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Goal of this lecture series

 Give an understanding of modern computer architectures 
from a performance point-of-view

 Processor, [Cache, Memory subsystem]

 x86-64 as a de-facto standard

 Explain (hardware/software) factors that improve or 
degrade program execution

 Help to write well-performing software

 Teach an approach to detailed performance measurements 
(3rd lecture)

 Highlight the most important events for such measurements
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Moore‟s law

 We continue to double the number of 
transistors every other year(*)

 Latest consequence

 Single core  Multicore  Manycore

 All in all:

 An unbelievable “agreement” with all 
stakeholders

 Silicon manufacturers

 System integrators

 Customers
(*)But, the derivative “law” which stated that the 

frequency would also double is no longer true!

Adapted from Wikipedia
From Wikipedia
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Real consequence of Moore‟s law

 We are being “run over” by transistors:

 More (and more complex) execution units

 Longer SIMD/SSE vectors

 More hardware threading

 More and more cores

 In order to profit we need to “think parallel”

 Data parallelism

 Task parallelism
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“Intel platform 2015” (and beyond)

 Today: 45 nm

 Already on the roadmap:

 32 nm (2009/10)

 22 nm (2011/12)

 In research:

 16 nm (2013/14)

 11 nm (2015/16)

 8 nm (2017/18)
– Source: Bill Camp/Intel HPC

 Each generation will push the core count:

 We are entering the many-core era (whether we like it or not) !

2006 2007 2008 2009 2010 2011 2012 2013 2014

1

10

100

Multi-core era

Many-core era

Increased HW 

threads per socket

From “Platform 2015: Intel Platform Evolution for the 

Next Decade” (S.Borkar et al./Intel Corp.)

LHC data
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Evolution of CERN‟s 
computing capacity

 During the LEP era (1989 –
2000):

 Doubling of compute 
power every year

 Initiated with the move 
from mainframes to RISC 
systems

 At CHEP-95:

 I made the first 
recommendation to move 
to PCs

 After a set of encouraging 
benchmark results

From L.Robertson
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Frequency scaling

 The 7 “fat” years of frequency scaling in HEP

 From the Pentium Pro in 1996: 150 MHz

 To the Pentium 4 in 2003: 3.8 GHz (~25x)

 Since then

 Core 2 systems:

 ~3 GHz

 Multi-core

 Recent CERN purchase:

 Intel L5520 CPUs

 2.26 GHz From A. Nowak



Sverre Jarp - CERN

Computer Architecture and Performance Tuning

10

The Power Wall

 For example, the CERN Computer Centre can supply 2.9 
MW of electric power

 Plus 2.3 MW to remove the corresponding heat!

 Spread over a complex infrastructure:

 CPU servers; Disk servers

 Tape servers + robotic equipment

 Database servers

 Infrastructure servers.

 Network switches and routers

 This limit will be reached soon!

Input Power Evolution (MW)
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Performance: A complicated story!
 We start with a concrete, real-life problem to solve

 For instance, simulate the passage of elementary particles through 
matter

 We write programs in high level languages

 C++, JAVA, Python, etc.

 A compiler (or an interpreter) transforms the high-level code to 
machine-level code

 We link in external libraries

 A sophisticated processor with a complex architecture and even 
more complex micro-architecture executes the code 

 In most cases, we have little clue as to the efficiency of this 
transformation process
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A Complicated Story (in layers!)

Problem

Algorithms, abstraction

Program

System architecture

Instruction set

m-architecture

Circuits

Electrons

Adapted from Y.Patt, U-Austin

 We must avoid being fenced into a single layer!
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Let‟s start with the basics!
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Von Neumann architecture

 From Wikipedia:

 The von Neumann architecture 
is a computer design model 
that uses a processing unit and 
a single separate storage 
structure to hold both 
instructions and data.

 It can be viewed as an entity into 
which one streams instructions 
and data in order to produce 
results

 Our goal is to produce results 
as fast as possible

DataInstructions

Results
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Simple processor layout

 A simple processor with 
four key components:

 Control Logic

 Instruction Counter

 Program Status Word

 Register File

 Data Transfer Unit

 Data bus

 Address bus

 Arithmetic Logic Unit 

R1

R0

R15

Registers

IC

PSW

Control

Data 

transfer 

unit

ALU

Data

Address
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Simple server diagram

 Multiple components which 
interact during the execution 
of a program:

 Processors/cores

 Caches

 Instructions (I-cache)

 Data (D-cache)

 Memory channels

 Memory

 I/O subsystem

 Network attachment

 Disk subsystem

Interconnect

I/O bus

Cache

C0 C1

C2 C3

Mem-ctl

Cache

C0 C1

C2 C3

Mem-ctl

Memory
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Initial premise

 To reach completion, a compute job (a process) requires the 
execution of a given number of (machine-level) instructions

 We typically want the process to complete in the shortest 
possible time

 This time corresponds to a given number of machine cycles

 Simple example:

 A program consists of 1010 instructions

 We measure an execution time of 6 seconds on a processor 
running at 2.0 GHz

 We can now compute a key value:

 Cycles per Instruction (CPI)

 Our result: (6 * 2.0 * 109) / 1010 = 1.2
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Seven dimensions of performance

 First three dimensions:
 Superscalar

 Pipelining

 Computational width/SIMD

 Next dimension is a “pseudo” 
dimension:

 Hardware multithreading

 Last three dimensions:

 Multiple cores

 Multiple sockets

 Multiple compute nodes 

SIMD width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Nodes

Multicore

Sockets

Multithreading
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Seven dimensions of performance

 First three dimensions:
 Superscalar

 Pipelining

 Computational width/SIMD

 Next dimension is a “pseudo” 
dimension:

 Hardware multithreading

 Last three dimensions:

 Multiple cores

 Multiple sockets

 Multiple compute nodes 

Data parallelism

(Vectors/Scalars)

Task parallelism

(Events/Tracks)
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Concurrency in HEP

 We are “blessed” with lots of it:

 Entire events

 Particles, tracks and vertices

 Physics processes

 I/O streams (Trees, branches)

 Buffer handling (also compaction, etc.)

 Fitting variables

 Partial sums, partial histograms

 and many others …..

 Usable for both data and task parallelism!
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Autoparallelization/Autovectorization

 Would it not be wonderful if the compilers could do all the 
(vectorization/parallelisation) work for us automatically?

 GNU compiler (4.3.0):

 Autovector: YES, but needs “-ftree-vectorize”

 Intrinsics: YES

 Autoparallel: YES (as of 4.2.0) with “-fopenmp”

 Intel compiler (10.1 or later):

 Autovector: YES, included in “-O”

 Intrinsics: YES

 Autoparallel: YES  with “-openmp”

Intrinsics: “higher-level assembly instructions” that the compilers understand
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Part 1: Opportunities for scaling 
performance inside a core

 Let’s look at the first three 
dimensions

 The resources:

 Superscalar: Fill the ports

 Pipelined: Fill the stages

 SIMD: Fill the computational width

 Best approach: data parallelism

SIMD width

Superscalar

Pipelining
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Superscalar architecture

 In this simplified design, 
instructions are decoded 
serially, but dispatched 
to two ALUs.

 The decoder and 
dispatcher ought to be 
able to handle two 
instructions per cycle

 The ALUs can have 
identical or different 
execution capabilities

Decode

Dispatch

ALU 0 ALU 1

Results

Instruction stream

Port 0 Port 1
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Core 2 execution ports

 Intel’s Core 
microarchitecture 
can execute four
instructions in 
parallel (across 
six ports):

24

Issue ports in the Core micro-architecture

(from Intel Manual No. 248966-016)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

QW Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
Address

Store
Data

FP
Load

Jump Exec
Unit

DIV
SQRT

x87 FP
Add

SSE FP
Add

Integer
Shift
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Mulmul example

 Which execution units are needed ?

 in the innermost loop

for ( int i = 0; i < N; i++ ) { 

for ( int j = 0; j < N; j++ ) { 

for ( int k = 0; k < N; k++ ) { 

c[ i * N + j ]  +=   a[ i * N + k ]  *    b[ k * N + j ]; 

} 

} 

}

MulAdd LoadLoadStore
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Next topic: Instruction pipelining

 Instructions are broken up into stages.

 With a one-cycle execution latency (simplified):

 With a three-cycle execution latency:

I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3
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Real-life latencies
 Most integer/logic instructions have a one-cycle execution 

latency:

 For example: ADD, AND, SHL (shift left), ROR (rotate right)

 Amongst the exceptions:

 IMUL (integer multiply): 3

 IDIV (integer divide): 13 – 23

 Floating-point latencies are typically multi-cycle

 FADD (3), FMUL (5)

 Same for both x87 and SIMD variants

 Exception: FABS (absolute value: 1) 

Latencies in the Core micro-architecture (from Intel Manual No. 248966-016)

AMD processor latencies are similar.
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Latencies and serial code (1)
 In serial programs, we 

typically pay the penalty of a 
multi-cycle latency during 
execution:

 In this example:

 Statement 2 cannot be started 
before statement 1 has 
finished

 Statement 3 cannot be started 
before statement 2 has 
finished 

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c;  // Statement 1

d = a + e;  // Statement 2

f = fabs(d);   // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1



Sverre Jarp - CERN

Computer Architecture and Performance Tuning

29

Latencies and serial code (2)

 Observations:

 Even if the processor can fetch and decode a new 
instruction every cycle, it must wait for the previous result 
to be made available

 Fortunately, the result takes a „bypass‟, so that the write-back 
stage does not cause even further delays

 The result here:

 9 execution cycles are needed for three instructions!

– CPI is equal to 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1
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Other causes of execution delays (1)

 We already stated that the aim is to 
keep instructions and data flowing, 
so that results are generated 
optimally

 First issue:

 Instructions are unavailable

 Typically caused by branching

 There may be a branch instruction in 
every 10 machine instructions!

– Or even less

 If the branch is mispredicted, we suffer a 
stall (cycles clock up, but no work gets 
done)

DataInstructions

Results
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Other causes of execution delays (2)

 Second issue:

 Instructions and/or data stop flowing

 Instructions are not found in the I-cache

 Data is not found in the D-cache

 Before execution can continue, 
instructions and data must be fetched 
from further away in the memory 
hierarchy 

DataInstructions

Results
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Memory Hierarchy

 From CPU to 
main memory 
on a Core 2 
uni-
processor
 With 

multicore, 
memory 
bandwidth is 
shared 
between 
cores on the 
same bus

CPU

(Registers)

L1D

(32 KB)

L2

(4096 KB)

memory

(large)

32 B/c, 14 c latency

~4 B/c, > 100 c latency

L1I

(32 KB)

32 B/c, 3 c latency

c = cycle
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Cache lines (1)

 When a data element or an instruction is requested by the 
processor, a cache line is moved (as the minimum 
quantity) to Level-1

 Cache lines are typically 64B (8 * double)

 A 32KB level-1 cache holds 512 (64B) lines

 When cache lines have to be moved come from memory

 Latency is long (>100 cycles, as already mentioned)

 Memory bus stays busy (~16 cycles)

requested
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Cache lines (2)

 Space locality is vital

 What happens when only one element (4B or 8B) element 
is used inside the cache line?

 A lot of bandwidth is wasted!

 Multidimensional arrays should be accessed with the last index 
changing fastest:

 Pointer chasing (in linked lists) can easily lead to cache 
thrashing

Programming the memory hierarchy is an art in itself.

requested

for (i = 0; i < rows; i++)

for (j = 0; j < columns; j++) 

mymatrix [i] [j]   += increment;
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Third topic: Registers for SSE

 16 “XMM” registers with 128 bits each in 64-bit mode

E3 E2 E1 E0

E1 E0

E7 E6 E5 E4 E3 E2 E1 E0

Bit 0Bit 127

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E016 Bytes

8 Words

4 DWords/Single

2 QWords/Double

SSE = Streaming SIMD extensions
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Four floating-point data flavours

 Single precision

 Scalar single (SS)

 Packed single (PS)

 Double precision

 Scalar Double (SD)

 Packed Double (PD)

 Note:

 1) “scalar” means running at ½ or ¼ of the peak speed

 2) Intel and AMD have announced Advanced Vector eXtensions 
(AVX) with 256-bit registers

 “scalar” will mean 1/4 or 1/8 of peak!

E3 E2 E1 E0

- - - E0

E1 E0

- E0
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Scalable programming 
for a single core
 Easiest way to fill the 

execution capabilities is to 
use vectorization

 Either, vector syntax, à la 
Fortran-90

 Or, loop syntax which the 
compiler can “vectorize” 
automatically

 Or, explicit intrinsics

 See CBT example later.

REAL U(100), V(100)

U = 0.0

U = SIN(V)

U(1:50) = V(2:100:2)

float  u[100], v[100];

for (int i = 0; i<50; i++) u[i] = 0.0;

for (i = 0; i<50; i++) u[i] = sin(v[i]);

for (int i = 0; i<50; i++) u[i] = v[i*2+1];
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HEP and vectors

 Very little common ground

 Too little?

 But all attempts in the past failed!

 w/CRAY, 3090-VF, etc.

 From time to time, we stumble across a vector example

 My favorite example: Track Fitting code from ALICE trigger

 See the next slide 

 Other examples: Use of STL vectors

 Note that most compilers (try to) vectorize automatically
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Examples of parallelism:
CBM track fitting

 Extracted from CBM’s High Level Trigger Code

 Originally ported to IBM‟s Cell processor

 Tracing particles in a magnetic field 

 Embarrassingly parallel code

 Re-optimization on x86-64 systems

 Step 1: use SSE vectors instead of scalars

 Operator overloading allows seamless change of data types, 
even between primitives (e.g. float) and classes

 Classes + intrinsics

– P4_F32vec4 – packed single; operator + = _mm_add_ps

● F64vec4 operator +(const F64vec4 &a, const F64vec4 &b) { 
return _mm_add_ps(a,b); }

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”

http://www-linux.gsi.de/~ikisel/reco/CBM/

DOC-2007-Mar-127-1.pdf
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Important performance measurements

 Related to what we have 
discussed:

 The total cycle count (C)

 The total instruction count (I)

 Derived value: CPI

 Bubble count: Cycles when no 
execution occurred

 Total number of executed branch 
instructions

 Total number of mispredicted 
branches

 Plus:

 Total number of (last-level) 
cache misses

 Total number of cache 
accesses

 Bus occupancy

 The total number of SSE 
instructions

 The total number (and the 
type) of computational SSE 
instructions
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Mini-example of real-life scalar, serial code
 Suffers long latencies:

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0   // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3      # Prob 43% // jump if FALSE

High level C++ code 

Machine instructions 

Same 
instructions 
laid out 
according to 
latencies on 
the Core 2 
processor 

NB: Out-of-
order 
scheduling 
not taken into 
account. 
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Part 2: Parallel execution across hw-
threads and cores
 Next dimension is a “pseudo” 

dimension:

 Hardware multithreading

 Last three dimensions:

 Multiple cores

 Multiple sockets

 Multiple compute nodes

 Multiple nodes will not be 
discussed here

 Our focus is scalability inside a 
node

Compute nodes

Processor cores

Sockets

Multithreading
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Definition of a hardware core/thread

 Core

 A complete ensemble of 
execution logic, and cache 
storage as well as register 
files plus instruction counter 
(IC) for executing a software 
process or thread

 Hardware thread

 Addition of a set of register 
files plus IC

Execution logic

State: Registers, IC

Caches,

etc.

State: Registers, IC

The sharing of the execution logic can 

be coarse-grained or fine-grained.
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The move to many-core systems

 Examples of “dispatch slots”: Sockets * Cores * HW-threads

 Conservative:

 Dual-socket AMD quad-core (Barcelona): 2 * 4 * 1 = 8

 Dual-socket Intel quad-core Nehalem: 2 * 4 * 2 = 16

 Quad-socket Intel Dunnington server: 4 * 6 * 1 = 24

 Aggressive:

 Quad-socket Nehalem “octocore”: 4 * 8 * 2 = 64

 Quad-socket Sun Niagara (T2+) processors w/8 cores and 8 
threads: 4 * 8 * 8 = 256

 In the near future: Hundreds of dispatch slots

 And, by the time new software is ready: Thousands !!  



Sverre Jarp - CERN

Computer Architecture and Performance Tuning

45

Many-core graphics processor

 Intel’s Larrabee:

 Already announced at SigGraph 2008!

 Based on the x86 architecture

 Many-core + 4-way multithreaded + 512-bit vector unit



 Not forgetting offerings from NVidia, AMD, IBM, etc.

In Order, 4 threads, 

SIMD-16
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In Order, 4 threads, 

SIMD-16
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In Order, 4 threads, 

SIMD-16

I$ D$

. . .

. . .

L2 Cache

In Order, 4 threads, 

SIMD-16

I$ D$

In Order, 4 threads, 

SIMD-16

I$ D$
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Definition of a software 
process and thread

 Process (OS process):

 An instance of a computer program that is being executed 
(sequentially). It typically runs as a program with its private 
set of operating system resources, i.e. in its own “address 
space” with all the program code and data, its own file 
descriptors with the operating system permissions, its own 
heap and its own stack.

 Thread:

 A process may have multiple threads of execution. These 
threads run in the same address space, share the same 
program code, the operating system resources as the 
process they belong to. Each thread gets its own stack.

Adapted from Wikipedia
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HEP programming paradigm

 Event-level parallelism has been used for decades

 Compute one event after the other in a single process

 Advantage:

 Large jobs can be split into N efficient processes, each 
responsible for processing M events

 Built-in scalability

 Disadvantage:

 Memory must be made available to each process

 With 2 – 4 GB per process

 A dual-socket server with Quad-core processors

– Needs 16 – 32 GB (or more)
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What are the options?

 There is currently a discussion in the community about the 
best way forward (in a many-core world):

1) Stay with event-level parallelism (and independent 
processes)

 Assume that the necessary memory remains affordable

 Or rely on tools, such as KSM, to help share pages

2) Rely on forking:

 Start the first process

 Fork N others

 Rely on the OS to do “copy on write”, in case pages are modified

3) Move to a fully multi-threaded paradigm

 Using coarse-grained (event-level?) parallelism
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Programming strategies/priorities

 As I see them:

 Get memory usage (per process) under control

 To allow higher multiprogramming level per server

 Draw maximum benefit from hardware threading

 Introduce coarse-grained software multithreading

 To allow further scaling with large core counts

 Revisit data parallel constructs at the very base

 Gain performance inside each core

 In all cases, use appropriate tools:

 To monitor detailed program behaviour

 Both correctness and performance
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Achieving an efficient memory footprint 

 As follows:

Multithreaded 

Geant4 prototype 

developed at 

Northeastern 

University
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HEP and Symmetric Multi-Threading

 Because we have “thin” instruction streams, we could profit 
from SMT, provided the memory issue is under control

 We could easily tolerate 2 – 4 hardware threads!

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-

packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-

packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-

packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-

packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbeSMT (Symmetric Multi-Threading)



Sverre Jarp - CERN

Computer Architecture and Performance Tuning

52

Let‟s look more closely at parallelism
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Definition of concurrency/parallelism

 Concurrent programming:

 Expression of a total algorithmic problem in logically 
independent parts (independent control flows)

 Parallel execution

 Independent parts of a program execute simultaneously
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From Concurrency to 
Parallel Execution

 Multiple steps must be kept in mind:

 Concurrency

 Decomposition

 Communication

 Synchronization

 Mapping

 Execution

 Keeping Amdahl’s law in mind

n

p
pp nS



1

1max )(
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Foster‟s Design Methodology

 Four Steps:

 Partitioning

 Dividing computation and data

 Communication

 Sharing data between computations

 Agglomeration

 Grouping tasks to improve performance

 Mapping

 Assigning tasks to processors/threads



Sverre Jarp - CERN

Computer Architecture and Performance Tuning

56

Designing Threaded Programs

 Partition

 Divide problem into 
tasks

 Communicate

 Determine amount 
and pattern of 
communication

 Agglomerate

 Combine tasks

 Map

 Assign 
agglomerated tasks 
to created threads

The
Problem

Initial tasks

Communication

Combined  Tasks

Final Program
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More on decomposition

 Divide the total work into smaller parts,

 Which can be executed concurrently

 Some techniques:

 Data decomposition

 Partition the data domain

 Task/functional decomposition

 Split according to “logical” tasks/functions

 Recursive decomposition

 Divide-and-conquer strategy

 Exploratory decomposition

 Search for a configuration space for a solution

– Not guaranteed to reduce amount of work
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C++ parallelization support

 Parallelization is not defined inside the language itself

 Large selection of low-level tools:

 Native: pthreads/Windows threads

 OpenMP

 Intel Threading Building Blocks (TBB)

 OpenCL (www.khronos.org/opencl)

 CILK++ (www.cilk.com)

 RapidMind (www.rapidmind.com)

 TOP-C (from NE University)

 Ct (in preparation from Intel)

 MPI, etc.
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Examples of parallelism:
CBM track fitting

 Re-optimization on x86-64 systems

 Step 1: Data parallelism using SIMD 
instructions

 Step 2: use TBB (or OpenMP) to scale 
across cores

1 2 4 8 16

0.1

1

10

Cell SPE (approx)

icc/woodcrest@3.0

gcc4.1.2/clovertown@2.4

gcc3.4.6/clovertown@2.4

icc/clovertown@2.4

Graphs shows time spent against cores (Logarithmic scale!
From H.Bjerke/CERN openlab
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Examples of parallelism: GEANT4

 ParGeant4 (Gene Cooperman/NEU)

 implemented event-level parallelism to simulate separate 
events across remote nodes.

 New prototype re-implements thread-safe event-level 
parallelism inside a multi-core node

 Done by NEU PhD student Xin Dong: Using FullCMS example

 Required change of lots of existing classes:

– Especially global, “extrn”, and static declarations

 First, the geometry was converted

 Then, the physics tables

– Ion tables are still shared (protected by locking)

 Additional memory: Only 22MB/thread (!)
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MTG4/FullCMS measurements

 Using a 
24-core 
system:

MTG4 - Dunnington scaling (500 evts per thread, pi-, 300GeV)
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Simulation

throughput

Perfect throughput

Worker simulation
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Red curve 

should 

have been 

flat!

From A.Nowak/CERN openlab

More work is needed, but extremely interesting first step!
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Multithreaded ALICE simulation 

 Another very interesting 
prototype

 Track level parallelism

 Simulation of a Pb-Pb 
event (no output)

 65k primary tracks (!)

 5 h CPU time (!)

 With G4-VMC/Example03

 3.92x speedup

 w/4 core AMD system

 35MB additional per 
thread

critical sections
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Example: ROOT minimization and fitting

 Minuit parallelization is independent of user code

 Log-likelihood parallelization (splitting the sum) is more efficient
 more demanding on thread safety of provided code 

 Example: unbinned fit with 20 parameters

 Can have combination on both
 parallelization via multi-threading in a multi-core CPU 
 multiple process in a distributed computing environment

complex BaBar 

fitting provided 

by  A. Lazzaro

and parallelized 

using MPI

Code is now available as of ROOT version 5.22
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Back to our Complicated Story

Problem

Algorithms, abstraction

Program

System architecture

Instruction set

m-architecture

Circuits

Electrons

 In these lectures, we tried to move into several layers

 Avoiding being “boxed in” !
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Concluding remarks

 The aim of these lectures was to help understand

 Changes in modern computer architecture

 mpact on our programming methodologies

 Keeping in mind that there is not always a straight path to 
reach (all of) the available performance by our 
programming community.

 In most HEP programming domains event-level 
processing will (continue to) dominate

 Provided we get the memory requirements under control

 Will you be ready for 100+ cores and long vectors?

 Learn to master the seven hardware dimensions!
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Further reading:
 “Designing and Building Parallel Programs”, I. Foster, Addison-Wesley, 1995

 “Foundations of Multithreaded, Parallel and Distributed Programming”, G.R. 
Andrews, Addison-Wesley, 1999

 “Computer Architecture: A Quantitative Approach”, J. Hennessy and D. 
Patterson, 3rd ed., Morgan Kaufmann, 2002

 “Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

 “Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd

edition, Addison Wesley, 2006

 “The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006

 “The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith and 
X. Tian; Intel Press, 2nd edition, 2006

 “Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor 
Parallelism”, J. Reinders, O’Reilly, 1st edition, 2007

 “Inside the Machine”, J. Stokes, Ars Technica Library, 2007
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BACKUP
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Items not covered today

 Systematic tuning approach

 Performance tuning versus correctness

 FP accuracy and reproducibility

 Amdahl’s law (in detail)

 Also: Gustafson‟s law

 Emerging parallel programming languages

 Detailed compiler “control”

 Including regression avoidance
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OpenMP overview

 De-facto standard for writing 
shared-memory parallel 
applications in C, C++ or 
FORTRAN

 Consists of:

 Compiler directives

 Run-time routines

 Environmental variables

 http://www.openmp.org/

 Current version: 3.0

 Still in active development

#pragma omp parallel for \

shared (n, a, b, c) \

private(i)

for (i = 0; i < n; i++) c[i] = a[i] + b[i];

gcc –fopenmp –O –oaprog aprog.c

setenv OMP_NUM_THREADS 4

./aprog

Master thread

Worker

threads

Synchronization

http://www.openmp.org/
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MPI overview

 MPI – Message Passing Interface

 A language independent communications API

 Point-to-point message passing and global operations

 No shared memory concept in MPI-1 (v 1.2)

 MPI-2 (v. 2.1) introduces numerous enhancements

 Limited shared memory concept

 Parallel I/O

 Dynamic management

 Remote memory support

 Numerous implementations exist

– Including the combination of OpenMP and MPI
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Intel TBB 2.0 overview

 Key features:

 Open source extension to C++ (GPL)

 Task patterns instead of threads

 Focus on the work, not the workers

 Designed for scalable performance

 Automatic scaling to use available resources

 Components
 Generic parallel algorithms: parallel_for, parallel_reduce, etc.

 Low-level synchronisation primitives: atomic, mutex, etc.

 Concurrent containers: concurrent_vector, concurrent_hash_map, etc.

 Task scheduler

 Memory allocation: cache_aligned_allocator

 Timing

#include "tbb/task_scheduler_init.h"

#include "tbb/parallel_for.h"

#include "tbb/blocked_range.h"

using namespace tbb;

//

task_scheduler_init init;

tasks = atoi( argv[1] );

//

parallel_for(blocked_range<int>(0, 

NTracksV, NTracksV / tasks), 

ApplyFit(TracksV, vStations, NStations));

More features in preparation
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Ct 
Language
 Effort by Intel to extend C++ for Throughput Computing

 Features:

 Addition of new data types (parallel vectors) & operators

 NeSL/SASAL-inspired: irregularly nested and sparse/indexed vectors

 Abstracting away architectural details

 Vector width/Core count/Memory Model: Virtual Intel Platform

– Forward-scaling (Future-proof!)

 Nested data parallelism and deterministic task parallelism

 Incremental adoption path:

 Dedicated Ct-enabled libraries

 Rewritten “kernels” in Ct

 Pervasive use of Ct

See: CERN/IT seminar on 11/10/2007 by A.Ghuloum/Intel:

Programming Challenges for Manycore Computing

1
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TOP-C Overview

 Task-oriented Parallel C/C++

 Runs on top of most UNIX/Linux flavours

 Its programming model is based on three key concepts: 

 tasks in the context of a master/slave architecture 

 global shared data with lazy updates

 actions to be taken after each task

 Provides a single API to support three primary memory 
models:

 distributed memory

 shared memory

 sequential memory

– a single sequential, non-parallel process.

http://www.ccs.neu.edu/home/gene/topc.html
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Caches/TLB Size

(total / line)

Access 

(cycles)

Porting Associativity

(N-ways)

L1I 32 KB / 64 B - 8-way

L1D 32 KB / 64 B 3 dual 8-way

L2 (semi-shared) 2 * 4 MB / 64 B 14 16-way

ITLB0 entries 128 - -

DTLB0 entries 16 - 4-way

DTLB1 (4K pages) 256 2 4-way

Intel CPU parameters

 Core 2 processor (Clovertown)

Instruction issue 4 * 4 m-ops

CPU speed 3.0 GHz

Bus speed 1333 * 8 B
L2

P0 P1

L2

P2 P3

Socket
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AMD micro-architecture

 Execution units in the Barcelona processor:

Addr. Gen.
Unit

INT
Multiply

Integer
Alu

LD/ST
U1 (64b)

8 entry
scheduler

80b FP
Add

128b FP
Add

Instruction Control Unit

INT Decode & Rename FLP Decode & Rename

8 entry
scheduler

8 entry
scheduler

12 entry
scheduler

12 entry
scheduler

12 entry
scheduler

Addr. Gen.
Unit

Integer
Alu

Addr. Gen.
Unit

Integer
Alu

80b FP
Mul

128b FP
Mul

128b 
FMISC

LD/ST
U2(128b)

Decode (3 m-ops)
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Caches/TLB Size

(total / line)

Access 

(cycles)

Porting Associativity

(N-ways)

L1I 64 KB /64B 2-way

L1D 64 KB 3 dual 2-way

L2 512 KB 12 16-way

L3 (shared) 2 MB <38 32-way

L1-ITLB entries 48 fully

L2-ITLB entries 512 -

L1-DTLB entries 48 fully

L2-DTLB entries 512

AMD CPU parameters
 Barcelona processor:

Instruction issue 4 * 3 m-ops 

CPU speed 2.0 GHz

Bus speed 2 * 8 * 667 MB/s

HyperTransport 2 * 8 * 2 GB/s

L3

P0 P1 P2 P3

System Req. Q

Crossbar

H-T Mem-C


