
Reducing memory consumption:
from 1.5GB to 73MB

Andres Abad Rodriguez
CERN

Based on a true story….

 http://plumbr.eu/blog/reducing-memory-
consumption-by-20x

 Read via @javahispano

Initial situation

 Crazy usage of memory > 1.5GB
 Java application reporting

OutOfMemoryError messages
 Not memory leaks (Checked with Plumbr)

First issue: wrong library selection

 XMLBeans introduced a heavy XML schema
public class Person {

private String id;

private Date dateOfBirth;

private String forename;

private String surname;

}

XMLBeans to cache
a 1.3 million people

database 1.5GB of
heap

needed!!

Solution: change the caching to use a simpler structure
java.util.HashMap<Long, Person> (Id as key and Person
object as value)

New memory usage: 1.5GB 214MB

Second issue: improving structure

 As the keys in the Map were essentially
numbers…could we improve this somehow?

New memory usage: 214MB 143MB

Yes, by replacing the HashMap with a more
optimized Map (TLongObjectHashMap from
Trove collections)

Trove collections*: LGPL library. High
performance collections in Java

* http://trove.starlight-systems.com

Third issue: redundant class data

 Redundant piece of information in the
class
 Date Of Birth was actually encoded in the ID
 Easy to calculate based on the ID
 Solution: Remove the duplicated field

New memory usage: 143MB 93MB

public class Person {

private String id;

private String forename;

private String surname;

}

Fourth issue: improving the JVM config

 Old 64bit JVM running which did not
compress ordinary object pointers* by
default
 Activated using -XX:+UseCompressedOops

New memory usage: 93MB 73MB
* https://wikis.oracle.com/display/HotSpotInternals/CompressedOops

21.5x heap
reduction!

Lessons learned

 Benchmark the libraries
 Always ask yourself if there is a simpler

structure that fits
 Remove redundancies
 Use the correct parameters in the

compiler and in the virtual machine
Improvement results can be

impressive!!!

