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In this lecture

Distributions

Properties

Main distributions

Point (parameter) estimation

Maximum likelilhood method

Least-squares method

Interval estimation

Errors on the fit parameters

Goodness-of-fit tests

p-value
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Properties of distributions
Probability density function (PDF) = f(x)

Expectation

Expectation of any random function g(x): 

Expectation of x mean of the f(x) expected value of x :

Variance

is called the standard deviation

E(x) is a measure of the location of the distribution

V(x) is a mesure of the spread of the distribution
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Moments

The coefficient of skewness 
A measure of the skewness of the distribution

The coefficient of kurtosis
A measure of the "peakedness“ of the distribution
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Covariances and correlations

Joint PDF for two random variables = f(x,y)

The mean and the variance of x and y:

Covariance

Correlation coefficient

Covariance/Variance/Error matrix:
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Correlations - illustration
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Binomial distribution
Variable r, positive integer N

Parameters N, positive integer; p, 0 p 1

Probability 
function

Mean E(r) = Np

Variance V(r) = Np(1-p)

Usage example Example – Z decay: 

- p = BR(Zee) = 3%

- P(5;80,0.03) = 6% probability to find 

exactly 5 ee events out of 80 Z decays

Comment P(r;N,p) is a probability of finding 

exactly r sucesses in N trials, when 

probability of sucess in each single trial 

is a constant, p
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Multinomial distribution

Variable ri, i = 1, ... k, positive integers N

Parameters N, positive integer

k, positive integer

pi 0, i = 1, ... k, 

Probability function

Mean E(ri) = Npi

Variance V(ri) = Npi (1-pi)

Usage example Histogram containing N events distributed in k bins, 

with ri events in the ith bin

Comment • Multinomial distribution is the generalization of the 
binomial distribution to the case of more than two 
possible outcomes of an experiment

• When pi << 1 (many bins) V(ri) ~ Npi = ri
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Poisson distribution
Variable r, positive integer

Parameters , positive real number

Probability 
function

Mean E(r) = 

Variance V(r) = 

Usage 
example

Number of events r collected after integrated luminosity Ldt. 

Expected number of events is = Ldt. is the cross section.

Comments • P(r; ) expresses the probability of a number of events occurring in a 

fixed period of time if these events occur with a known average rate and

indepedently of the time since the last event

• represents expected number of events in a given time interval

• Time  between two sucessive events is exponentially distributed

• Poisson distribution is also called Poissonian
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Poisson distribution
For a large Poisson distribution converges towards a Gaussian 
distribution 

Sum of Poisson 
distributed random 
variables also follows
a Poisson distribution 
whose parameter is 
sum of the 
component 
parameters

F.g. When combining signal (s) and background (b)

P(r;s,b) ~ Pois(r;s+b)
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Normal or Gaussian distribution
Variable x, positive real number

Parameters , real number

, real number

Probability density 
function

Mean E(x) = 

Variance V(x) = 2

Cumulative
distribution

Comments • The most important distribution in statistics

• The half-width at half-height is 1.176

• N(0,1) is called standard Normal density  

• Any linear combination of the xi is also Normal
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Gaussian – some properties
n Area n

1 0.682689492137

2 0.954499736104

3 0.997300203937

4 0.999936657516

5 0.999999426697
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Why is Gauss Normal?

Central limit theorem:

If we have a set of N independent variables xi, each from a 

distribution with mean i and variance i
2, then the distribution of the 

sum X = xi

a) has a mean <X> = i,

b) has a variance V(X) = i
2,

c) becomes Gaussian as N .

Therefore, no matter what the distributions of original variables may 

have been, their sum will be Gaussian in a large N limit

Example: measurements errors

Example (adopted from Barlow):

“Human heights are well described by a Gaussian distribution, as many other 
anatomical measurements, as these are due to the combined effects of many genetic and 
environmental factors.”
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More than two variables
Let‟s say that each event measure three quantities A, B and C

We than have three random variables x, y and z

Vector of measurements is now a matrix:

Introducing new notation

In case of m variables 

Please note: this multivariate vector x is a vector of m variables for 

one event, while in the case of one variable x is a vector of values of 

one variable for N events
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Multivariate Gaussian
Multivariate Gaussian for the vector

x and are column vectors, while xT and T are row vectors

Case of two variables (m = 2)

15

),,,( )()2()1( mxxx x

μxμxμx
1

2/12/ 2

1
exp

||)2(

1
),;( V

V
Vf

T

n

],cov[)( )()()()( jiijii xxVxE

)2(

)2()2(

)1(

)1()1(

2

)2(

)2()2(

2

)1(

)1()1(

22

)2()1(

)2()2(

)1()1(

1

2

)2()2()1(

)2()1(

2

)1(

)2()2()1()1(
2

)2()1(

)2()1()2()1()2()1(

2
)1(2

1
exp

12

1

2

1
exp

12

1

),,,;,(

xxxx

x

x
xx

xxf



A. Heikkinen and I. Puljak: Data Analysis with ROOT CERN School of Computing      August 17 – 28, 2009, Götingen, Germany

2D Gaussian: iso-probability curves
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x(1)

x(2)

(1)

2 (1)

(2)

2 (2)

P1D P2D

1 0.6827 0.3934

2 0.9545 0.8647

3 0.9973 0.9889

1.515 0.6827

2.486 0.9545

3.439 0.9973

Adopted from L. Lista

Remember (roughly) 

this values, we’ll use 

them later in errors 

estimates!

is a measure of the correlation (more details later)
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Chi-square distribution
Variable x, positive real number

Parameters N, positive integer (number of “degrees of freedom”)

Probability 
function

Mean E(x) = N

Variance V(x) = 2N

Usage example Chi-square test for goodness of fit

Comments • If xi are k independent, normally distributed random variables with

mean 0 and variance, then the random variable

Q = xi
2  is distributed according to the chi-square distribution 

with k degrees of freedom

• The chi-square distribution is a special case of the gamma 

distribution.
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Chi-square distribution
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N = 1

N = 2

N = 3

N = 5
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Some other distributions
Student’s t-distribution

Used for hypothesis testing

First published in 1908 by W. S. Gosset, 
while he worked at a Guinness Brewery, under 
the pseudonym Student)

Beta distribution

Used in Bayesian statistics

Gamma distribution

Probability model for waiting time

Cauchy or Lorentz or 
Breit-Wigner distribution

A solution to the differential equation 
describing a resonance

Energy distribution of a resonance 

Log-Normal distribution

Used when including systematic errors in the analysis

If x is Log-Normally distributed, than log(x) is Normally distributed
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All roads lead to Rome

Normal

Multinomial

Binomial Poissonian

Chi-
square

20
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From ROOT User Guide 
All the probability density functions are defined in the header file 
Math/DistFunc.h and are part of the MathCore libraries. 

double ROOT::Math::beta_pdf(double x,double a, double b);

double ROOT::Math::binomial_pdf(unsigned int k,double p,unsigned int n); 

double ROOT::Math::breitwigner_pdf(double x,double gamma,double x0=0); 

double ROOT::Math::cauchy_pdf(double x,double b=1,double x0=0);

double ROOT::Math::chisquared_pdf(double x,double r,double x0=0); 

double ROOT::Math::exponential_pdf(double x,double lambda,double x0=0); 

double ROOT::Math::fdistribution_pdf(double x,double n,double m,double x0=0); 

double ROOT::Math::gamma_pdf(double x,double alpha,double theta,double x0=0); 

double ROOT::Math::gaussian_pdf(double x,double sigma,double x0=0);

double ROOT::Math::landau_pdf(double x,double s,double x0=0); 

double ROOT::Math::lognormal_pdf(double x,double m,double s,double x0=0); 

double ROOT::Math::normal_pdf(double x,double sigma,double x0=0); 

double ROOT::Math::poisson_pdf(unsigned int n,double mu);

double ROOT::Math::tdistribution_pdf(double x,double r,double x0=0); 

double ROOT::Math::uniform_pdf(double x,double a,double b,double x0=0);

Some PDFs exist also in the namespace TMath

21
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General picture

22
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phenomena
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Physicists and statisticians

1. Determining the “best fit” 
parameters of a curve

2. Determining the errors on 
the parameters

3. Judging the goodness of a fit

23

Example: histogram fitting

Physicists

1. Point estimation

2. Confidence interval estimation

3. Goodness-of-fit testing

Statisticians

Adopted from [Baker, Cousins, 1984]
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Likelihood function
Assume that observations (events) are independent 

With PDF depending on parameters :

The probability that all N events will happen, i.e. the PDF of x is, by 
independence, a product of all single events PDFs

When the variable x is replaced by the observed data x0, then P is no 
longer a PDF

It is ussual to denote it by L and call L(X0; ) the likelihood function 

Which is now a function of only  

Often in the literature, and through this lectures, it‟s convenient to 

keep X as a variable and continue to use notation L(X; ) 
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Statistic
Be carefull: statistic is not statistics! 

Any new random variable (f.g. T), defined as a function of a 
measured sample x is called a statistic

For example, the sample mean

is a statistic!  

A statistic used to estimate a parameter is called an estimator

For instance, the sample mean is a statistic and an estimator for 
the population mean, which is an uknown parameter

Estimator is a function of the data 

Estimate, a value of estimator, is our “best” guess for the true value of 
parameter

Some other example of statistics: sample median, variance, 
standarde deviation, quartiles, percentiles, t-statistics, chi-square 
statistics, kurtosis, skewness etc.
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Properties of a good estimator

Consistent
Estimate coverges to the true 
value as amount of data increases

Unbiased
Bias is the difference between expected 
value of the estimator and the true value 
of the parameter

Efficient
Cramér-Rao bound for the minimum 
of the variance of estimator:

Estimator is efficient when its 
variance reaches the lower bound

Robust
Insensitive to departures from 
assumptions in the PDF
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How to find a good estimator?

27

The Method of Moments

• Giving consistent and asymptotically unbiased estimators

• But are not as efficient as the maximum likelihood estimates

• Not covered in this lecture

The Maximum Likelihood Method

• Also giving consistent and asymptotically unbiased 
estimators 

• Widely used in practice 

The Least Squares Method (Chi-Square)

• Giving consistent estimator

• Linear chi-square estimator is unbiased

• Frequently used in histogram fitting
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Some good estimators
Suppose we have 

a set of N independent measurements xi, 

assumed to be unbiased measurements of some quantity and 

variance 2

1. If both and are uknown

2. If only is known  no difference for 

3. If only is known 

4. If all xi have different i
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Estimators in ROOT - values

29

Total number of events N is only in the currently defined range

From the ROOT Reference Manual

“Note that the mean value/RMS is computed using the bins in the 

currently defined range (see TAxis::SetRange). By default the 

range includes all bins from 1 to nbins included, excluding 

underflows and overflows. To force the underflows and overflows 

in the computation, one must call the static function 

TH1::StatOverflows(kTRUE) before filling the histogram.” 

Mean RMS
(it’s actually , name RMS is historic)

Skewness Kurtosis
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Estimators in ROOT - display

Estimators display in the statistic box

Drawn by default; can be eleminated by TH1::SetStats(kFALSE) 

gStyle->SetOptStat(mode)allows to select the type of displayed 
information

mode = ksiourmen (default = 000001111) 

30

n = 1 the name of histogram is printed
e = 1 the number of entries
m = 1 the mean value
m = 2 the mean and mean error values
r = 1 the root mean square (RMS)
r = 2 the RMS and RMS error
u = 1 the number of underflows
o = 1 the number of overflows
i = 1 the integral of bins
s = 1 the skewness
s = 2 the skewness and the skewness error
k = 1 the kurtosis
k = 2 the kurtosis and the kurtosis error



A. Heikkinen and I. Puljak: Data Analysis with ROOT CERN School of Computing      August 17 – 28, 2009, Götingen, Germany

Estimators in ROOT - example

31

Notice influence of the tail on the mean value



A. Heikkinen and I. Puljak: Data Analysis with ROOT CERN School of Computing      August 17 – 28, 2009, Götingen, Germany

Maximum likelihood method
Reminder: the probability that all N independent events will happen is given 
by the likelihood function

The principle of maximum likelihood (ML) says:

The maximum likelihood estimator      is the value of 

for which the likelihood is a maximum!

In words of R. J. Barlow: “You determine the value of that makes the 

probability of the actual results obtained, {x1, ..., xN}, as large as it can 
possible be.”

In practice it‟s easier to maximize the log-likelihood function

For p parameters we get a set of p likelihood equations

It is often more convenient the minimize –lnL or -2lnL

Minimization with MINUIT/MIGRAD or FUMILI in ROOT
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Maximum Likelihood - comments
ML estimator is consistent

ML estimate is approximately unbiased and efficient for large samples

Still usefull for small samples, but with extra care!

ML estimate is invariant

A transformation of parameter won‟t change the answer

ML estimate is not the most likely value of parameter; it is the estimate that 
makes your data most likely!

What was presented up to now is sometimes called 
unbinned maximum likelihood

Binned maximum likelihood: when data are organized in bins

See “ML fit of a histogram” later on

Extra care to be taken when the best value of parameters are near imposed 
limits

ML has many advantages, but a few drawbacks too

F.g. goodness-of-fit for ML is non-trivial issue, still open and debated

33
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Reminder

1. Determining the “best fit” 
parameters of a curve

2. Determining the errors on 
the parameters

3. Judging the goodness of a fit

34

Example: histogram fitting

Physicists

1. Point estimation

2. Confidence interval estimation

3. Goodness-of-fit testing

Statisticians

Adopted from [Baker, Cousins, 1984]
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Errors on the ML estimates (1/4)
How to obtain errors on the parameters estimated by the ML?

Option 1: Matrix inversion

Covariance matrix is minus the inverse 
of the matrix of second derivatives

Done with MINUIT/HESSE in ROOT

Option 2: Log – likelihood curve

In the large N limits the likelihood 
function is Gaussian and the 
log-likelihood is parabola

By definition (lnL)max = lnL(  ) 

1 limits on are those values 

of for which ln L falls by 0.5 

from its maximum value Lmax

For 2 ( 3 ) limits ln L falls 
by 2 (4.5)

Done with MINUIT/MINOS in ROOT
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Errors on the ML estimates (2/4)

The same, but now maximizing 2lnL

36

2ln L

2(lnL)max - 1

2(lnL)max
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Errors on the ML estimates (3/4)
Asymmetric example

For finite samples and/or non-linear problems lnL is not necessarily 
parabolic nor symmetric

Confidence intervals can still be extracted from the lnL curve

For asymmetric lnL curve upper and lower limits 

on are not the same

To find upper and lower limits with a certain 
probability content ( ) of the confidence region 

use L from the table: 

ROOT uses Minuit/MINOS to extract 
limits (errors) in this way

37

2ln L

2(lnL)max - L

2(lnL)max

ˆ
U

ˆ
L

ˆ

U

L

ˆ

L (%)

1 68.27

4 95.45

9 99.73

1D example
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Errors on the ML estimates (4/4)
2D example: Standard error ellipse 

For more information see f.g. PDG

This is so called the  plane tangent method

ROOT uses Minuit/MINOS

Works well also with non-regular iso-
probability curves

Upper and lower limits for parameter 

i are those values of i for which

with L from the table on the slide 
before

This is OK when interested in errors 
for only one parameter, regardless all 
others

Case of simultaneous errors 
estimate for more parameters  later 
in this lecture
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Example – ML fit of a histogram (1/2)

Suppose one has 
N events in a histogram with k bins

ni in the ith bin  vector of data n = (n1, ..., nk)

Expected number of events in each bin depend on uknown 
parameters , ( ) = ( 1,..., k)

Given i probability to have ni is f(ni; i)

Usually probability is Poissonian:

The likelihood function is

To find best estimate of we have to maximize lnL(n; )
based on the contents of the bins
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Example – ML fit of a histogram (2/2)

In can be shown that this procedure is equivalent to maximizing the 
likelihood ratio 

Where m = (m1,..., mk) are true (uknown) values of n

Best bin-to-bin model independent maximum likelihood estimate of m is 

actually n

Maximizing ( ) is equivalent to minimizing

Which is now much easier to implement then maximizing lnL(n; )

In case where ni = 0, last term in eq. above is zero
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Extended maximum likelihood
In the usual maximum likelihood method

Parameter relevant to the shapes of distributions are determined

Absolute normalization is equal to the observed number of events

If we want to estimate the absolute normalization the so called  
“Extended maximum likelihood method” is used

Example: From the vector of measurements x = (x1,...,xN) we want to estimate 
number of signal events (s), number of background events (b) and a vector 
of parameters = ( 1,..., p)

Likelihood function is

To obtain s, b and we maximize (or mimimize -2lnL) 
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Least squares method
Suppose we have

A set of precisely known values x = (x1,...,xN) 
– For example histograms bins

At each xi

a measured value yi

– For example number of events in the given histogram bin

corresponding error on measured value i

predicted value of measurement that depends on parameters
= ( 1,..., p) we want to estimate: F(xi; )

Suppose that measurements are independent

To find best estimate of we minimize the suitably weighted summ 

of squared differences between measured and predicted values  so 

called “least squares” or 

“chi-square”
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Choice of measurement errors

If yi are Gaussian distributed with variances i

If yi are Poissonian distributed two choices

Reminder first: for Poissonian variance = mean value ( 2 = )

So called Pearson’s chi-square (or “chi-square”)

But now i depends on which 
complicates the minimization

So called Neyman’s chi-square (or “modified chi-square”)

Minimization simpler

Easier to combine data with different basic 
accuracies

Problem with yi = 0

For example in ROOT this bin ignored

For small samples better use ML
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Finding parameters and errors

The best values of parameters = ( 1,..., p) are found by solving p
equations

Errors (or limits) on parameters are found in the equivalent was as 
for the ML method

Matrix inversion

Shape of  2 arround it‟s minimum value
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Multiparameters errors
When interested in simultaneous error estimation on more than one 
parameter, then the probability content (coverage probability) of the 
constant -2lnL or 2 contours is much smaller then in 1D case

Example (recall 2D Gaussians probabilities): 

Therefore, to increase the coverage probability we have to increase      
or         see the values in the table (from PDG)

ROOT Tminuit::Contour draws 
contours of constant -2lnL or 2 
with a given probability 
coverage use
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P1D P2D

1 1 0.68 0.39

2 4 0.96 0.86
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Example
higgs boson mass costrains from 

Electroweak precision tests

46
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Method

47

Step 1 – Very precise measurements of SM

• Measure SM parameters extremly well

• , MZ, GF

• lifetime, (g-2)e, LEP …

Step 2 – Predictions (assuming Higgs boson)

• Calculate quantum corrections to other observables 

• mW, ALR, sin2
w …

• Depending on , MZ, GF , but also on mt, mH …

Step 3 – Precise electroweak measurements

• Measure very precisely observables from Step 2

• @ SLC, LEP, Tevatron …
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Results from step 2 and 3

48
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The best fit

49

Adopted from http://lepewwg.web.cern.ch/LEPEWWG/

GeV90ˆ
Hm

GeV2790ˆ lower

Hm GeV3690ˆ upper

Hm

From the LEP Electroweak Working 
group:

“The preferred value for its mass, 
corresponding to the minimum of the 
curve, is at 90 GeV, with an experimental 
uncertainty of +36 and -27 GeV (at 68 
percent confidence level derived from 
Delta chi2 = 1 for the black line, thus not 
taking the theoretical uncertainty shown 
as the blue band into account).”

“The precision electroweak 
measurements tell us that the mass of the 
Standard-Model Higgs boson is lower 
than about 163 GeV (one-sided 95 
percent confidence level upper limit 
derived from Delta chi2 = 2.7 for the 
blue band, thus including both the 
experimental and the theoretical 
uncertainty).”

http://lepewwg.web.cern.ch/LEPEWWG/
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Reminder

1. Determining the “best fit” 
parameters of a curve

2. Determining the errors on 
the parameters

3. Judging the goodness of a fit

50

Example: histogram fitting

Physicists

1. Point estimation

2. Confidence interval estimation

3. Goodness-of-fit testing

Statisticians

Adopted from [Baker, Cousins, 1984]
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Goodnes-of-fit tests
We are now interested in this kind of questions

Is the fit good or not?

How significant is discrepancy between data and obtained functional 
form?

How well does the vector of measurements in the histogram n = (n1, ..., nk) 
compare with predicted values = E[n] = ( 1,..., k)?

These questions can be answered with a goodnes-of-fit test

Which is itself a part of a so called HYPOTHESIS TESTING 
(more in Lecture 3)

So called NULL hypothesis H0 is: 

The functional form (or predicted values) describes well our data!

The form (i.e. the parameters that form depends on) is found by one of the 
methods for parameter estimation (moments, ML, chi-square)

We are now looking for a statistic t (usually a single number) whose value 
reflects an agreement between the data and the hypothesis

The most commonly used statistic is the            
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Distribution of the test statistic t
Imagine we have many (M) experiments (i.e. data samples) trying 
to test the null hypothesis H0

We would then obtain a probability distribution function (PDF) of the 
test statistics, giving the H0 is true, g(t|H0)
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Data sample
Parameter estimation

(ML, chi-square)
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p-value

But (unfortunately) we usually have only one experiment !

Let‟s say the value of test statistic for our experiment is tobs

And let‟s suppose that large value of t suggest larger discrepancy of 
the H0 with observed data (usually the case)

Now, having g(t|H0) we can for example answer to the question 

What is the probability to obtain the value of t equall or 
greater than the value tobs we observed?

The answer is simple an integral of the g(t|H0):

This probability is so called p-value

From PDG: “... p-value is defined as the probability 
to find t in the region of equal and lesser compatibility 
with H0 than the level of compatibility observed with 
actual data ...”
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2(ndf) distribution
Well, this is all nice, but: as we don‟t have so many experiments, how 
do we get the PDF for the test statistics, g(t|H0)?

For once, it turns out that we are „lucky‟: most commonly used 
statistics fo GOF testing are distributed as a 2 distribution!

That‟s actually the reason why they are so often used 

For example: when fitting histograms with N bins, with the function 

depending on p parameters, then the       obtained in the fit, is distributed 

according to the 2(N-p) function

(N-p) is called number of degrees of freedom (ndf)

If we are not so „lucky‟ than we can use so called “Toy Monte Carlo” 
to generate g(t|H0) from assumed distribution (describing the null 
hypothesis)

We “just” generate Monte Carlo experiments, find t for each of them and 
make a distribution g(t|H0)

We can even directly study the properties of the estimators (like bias, 
variance) as we can construct their distributions from MC experiments
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Reminder - 2 distribution

55

ndf = 1

ndf = 2

ndf = 3

ndf = 5
ndf = 10

x

N(10,20)

f(x)

ndfxV

ndfxE
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GOF - overview

56

Data sample

Parameter estim.
(ML, chi-square)

test statistic t
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Example: histogram fitting
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5 Decision about H0

If p << try with 

new fit

If (p < 1- ) reject 

H0 at CL 

Very often use 

just common 

sense

or

In theory is predefined (f.g. 95%); in practice p-value is converted to z-value (f.g. significance = 5), see lecture 3

ROOT TMath::Prob
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p-values from PDG

57
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2/ndf from PDG

58
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Math libraries in ROOT
From ROOT Users‟s Guide 
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Fitting in ROOT
“Classical” ROOT – fiting directly data classes
(Graphs, Histograms, Trees)

For introduction see ROOT lectures

Many options exist

Binned fits (TH1::Fit, Tgraph::Fit)

Default: Least-squares

Maximum likelihood fits (h.Fit(..., “L”) , or “LL”)

Unbinned likelihood fit (TTree::UnbinnedFit)

Fit with predefined or user-defined function

Fixing and setting parameters‟ bounds

Fiting sub ranges

Combining functions

Choice of minimization methods (Minuit(2), Fumili(2))

Recent improvements: new Fit Panel and improved fitting system

For more information see talk by L. Moneta at ACAT 2008

More on “understanding errors in fits” in excercises
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http://indico.cern.ch/contributionDisplay.py?contribId=169&sessionId=9&confId=34666
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ROOT, RooFit & RooStats

61

C++ command line 

interface & macros

Data management &

histogramming

Graphics interface

I/O support

MINUIT

ToyMC data

Generation

Data/Model

Fitting

Data Modeling

Model 

Visualization

RooFit is extension to ROOT –

(Almost) no overlap with existing functionality
Statistical analysis

Neyman construction

Bayesian posterior

Profile Likelihood

Statistical analysis
Neyman construction

Bayesian posterior

Profile Likelihood

This slide and more details at W. Verkerke, French school of statistics 2008 / more details also in excercises

http://indico.in2p3.fr/materialDisplay.py?contribId=15&materialId=slides&confId=750
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References for lectures 1 and 2 (1/2)
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G. Cowan, Statistical Data Analysis, Oxford Univ. Press, 1998
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L. Lyons, Statistics for nuclear and particle physicists, Cambridge 
Univesity Press 1992

PDG, The Review of Particle Physics, C. Amsler et al., Physics 
Letters B667, 1 (2008), http://pdg.lbl.gov/

Chapter 31: Probability

Chapter 32: Statistics

Chapter 33: Monte Carlo Techniques

And references therein
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http://pdg.lbl.gov/
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