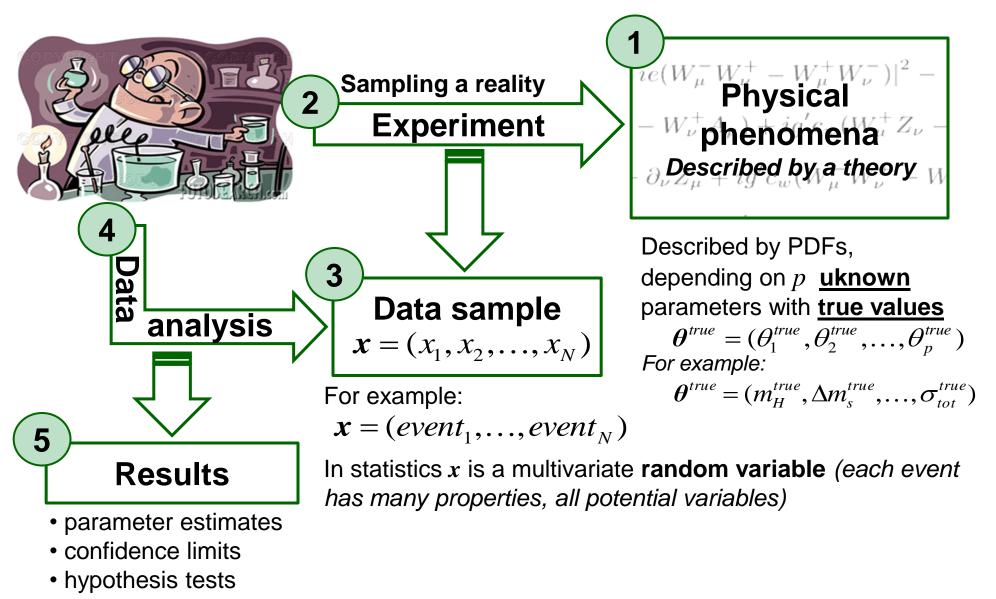
From ROOT User Guide

All the probability density functions are defined in the header file Math/DistFunc.h and are part of the MathCore libraries.

double ROOT::Math::beta pdf(double x, double a, double b); double ROOT::Math::binomial pdf(unsigned int k,double p,unsigned int n); double ROOT::Math::breitwigner pdf(double x, double gamma, double x0=0); double ROOT::Math::cauchy pdf(double x, double b=1, double x0=0); double ROOT::Math::chisquared pdf(double x, double r, double x0=0); double ROOT::Math::exponential pdf(double x, double lambda, double x0=0); double ROOT::Math::fdistribution pdf(double x, double n, double m, double x0=0); double ROOT::Math::gamma pdf(double x, double alpha, double theta, double x0=0); double ROOT::Math::gaussian pdf(double x,double sigma,double x0=0); double ROOT::Math::landau pdf(double x,double s,double x0=0); double ROOT::Math::lognormal pdf(double x,double m,double s,double x0=0); double ROOT::Math::normal pdf(double x, double sigma, double x0=0); double ROOT::Math::poisson pdf(unsigned int n, double mu); double ROOT::Math::tdistribution pdf(double x,double r,double x0=0); double ROOT::Math::uniform pdf(double x,double a,double b,double x0=0);

Some PDFs exist also in the namespace **TMath**

General picture

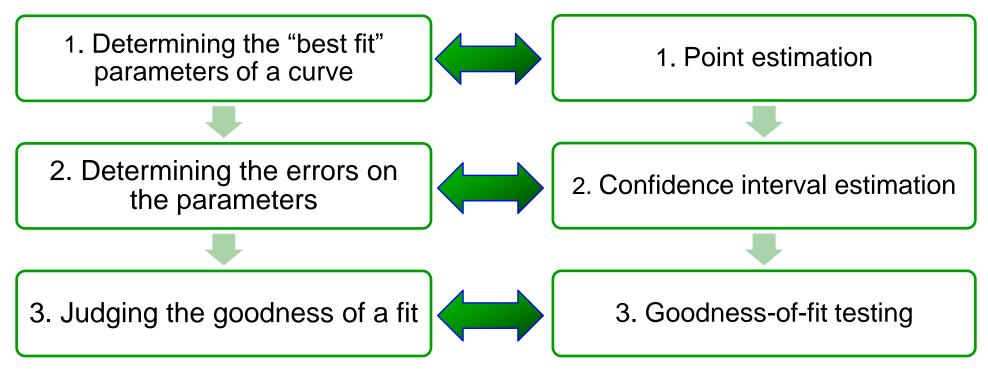


Physicists and statisticians

Example: histogram fitting

Physicists

Statisticians



Adopted from [Baker, Cousins, 1984]

Likelihood function

- Assume that observations (events) are independent
 - With PDF depending on parameters $\boldsymbol{\theta}$: $f(x_i; \boldsymbol{\theta})$
- The probability that all N events will happen, i.e. the PDF of x is, by independence, a product of all single events PDFs

$$P(\boldsymbol{x};\boldsymbol{\theta}) = P(x_1,\ldots,x_N;\boldsymbol{\theta}) = \prod_{i=1}^N f(x_i;\boldsymbol{\theta})$$

- When the variable x is replaced by the observed data x^{θ} , then P is no longer a PDF
- It is ussual to denote it by L and call $L(X^{\theta}; \theta)$ the **likelihood function**
 - Which is now a function of θ only

$$L(\boldsymbol{\theta}) = P(\boldsymbol{X}^{\boldsymbol{\theta}}; \boldsymbol{\theta})$$

24

• Often in the literature, and through this lectures, it's convenient to keep X as a variable and continue to use notation $L(X; \theta)$

Statistic

- Be carefull: statistic is not statisticS!
- Any new random variable (f.g. T), defined as a function of a measured sample x is called a statistic

$$T = T(x_1, \ldots, x_N)$$

25

For example, the sample mean

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 is a statistic!

- A statistic used to estimate a parameter is called an estimator
 - For instance, the sample mean is a statistic and an estimator for the population mean, which is an uknown parameter
 - Estimator is a function of the data
 - Estimate, a value of estimator, is our "best" guess for the true value of parameter
- Some other example of statistics: sample median, variance, standarde deviation, quartiles, percentiles, t-statistics, chi-square statistics, kurtosis, skewness etc.

Properties of a good estimator

Consistent

 Estimate coverges to the true value as amount of data increases

Unbiased

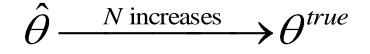
 Bias is the difference between expected value of the estimator and the true value of the parameter

Efficient

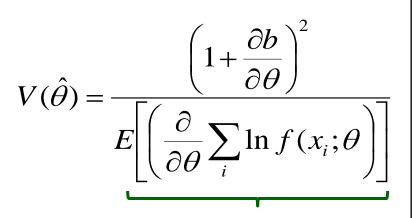
- Cramér-Rao bound for the minimum of the variance of estimator:
- Estimator is efficient when its variance reaches the lower bound

Robust

 Insensitive to departures from assumptions in the PDF



 $b = E(\hat{\theta}) - \theta^{true} = 0$



Fisher information

How to find a good estimator?

The Method of Moments

- Giving consistent and asymptotically unbiased estimators
- But are not as efficient as the maximum likelihood estimates
- Not covered in this lecture

The Maximum Likelihood Method

- Also giving consistent and asymptotically unbiased estimators
- Widely used in practice

The Least Squares Method (Chi-Square)

- Giving consistent estimator
- Linear chi-square estimator is unbiased
- Frequently used in histogram fitting

Some good estimators

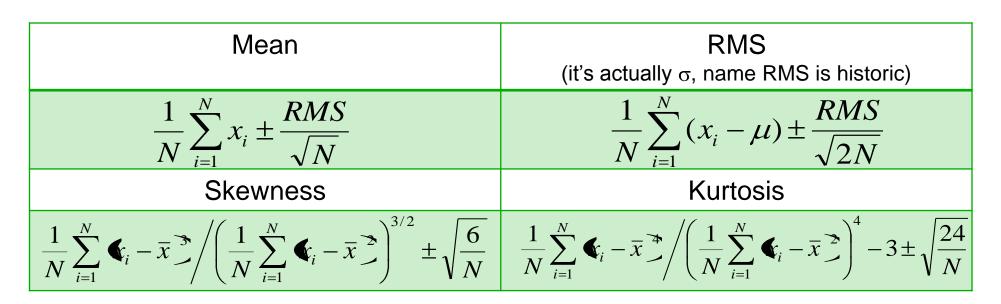
- Suppose we have
 - a set of N independent measurements x_i ,
 - assumed to be unbiased measurements of some quantity μ and variance $\sigma^{\!2}$
- **1.** If both μ and σ are uknown

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})$ $V(\hat{\mu}) = \frac{\sigma^2}{N}$

- 2. If only σ is known \rightarrow no difference for $\hat{\mu}$
- 3. If only μ is known $\rightarrow \qquad \widehat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^N (x_i \mu)$
- 4. If all x_i have different σ_i

$$\hat{\mu} = \frac{1}{w} \sum_{i=1}^{N} w_i x_i \quad w_i = \frac{1}{\sigma_i^2} \quad w = \sum_i w_i \quad \sqrt{V(\hat{\mu})} = \frac{1}{\sqrt{w}}$$

Estimators in ROOT - values



Total number of events N is only in the currently defined range

From the ROOT Reference Manual

"Note that the mean value/RMS is computed using the bins in the currently defined range (see <u>TAxis</u>::<u>SetRange</u>). By default the range includes all bins from 1 to nbins included, excluding underflows and overflows. To force the underflows and overflows in the computation, one must call the static function <u>TH1::StatOverflows(kTRUE</u>) before filling the histogram."

Estimators in ROOT - display

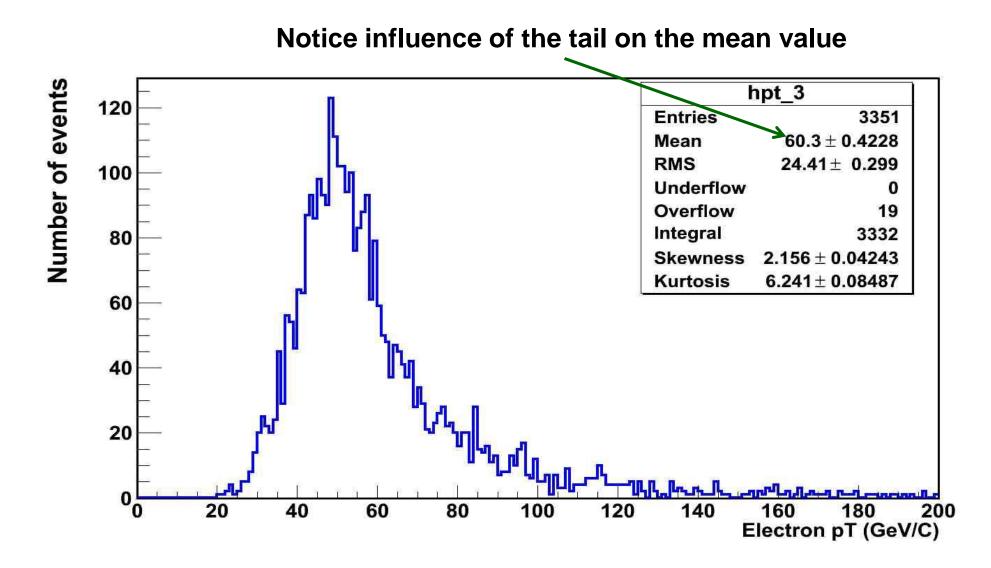
- Estimators display in the statistic box
 - Drawn by default; can be eleminated by **TH1**::SetStats(kFALSE)
- gStyle->SetOptStat (mode) allows to select the type of displayed information
 - mode = ksiourmen (default = 000001111)

n = 1	the name of histogram is printed
e = 1	the number of entries
m = 1	the mean value
m = 2	the mean and mean error values
r = 1	the root mean square (RMS)
r = 2	the RMS and RMS error
u = 1	the number of underflows
o = 1	the number of overflows
i = 1	the integral of bins
s = 1	the skewness
s = 2	the skewness and the skewness error
k = 1	the kurtosis
k = 2	the kurtosis and the kurtosis error

A. Heikkinen and I. Puljak: Data Analysis with ROOT

CERN School of Computing August 17 – 28, 2009, Götingen, Germany

Estimators in ROOT - example



Maximum likelihood method

- Reminder: the probability that all N independent events will happen is given by the **likelihood function** $L(x;\theta) = \prod_{i=1}^{N} f(x_i;\theta)$
- The principle of maximum likelihood (ML) says:

The maximum likelihood estimator $\hat{\theta}$ is the value of θ for which the likelihood is a maximum!

- In words of R. J. Barlow: "You determine the value of θ that makes the probability of the actual results obtained, $\{x_1, ..., x_N\}$, as large as it can possible be."
- In practice it's easier to maximize the log-likelihood function

$$\ln L(\boldsymbol{x};\boldsymbol{\theta}) = \sum_{i=1}^{n} \ln f(x_i;\boldsymbol{\theta})$$

• For p parameters we get a set of p likelihood equations

$$\frac{\partial \ln L(\boldsymbol{x};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_j} = 0, \quad j = 1, 2, \dots, p$$

- It is often more convenient the **minimize** $-\ln L$ or $-2\ln L$
 - Minimization with MINUIT/MIGRAD or FUMILI in ROOT

Maximum Likelihood - comments

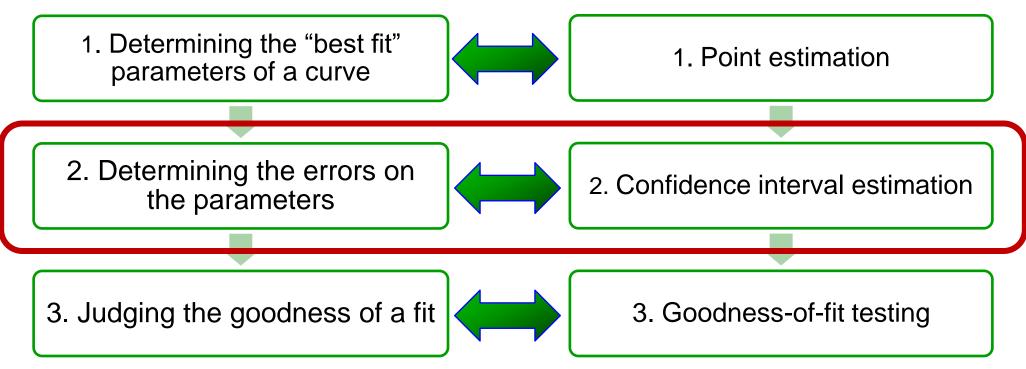
- ML estimator is consistent
- ML estimate is approximately unbiased and efficient for large samples
 - Still usefull for small samples, but with extra care!
- ML estimate is invariant
 - A transformation of parameter won't change the answer
- ML estimate is not the most likely value of parameter; it is the estimate that makes your data most likely!
- What was presented up to now is sometimes called unbinned maximum likelihood
- Binned maximum likelihood: when data are organized in bins
 - See "ML fit of a histogram" later on
- Extra care to be taken when the best value of parameters are near imposed limits

- ML has many advantages, but a few drawbacks too
 - F.g. goodness-of-fit for ML is non-trivial issue, still open and debated

Example: histogram fitting

Physicists

Statisticians



Adopted from [Baker, Cousins, 1984]

Errors on the ML estimates (1/4)

How to obtain errors on the parameters estimated by the ML?

Option 1: Matrix inversion

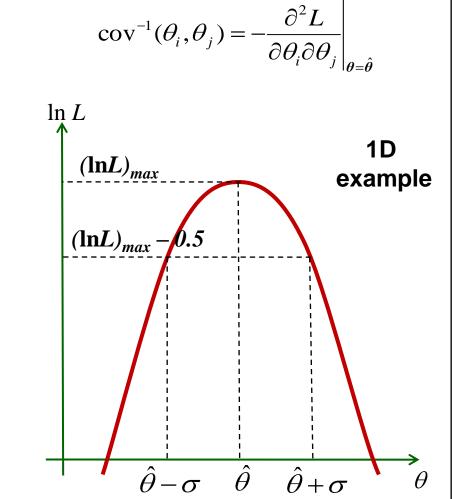
- Covariance matrix is minus the inverse of the matrix of second derivatives
- Done with MINUIT/HESSE in ROOT

Option 2: Log – likelihood curve

 In the large N limits the likelihood function is Gaussian and the log-likelihood is parabola

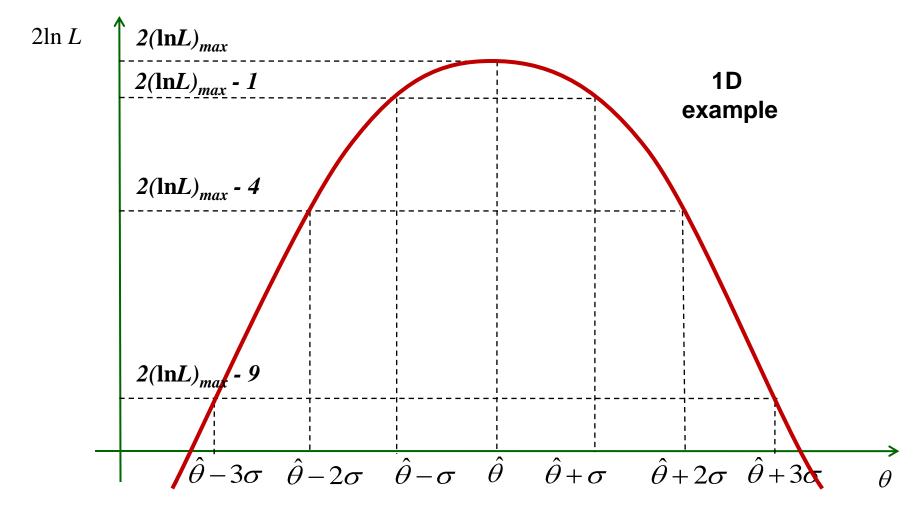
• By definition
$$(\ln L)_{max} = \ln L($$
) $\hat{\theta}$

- $\pm 1\sigma$ limits on θ are those values of θ for which $\ln L$ falls by 0.5 from its maximum value L_{max}
- For ±2σ (±3σ) limits ln L falls by 2 (4.5)
- Done with MINUIT/MINOS in ROOT



Errors on the ML estimates (2/4)

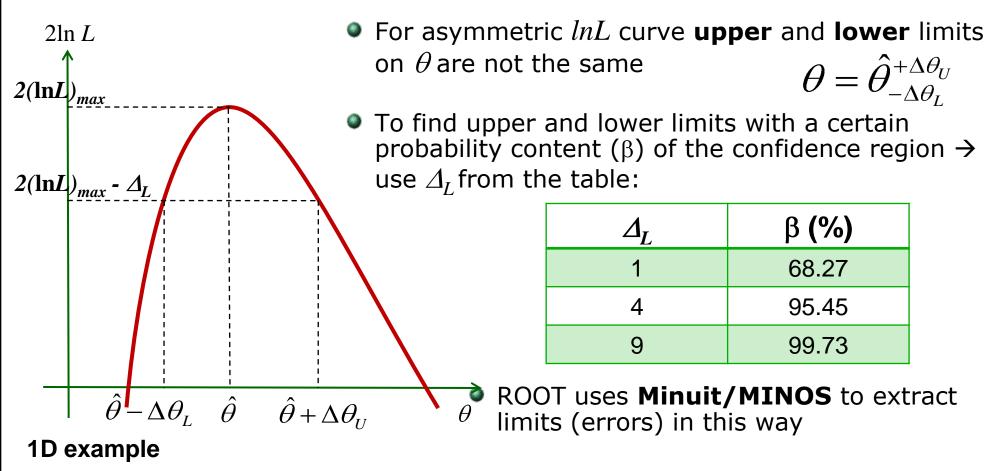
The same, but now maximizing 2lnL



Errors on the ML estimates (3/4)

Asymmetric example

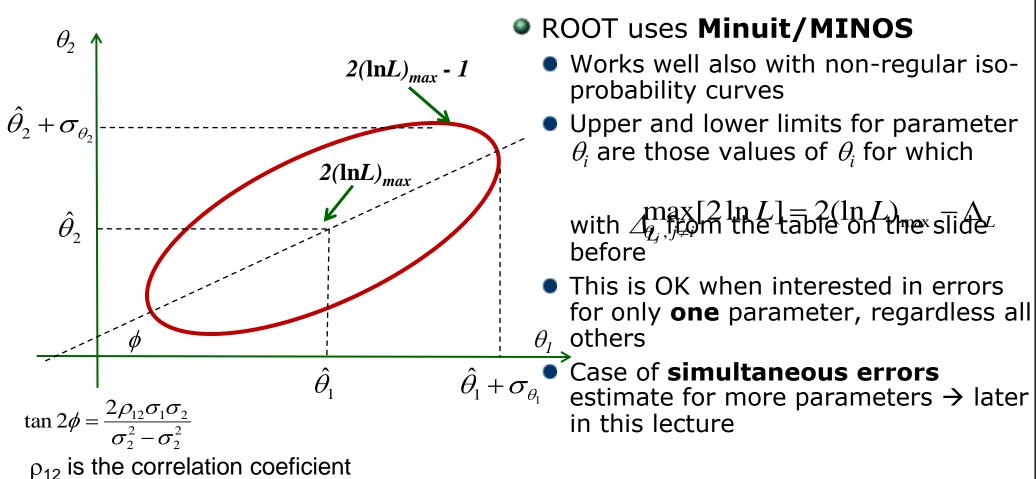
- For finite samples and/or non-linear problems *lnL* is not necessarily parabolic nor symmetric
- Confidence intervals can still be extracted from the *lnL* curve



Errors on the ML estimates (4/4)

2D example: Standard error ellipse

- For more information see f.g. PDG
- This is so called the plane tangent method



Example – ML fit of a histogram (1/2)

Suppose one has

- N events in a histogram with k bins
- n_i in the i^{th} bin \rightarrow vector of data $\boldsymbol{n} = (n_1, ..., n_k)$
- Expected number of events in each bin depend on uknown parameters θ , $v(\theta) = (v_1, ..., v_k)$
- Given v_i probability to have n_i is $f(n_i; v_i)$
 - Usually probability is Poissonian:

$$f(n_i; \nu_i) = \frac{\nu_i^{n_i} e^{-\nu_i}}{n_i!}$$

The likelihood function is

$$L(\boldsymbol{n};\boldsymbol{v}) = \prod_{i} \frac{\nu_{i}^{n_{i}} e^{-\nu_{i}}}{n_{i}!}$$

• To find best estimate of θ we have to maximize $\ln L(n; v)$ based on the contents of the bins

Example – ML fit of a histogram (2/2)

In can be shown that this procedure is equivalent to maximizing the likelihood ratio

$$\lambda(\boldsymbol{\theta}) = \frac{L(\boldsymbol{n}; \boldsymbol{v}(\boldsymbol{\theta}))}{L(\boldsymbol{n}; \boldsymbol{m})} \approx \frac{L(\boldsymbol{n}; \boldsymbol{v}(\boldsymbol{\theta}))}{L(\boldsymbol{n}; \boldsymbol{n})}$$

- Where $\boldsymbol{m} = (m_1, ..., m_k)$ are true (uknown) values of \boldsymbol{n}
- Best bin-to-bin model independent maximum likelihood estimate of *m* is actually *n*
- Maximizing $\lambda(\theta)$ is equivalent to **minimizing** $-2\ln\lambda(\theta) = 2\sum_{i=1}^{N} \left[\nu_i(\theta) - n_i + n_i \ln \frac{n_i}{\nu_i(\theta)} \right]$
 - Which is now much easier to implement then maximizing $\ln L(n; v)$
- In case where $n_i = 0$, last term in eq. above is zero

Extended maximum likelihood

- In the usual maximum likelihood method
 - Parameter relevant to the shapes of distributions are determined
 - Absolute **normalization** is **equal** to the **observed** number of events
- If we want to estimate the absolute normalization the so called "Extended maximum likelihood method" is used
- Example: From the vector of measurements $\mathbf{x} = (x_1, ..., x_N)$ we want to estimate number of signal events (s), number of background events (b) and a vector of parameters $\boldsymbol{\theta} = (\theta_1, ..., \theta_p)$
- Likelihood function is

$$L(\boldsymbol{x};s,b,\boldsymbol{\theta}) = \frac{(s+b)^N e^{-(s+b)}}{N!} \prod_{i=1}^N \left(\frac{s}{s+b} P_s(x_i;\boldsymbol{\theta}) + \frac{b}{s+b} P_b(x_i;\boldsymbol{\theta}) \right)$$

• To obtain s, b and θ we maximize (or mimimize -2lnL)

Constant

$$\ln L(\boldsymbol{x};s,b,\boldsymbol{\theta}) = -s - b + \sum_{i=1}^{N} \ln \left(\frac{s}{s+b} P_s(x_i;\boldsymbol{\theta}) + \frac{b}{s+b} P_b(x_i;\boldsymbol{\theta}) \right) - \ln(N!)$$

Least squares method

- Suppose we have
 - A set of precisely known values $x = (x_1, ..., x_N)$
 - For example histograms bins
 - At each x_i
 - a measured value y_i
 - For example number of events in the given histogram bin
 - corresponding error on measured value $\sigma_{\rm i}$
 - predicted value of measurement that depends on parameters $\theta = (\theta_1, ..., \theta_p)$ we want to estimate: $F(x_i; \theta)$
 - Suppose that measurements are independent
- To find best estimate of θ we minimize the suitably weighted summ of squared differences between measured and predicted values \rightarrow so called "least squares" or "chi-square" $N = E(x; \theta)^{2}$

$$\chi^{2}(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{\boldsymbol{\Phi}_{i} - F(\boldsymbol{x}_{i};\boldsymbol{\theta})^{2}}{\sigma_{i}^{2}}$$

Choice of measurement errors

• If y_i are Gaussian distributed with variances σ_i

$$\chi^{2}(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{\langle \boldsymbol{\psi}_{i} - F(\boldsymbol{x}_{i}; \boldsymbol{\theta}) \rangle^{2}}{\sigma_{i}^{2}} = -2\ln L(\boldsymbol{\theta}) + \text{constant}$$

Minimizing chi-square χ^2

Maximizing log-likelihood *lnL*

or minimizing -2lnL

- If y_i are Poissonian distributed two choices
 - Reminder first: for Poissonian **variance = mean value** ($\sigma^2 = \mu$)
 - So called **Pearson's chi-square** (or "chi-square")

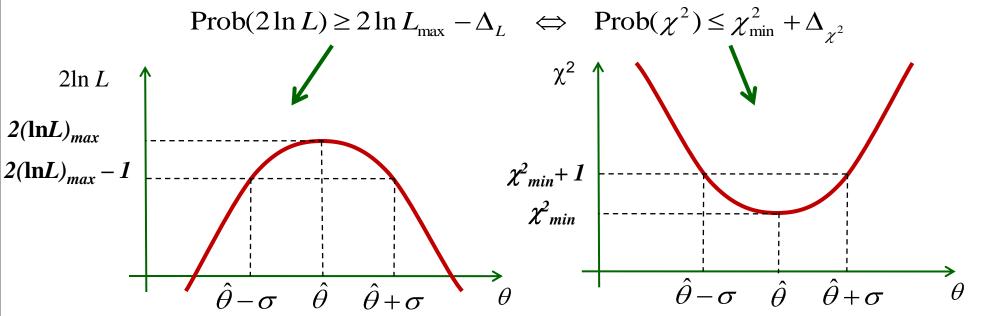
- $\chi^{2}(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{(\boldsymbol{\psi}_{i} F(x_{i}; \boldsymbol{\theta}))^{2}}{F(x_{i}; \boldsymbol{\theta})} \quad \bullet \quad \text{But now } \sigma_{i} \text{ depends on } \boldsymbol{\theta} \text{ which complicates the minimization}$
- So called Neyman's chi-square (or "modified chi-square")

$$\chi^{2}(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{\boldsymbol{\Phi}_{i} - F(x_{i};\boldsymbol{\theta})^{2}}{y_{i}}$$

- Minimization simpler
- Easier to combine data with different basic accuracies
- Problem with $y_i = 0$
 - For example in ROOT this bin ignored
 - For small samples better use ML

Finding parameters and errors

- The best values of parameters $\theta = (\theta_1, ..., \theta_p)$ are found by solving p equations $\frac{\partial \chi^2(\theta)}{\partial \theta_i} = 0, \quad i = 1, ..., p$
- Errors (or limits) on parameters are found in the equivalent was as for the ML method
 - Matrix inversion
 - Shape of χ^2 arround it's minimum value



Multiparameters errors

- When interested in simultaneous error estimation on more than one parameter, then the probability content (coverage probability) of the constant -2lnL or χ^2 contours is much smaller then in 1D case
- Example (recall 2D Gaussians probabilities):

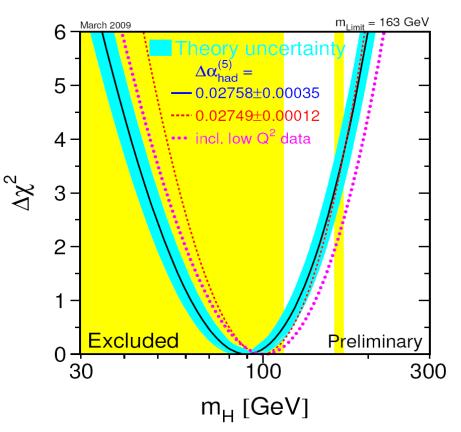
• Therefore, to increase the coverage probability we have to increase or \rightarrow see the values in the table (from PDG) $\Delta_L \quad \Delta_{\gamma^2}$

Table 32.2: $\Delta \chi^2$ or $2\Delta \ln L$ corresponding to a coverage probability $1 - \alpha$ in the large data sample limit, for joint estimation of *m* parameters.

$(1-\alpha)$ (%)	m = 1	m = 2	$m=3^{\bigcirc}$
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

ROOT **Tminuit**::Contour draws contours of constant -2lnL or $\chi 2$ with a given probability coverage use

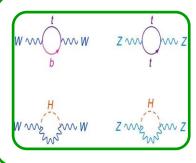
Example higgs boson mass costrains from Electroweak precision tests



Method

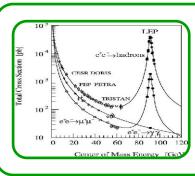
Step 1 – Very precise measurements of SM

- Measure SM parameters extremly well
- α , M₇, G_F
- μ lifetime, (g-2)_e, LEP ...



Step 2 – Predictions (assuming Higgs boson)

- Calculate quantum corrections to other observables
 - m_W, A_{I R}, sin²θ_w...
- Depending on α , \mathbf{M}_{z} , \mathbf{G}_{F} , but also on \mathbf{m}_{t} , \mathbf{m}_{H} ...



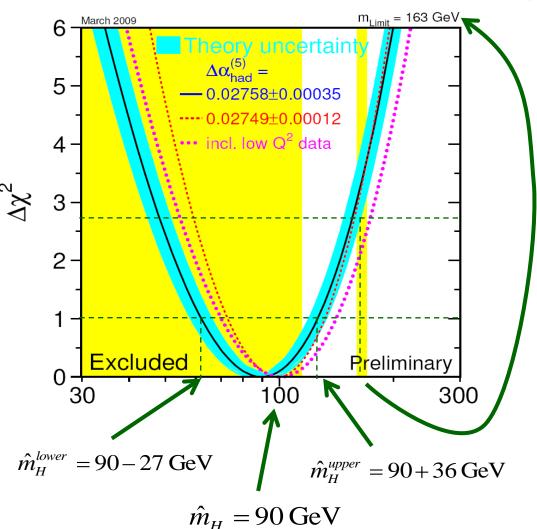
- Step 3 Precise electroweak measurements
- Measure very precisely observables from Step 2
- @ SLC, LEP, Tevatron ...

Results from step 2 and 3

	Measurement	Fit	0 ⁿ 0	^{neas} –(1	Ͻ ^{fit} /σ ^m 2	eas 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02767				
m _z [GeV]	91.1875 ± 0.0021	91.1874				
Γ _z [GeV]	2.4952 ± 0.0023	2.4959	-			
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	41.478			-	
R _I	20.767 ± 0.025	20.742				
A ^{0,I} fb	0.01714 ± 0.00095	0.01643		-		
A _I (Ρ _τ)	0.1465 ± 0.0032	0.1480	-			
R _b	0.21629 ± 0.00066	0.21579		-		
R _c	0.1721 ± 0.0030	0.1723				
R _c A ^{0,b}	0.0992 ± 0.0016	0.1038				
A ^{0,c}	0.0707 ± 0.0035	0.0742				
A _b	0.923 ± 0.020	0.935		•		
A _c	0.670 ± 0.027	0.668				
A _l (SLD)	0.1513 ± 0.0021	0.1480			•	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314		-		
	80.399 ± 0.025			-		
Г _w [GeV]	2.098 ± 0.048	2.092				
m _t [GeV]	173.1 ± 1.3	173.2	•			
March 2009			0	1	2	3

A. Heikkinen and I. Puljak: Data Analysis with ROOT

The best fit

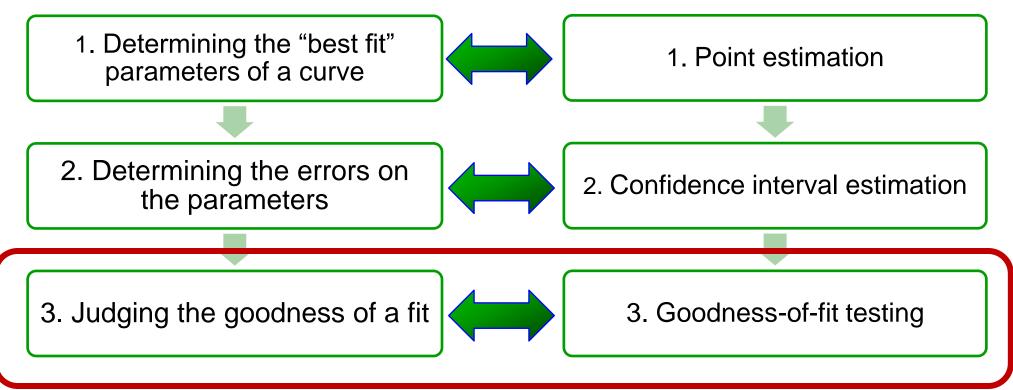


- From the LEP Electroweak Working group:
 - "The preferred value for its mass, corresponding to the minimum of the curve, is at 90 GeV, with an experimental uncertainty of +36 and -27 GeV (at 68 percent confidence level derived from Delta chi2 = 1 for the black line, thus not taking the theoretical uncertainty shown as the blue band into account)."
 - "The precision electroweak measurements tell us that the mass of the Standard-Model Higgs boson is lower than about 163 GeV (one-sided 95 percent confidence level upper limit derived from Delta chi2 = 2.7 for the blue band, thus including both the experimental and the theoretical uncertainty)."

Example: histogram fitting

Physicists

Statisticians



Adopted from [Baker, Cousins, 1984]

Goodnes-of-fit tests

- We are now interested in this kind of questions
 - Is the fit good or not?
 - How significant is discrepancy between data and obtained functional form?
 - How well does the vector of measurements in the histogram $\mathbf{n} = (n_1, ..., n_k)$ compare with predicted values $\mathbf{v} = E[\mathbf{n}] = (v_1, ..., v_k)$?
- These questions can be answered with a goodnes-of-fit test
 - Which is itself a part of a so called HYPOTHESIS TESTING (more in Lecture 3)
- So called **NULL hypothesis** H_{θ} is:

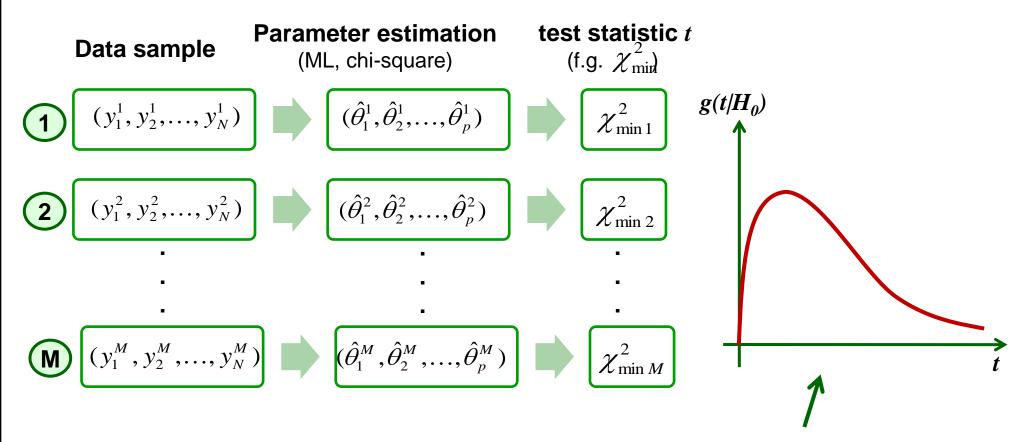
The functional form (or predicted values) describes well our data!

- The form (i.e. the parameters that form depends on) is found by one of the methods for parameter estimation (moments, ML, chi-square)
- We are now looking for a statistic t (usually a single number) whose value reflects an agreement between the data and the hypothesis
 - The most commonly used statistic is the

$$\chi^2_{
m min}$$

Distribution of the test statistic t

• **Imagine** we have many (M) experiments (i.e. data samples) trying to test the null hypothesis H_0

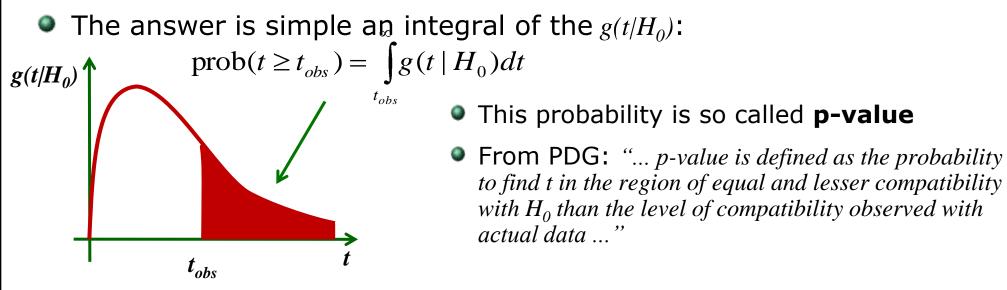


• We **would** then obtain a probability distribution function (PDF) of the test statistics, giving the H_0 is true, $g(t/H_0)$

p-value

- But (unfortunately) we usually have only one experiment S!
- Let's say the value of test statistic for our experiment is t_{obs}
- And let's suppose that large value of t suggest larger discrepancy of the H₀ with observed data (usually the case)
- Now, having $g(t/H_0)$ we can for example answer to the question

What is the probability to obtain the value of t equall or greater than the value t_{obs} we observed?



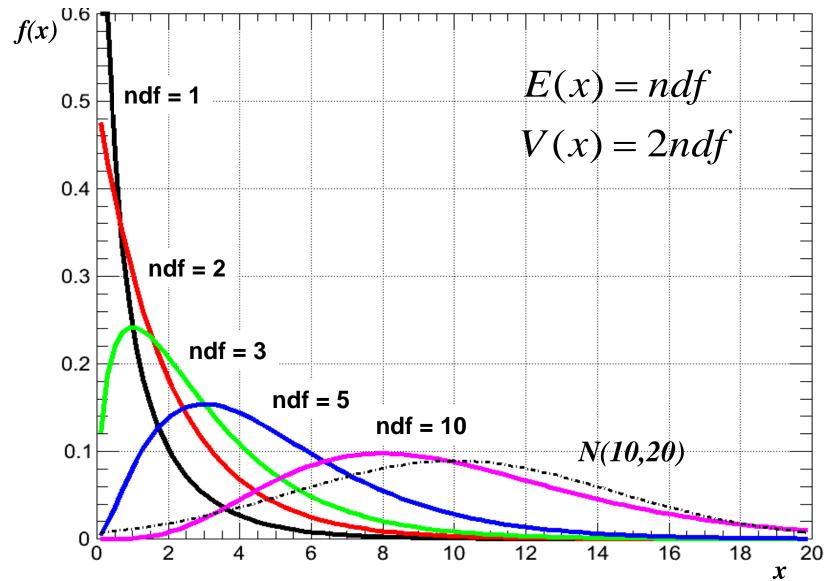
χ^2 (ndf) distribution

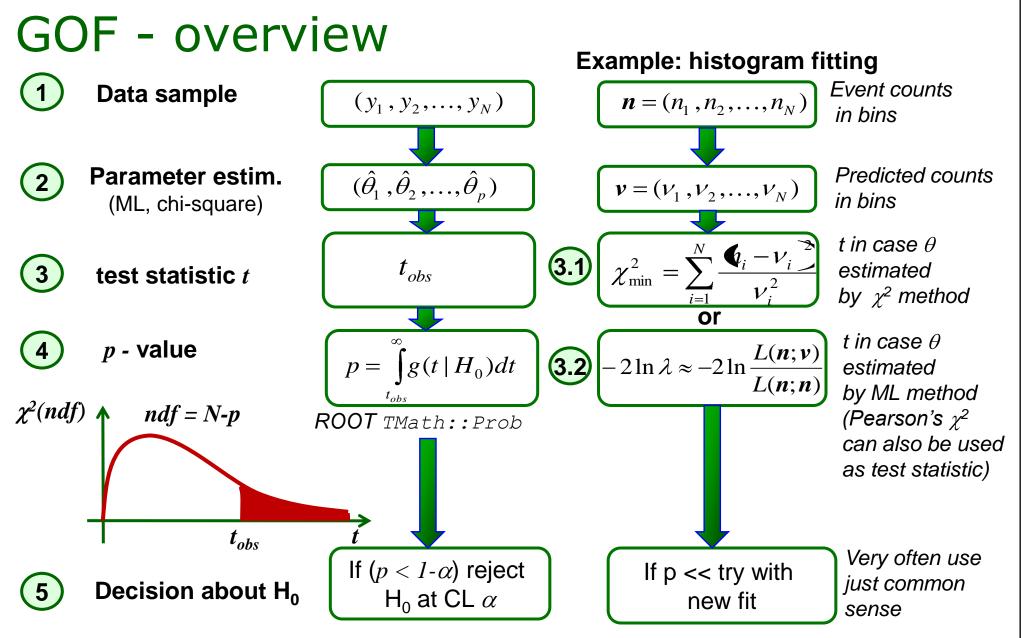
- Well, this is all nice, but: as we don't have so many experiments, how do we get the PDF for the test statistics, $g(t/H_0)$?
- For once, it turns out that we are `lucky': most commonly used statistics fo GOF testing are distributed as a χ^2 distribution!
 - That's actually the reason why they are so often used ③
 - For example: when fitting histograms with N bins, with the function depending on p parameters, then the χ^2 betained in the fit, is distributed according to the $\chi^2(N-p)$ function

(N-p) is called number of degrees of freedom (ndf)

- If we are not so 'lucky' than we can use so called "Toy Monte Carlo" to generate g(t/H₀) from assumed distribution (describing the null hypothesis)
 - We "just" generate Monte Carlo experiments, find t for each of them and make a distribution $g(t/H_0)$
 - We can even directly study the properties of the estimators (like bias, variance) as we can construct their distributions from MC experiments

Reminder - χ^2 distribution





In theory α is predefined (f.g. 95%); in practice p-value is converted to z-value (f.g. significance = 5), see lecture 3

p-values from PDG

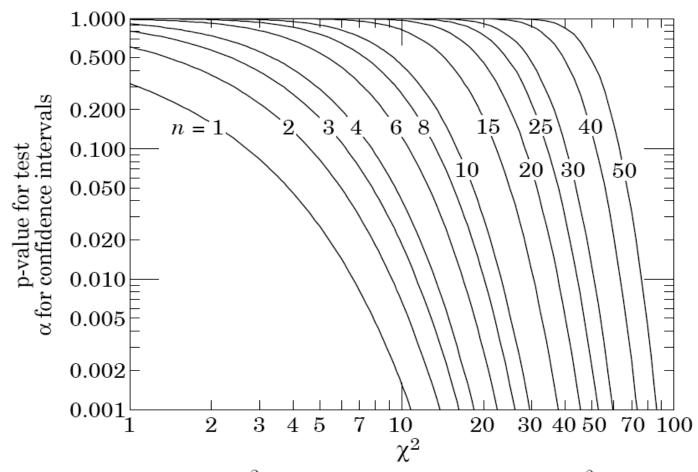


Figure 32.1: One minus the χ^2 cumulative distribution, $1 - F(\chi^2; n)$, for *n* degrees of freedom. This gives the *p*-value for the χ^2 goodness-of-fit test as well as one minus the coverage probability for confidence regions (see Sec. 32.3.2.4).

```
\chi^2/ndf from PDG
```

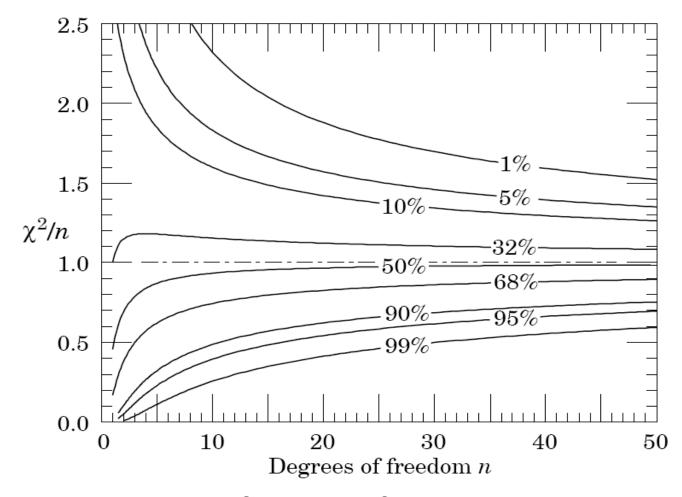
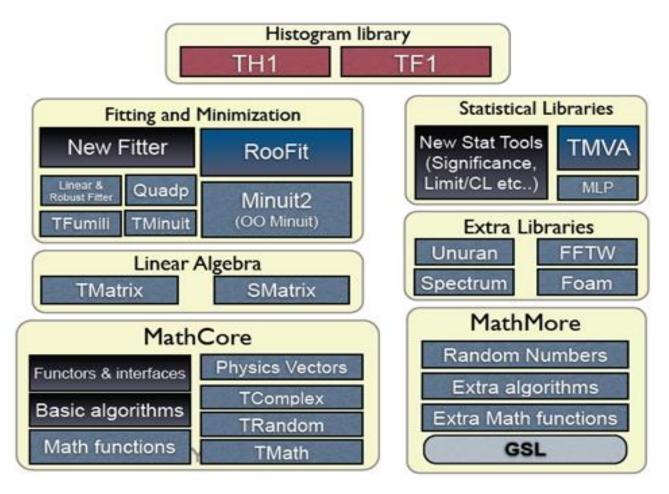


Figure 32.2: The 'reduced' χ^2 , equal to χ^2/n , for *n* degrees of freedom. The curves show as a function of *n* the χ^2/n that corresponds to a given *p*-value.

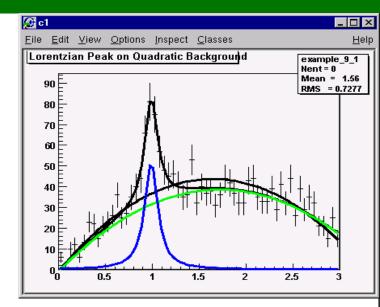
Math libraries in ROOT

From ROOT Users's Guide

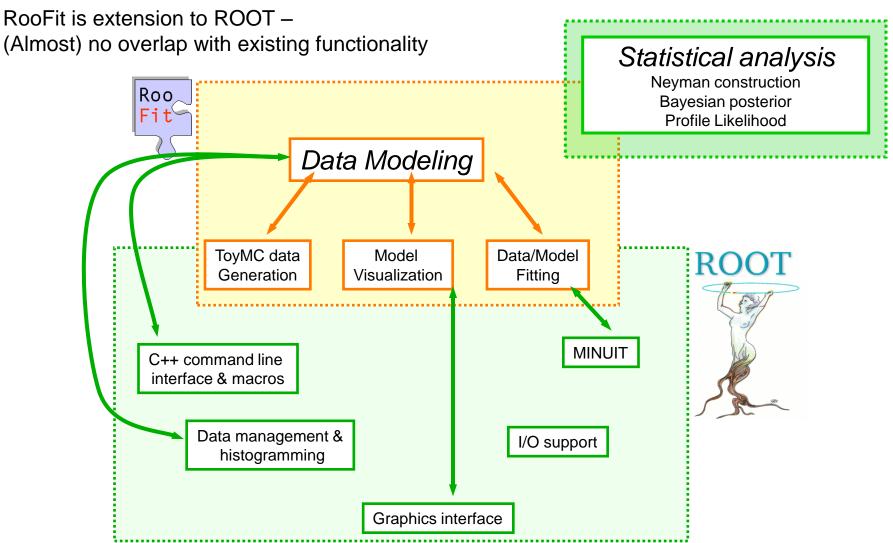


Fitting in ROOT

- "Classical" ROOT fiting directly data classes (Graphs, Histograms, Trees)
 - For introduction see ROOT lectures
- Many options exist
 - Binned fits (TH1::Fit, Tgraph::Fit)
 - Default: Least-squares
 - Maximum likelihood fits (h.Fit(..., "L"), or "LL")
 - Unbinned likelihood fit (TTree::UnbinnedFit)
 - Fit with predefined or user-defined function
 - Fixing and setting parameters' bounds
 - Fiting sub ranges
 - Combining functions
 - Choice of minimization methods (Minuit(2), Fumili(2))
- Recent improvements: new Fit Panel and improved fitting system
 - For more information see talk by <u>L. Moneta at ACAT 2008</u>
- More on "understanding errors in fits" in excercises



ROOT, RooFit & RooStats



This slide and more details at W. Verkerke, French school of statistics 2008 / more details also in excercises

CERN School of Computing August 17 – 28, 2009, Götingen, Germany

References for lectures 1 and 2 (1/2)

- F. James, Statistical Methods in Experimental Physics, World Scientific 2006
- R. J. Barlow, Statistics A guide to the Use of Statistical Methods in Physical Sciences, Wiley 1999
- G. Cowan, *Statistical Data Analysis*, Oxford Univ. Press, 1998
- D. S. Sivia, Data Analysis A Bayesian Tutorial, Oxford University Press, 2008
- L. Lyons, Statistics for nuclear and particle physicists, Cambridge University Press 1992
- PDG, The Review of Particle Physics, C. Amsler et al., Physics Letters B667, 1 (2008), <u>http://pdg.lbl.gov/</u>
 - Chapter 31: Probability
 - Chapter 32: Statistics
 - Chapter 33: Monte Carlo Techniques
 - And references therein

References for lectures 1 and 2 (1/2)

- S. Baker and R. D. Cousins, Clarification of the use of chi-square and likelihood functions in fits to histograms, Nucl.Instrum.Meth.221:437-442,1984.
- ROOT Users Guide 5.24, <u>http://root.cern.ch/drupal/content/users-guide</u>
- Luca Lista, Statistical methods for data analysis, <u>http://people.na.infn.it/~lista/Statistics/</u>
- M. Liendl, Experiment Simulation, CERN School of Computing 2006
- M. Liendl, A. Heikkinen, Experiment Simulation, CERN School of Computing 2008